首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Contaminated food through dietary intake has become the main potential risk impacts on human health. This study investigated concentrations of rare earth elements (REEs) in soil, vegetables, human hair and blood, and assessed human health risk through vegetables consumption in the vicinity of a large-scale mining area located in Hetian Town of Changting County, Fujian Province, Southeast China. The results of the study included the following mean concentrations for total and bio-available REEs of 242.92 ± 68.98 (135.85–327.56) μg g−1 and 118.59 ± 38.49 (57.89–158.96) μg g−1 dry weight (dw) in agricultural soil, respectively, and total REEs of 3.58 ± 5.28 (0.07–64.42) μg g−1 dw in vegetable samples. Concentrations of total REEs in blood and hair collected from the local residents ranged from 424.76 to 1274.80 μg L−1 with an average of 689.74 ± 254.25 μg L−1 and from 0.06 to 1.59 μg g−1 with an average of 0.48 ± 0.59 μg g−1 of the study, respectively. In addition, a significant correlation was observed between REEs in blood and corresponding soil samples (R2 = 0.6556, p < 0.05), however there was no correlation between REEs in hair and corresponding soils (p > 0.05). Mean concentrations of REEs of 2.85 (0.59–10.24) μg L−1 in well water from the local households was 53-fold than that in the drinking water of Fuzhou city (0.054 μg L−1). The health risk assessment indicated that vegetable consumption would not result in exceeding the safe values of estimate daily intake (EDI) REEs (100−110 μg kg−1 d−1) for adults and children, but attention should be paid to monitoring human beings health in such rare earth mining areas due to long-term exposure to high dose REEs from food consumptions.  相似文献   

2.
We report the effect of lindane on fish experimentally exposed to lindane. Sublethal toxicity was assessed through (a) changes in histopathology; (b) the activity of GST in different organs; and (c) bioaccumulation in exposed fish. We present a survey on toxic effects of lindane at these three levels, proposing a sequence of dose-dependent effects. Physiological damage was reversible at lowest doses, but severe at the highest, including damage consistent with fibrosis in liver and karyolitic nucleus in brain of both studied species. Exposure of Jenynsia multidentata above 6 μg L−1 caused activation a GST in liver and gills, followed by inhibition at 75 μg L−1. Interestingly, the bioaccumulation rate was suddenly increased when GST was inhibited. Corydoras paleatus exposed to 6.0 μg L−1 lindane did not present significant changes in GST activity; however, enzymatic inhibition was observed above 25 μg L−1. The bioaccumulation rate in C. paleatus remained constant throughout the experiments. All in all, these results evidence that C. paleatus is more sensitive to lindane than J. multidentata.  相似文献   

3.
Chen JW  Chen HY  Li WF  Liou SH  Chen CJ  Wu JH  Wang SL 《Chemosphere》2011,84(1):17-24
Arsenic (As) is an important environmental toxicant that can cause cancer and cardiovascular disease, but the relationship between As exposure and renal dysfunction is not clear. The aim of this study is to examine the association between As exposure and renal dysfunction in a community-based population in central Taiwan. One thousand and forty-three subjects were recruited between 2002 and 2005. The risk for type 2 diabetes was increased by 2-fold (p < 0.05) in subjects with total urinary As (U-As) > 75 μg g−1 creatinine as compared with subjects whose U-As was ?35 μg g−1 creatinine after the adjustment for potential confounders. The adjusted odds ratio for an abnormal β2 microglobulin (B2MG > 0.154 mg L−1) was significantly higher in subjects with U-As > 35 μg g−1 creatinine as compared with the reference group adjusted for age, sex, living area, cigarette smoking, diabetes, and hypertension. The risk for abnormal B2MG and estimated glomerular filtration rate (eGFR < 90 mL min−1 (1.73 m2)−1) was both increased around 2-fold (p < 0.05) in subjects with U-As > 75 μg g−1 creatinine as compared with those with U-As ? 35 μg g−1 creatinine adjusted for all the risk factors plus lead (Pb), cadmium and nickel. The prevalence of abnormal B2MG was 4.82 times higher in subjects with both over the median levels of U-As (85.1 μg L−1) and urinary Pb (18.9 μg L−1) as compared to both lower than the median (p < 0.001). These results indicate that U-As might relate to renal dysfunction even other important risk factors were taken into account. Follow-up studies for causal inference are warranted.  相似文献   

4.
The bioaccumulation of perfluorooctanesulfonamide (PFOSA) and two fluorotelomer alcohols (8:2 FTOH, 10:2 FTOH) by rainbow trout (Oncorhynchus mykiss) through dietary exposure, including depuration rates and metabolism was investigated. Concentrations in the spiked feed ranged from 10.9 μg g−1 wet weight (wet wt) for PFOSA and 6.7 μg g−1 wet wt for 8:2 FTOH to 5.0 μg g−1 wet wt for 10:2 FTOH. Trout was fed at 1.5% body weight per day for 30 d and depuration was followed for up to 30 d following previously published dietary exposure protocols. Perfluorooctanesulfonate (PFOS) was the major perfluoroalkylsulfonate (PFSA) detected in fish following dietary exposure to PFOSA. Half-lives of PFOS and PFOSA were 16.9 ± 2.5 and 6.0 ± 0.4 d, respectively. A biomagnification factor (BMF) of 0.023 was calculated for PFOSA which indicates that dietary exposure to PFOSA does not result in biomagnification in the rainbow trout. PFOS had a BMF of 0.08. The fluorotelomer saturated acids (8:2 FTCA, 10:2 FTCA) and fluorotelomer unsaturated acids (8:2 FTUCA, 10:2 FTUCA) were the major products detected in rainbow trout following dietary exposure to 8:2 FTOH and 10:2 FTOH, respectively. Half-lives were 3.7 ± 0.4, 2.1 ± 0.5, 3.3, and 1.3 d for 10:2 FTCA, 10:2 FTUCA, 8:2 FTCA, and 8:2 FTUCA, respectively. Small amounts of perfluorooctanoate (PFOA) and perfluorodecanoate (PFDA) were also detected in the FTOH exposed fish.  相似文献   

5.
Aerobic degradation of tetrabromobisphenol-A by microbes in river sediment   总被引:3,自引:0,他引:3  
Chang BV  Yuan SY  Ren YL 《Chemosphere》2012,87(5):535-541
This study investigated the aerobic degradation of tetrabromobisphenol-A (TBBPA) and changes in the microbial community in river sediment from southern Taiwan. Aerobic degradation rate constants (k1) and half-lives (t1/2) for TBBPA (50 μg g−1) ranged from 0.053 to 0.077 d−1 and 9.0 to 13.1 d, respectively. The degradation of TBBPA (50 μg g−1) was enhanced by adding yeast extract (5 mg L−1), sodium chloride (10 ppt), cellulose (0.96 mg L−1), humic acid (0.5 g L−1), brij 30 (55 μM), brij 35 (91 μM), rhamnolipid (130 mg L−1), or surfactin (43 mg L−1), with rhamnolipid yielding a higher TBBPA degradation than the other additives. For different toxic chemicals in the sediment, the results showed the high-to-low order of degradation rates were bisphenol-A (BPA) (50 μg g−1) > nonylphenol (NP) (50 μg g−1) > 4,4′-dibrominated diphenyl ether (BDE-15) (50 μg g−1) > TBBPA (50 μg g−1) > 2,2′,3,3′,4,4′,5,5′,6,6′-decabromodiphenyl ether (BDE-209) (50 μg g−1). The addition of various treatments changed the microbial community in river sediments. The results also showed that Bacillus pumilus and Rhodococcus ruber were the dominant bacteria in the process of TBBPA degradation in the river sediments.  相似文献   

6.
Butyrate in the effluent of hydrogen-producing bioreactor is a potential feed for biobutanol production. For recycling butyrate, this study investigated the kinetics of biobutanol production by Clostridium beijerinckii NRRL B592 from different paired concentrations of butyrate and sucrose in a series of batch reactors. Results show that the lag time of butanol production increased with higher concentration of either sucrose or butyrate. In regression analyses, the maximum specific butanol production potential of 6.49 g g−1 of dry cell was projected for 31.9 g L−1 sucrose and 1.3 g L−1 butyrate, and the maximum specific butanol production rate of 0.87 g d−1 g−1 of dry cell was predicted for 25.0 g L−1 sucrose and 2.6 g L−1 butyrate. The specific butanol production potential will decrease if more butyrate is added to the reactor. However, both sucrose and butyrate concentrations are weighted equally on the specific butanol production rate. This observation also is true on butanol yield. The maximum butanol yield of 0.49 mol mol−1 was projected for 25.0 g L−1 sucrose and 2.3 g L−1 butyrate. In addition, a confirmation study found butanol yield increased from 0.2 to 0.3 mol mol−1 when butyrate addition increased from 0 to 1 g L−1 under low sugar concentration (3.8 g L−1 sucrose). The existence of butyrate increases the activity of biobutanol production and reduces the fermentable sugar concentration needed for acetone–butanol–ethanol fermentation.  相似文献   

7.
Toxicity studies tend to use pure pesticides with single organisms. However, natural systems are complex and biological communities diverse. The organophosphate pesticide propetamphos (PPT) has been found exceeding regulatory limits (100 ng L−1) in rivers. We address whether solution properties affect the fate of Analar (Analar-PPT) or industrial PPT (PPT-Ind) propetamphos formulations and whether propetamphos and metal toxicant effects are additive, antagonistic or synergistic? The sorption, desorption, biodegradation and microbial toxicology of Analar-PPT and PPT-Ind were investigated in Conwy River and estuary sediment. Results showed elevated salinity enhanced PPT sorption, while higher salinities increased PPT-Ind retention. Higher dissolved organic matter (DOM) and low salinity slowed Analar-PPT biodegradation (1.9 × 10−3 h−1). Analar-PPT and PPT-Ind biodegradation was further reduced by low salinity, high DOM and dissolved Zn and Pb (6.3 × 10−4 h−1, 1100 h t½ for Analar-PPT; 7.5 × 10−4 h−1, 924 h t½ for PPT-Ind). Toxicity effects of PPT, Zn and Pb in equitoxic ratio were higher for PPT-Ind (4.7 μg PPT-Ind g−1; 581 μg Zn g−1; 395 μg Pb g−1) than for Analar-PPT (34.6 μg PPT g−1; 312 μg Zn g−1; 212 μg Pb g−1) whilst a toxicant ratio 1:100:10 suggested small quantities of Analar-PPT (EC10 = 0.06 μg g−1) affected microbial communities. The combined toxicity effect was more than additive. Thus, industrial formulations and pollutant mixtures should be considered when assessing environmental toxicity.  相似文献   

8.
Cima F  Ballarin L 《Chemosphere》2012,89(1):19-29
After the widespread ban of TBT, due to its severe impact on coastal biocoenoses, mainly related to its immunosuppressive effects on both invertebrates and vertebrates, alternative biocides such as Cu(I) salts and the triazine Irgarol 1051, the latter previously used in agriculture as a herbicide, have been massively introduced in combined formulations for antifouling paints against a wide spectrum of fouling organisms. Using short-term (60 min) haemocyte cultures of the colonial ascidian Botryllus schlosseri exposed to various sublethal concentrations of copper(I) chloride (LC50 = 281 μM, i.e., 17.8 mg Cu L−1) and Irgarol 1051 (LC50 > 500 μM, i.e., >127 mg L−1), we evaluated their immunotoxic effects through a series of cytochemical assays previously used for organotin compounds. Both compounds can induce dose-dependent immunosuppression, acting on different cellular targets and altering many activities of immunocytes but, unlike TBT, did not have significant effects on cell morphology. Generally, Cu(I) appeared to be more toxic than Irgarol 1051: it significantly (< 0.05) inhibited yeast phagocytosis at 0.1 μM (∼10 μg L−1), and affected calcium homeostasis and mitochondrial cytochrome-c oxidase activity at 0.01 μM (∼1 μg L−1). Both substances were able to change membrane permeability, induce apoptosis from concentrations of 0.1 μM (∼10 μg L−1) and 200 μM (∼50 mg L−1) for Cu(I) and Irgarol 1051, respectively, and alter the activity of hydrolases. Both Cu(I) and Irgarol 1051 inhibited the activity of phenoloxidase, but did not show any interactive effect when co-present in the exposure medium, suggesting different mechanisms of action.  相似文献   

9.
Mercury in the biotic compartments of Northwest Patagonia lakes, Argentina   总被引:1,自引:0,他引:1  
We report on total mercury (THg) concentrations in the principal components of food webs of selected Northern Patagonia Andean Range ultraoligotrophic lakes, Argentina. The THg contents were determined using Instrumental Neutron Activation Analysis in muscle and liver of four fish species occupying the higher trophic positions (the introduced Salmo trutta, Oncorhynchus mykiss and Salvelinus fontinalis, and the native Percichthys trucha) accounted for eight lakes belonging to Nahuel Huapi and Los Alerces National Parks. We studied the food web components of both the West and East branches of Lake Moreno, including benthic primary producers such as biofilm, mosses, and macrophytes, three plankton fractions, fish, riparian tree leaves, and benthic invertebrates, namely decapods, molluscs, insect larvae, leeches, oligochaetes, and amphipods.Mercury concentrations in fish muscle varied in a wide range, from less than 0.05 to 4 μg g−1 dry weight (DW), without a distribution pattern among species but showing higher values for P. trucha and S. fontinalis, particularly in Lake Moreno.The THg contents of the food web components of Lake Moreno varied within 4 orders of magnitude, with the lower values ranging from 0.01 to 0.5 μg g−1 DW in tree leaves, some macrophytes, juvenile salmonids or benthic macroinvertebrates, and reaching concentrations over 200 μg g−1 DW in the plankton. Juvenile Galaxias maculatus caught in the pelagic area presented the highest THg contents of all fish sampled, reaching 10 μg g−1 DW, contents that could be associated with the high THg concentrations in plankton since it is their main food source. Although Lake Moreno is a system without local point sources of contamination, situated in a protected area, some benthic organisms presented high THg contents when compared with those from polluted ecosystems.  相似文献   

10.
This study aimed to investigate the impact of contamination by persistent organic pollutants (POPs) on Brazilian wildlife. The concentrations of certain POPs, including dichlorodiphenyltrichloroethane (DDT) and polychlorinated biphenyls (PCBs), in the eggs of the brown booby (Sula leucogaster) were measured. The eggs were collected from breeding colonies located on three archipelagos (Saint Peter and Saint Paul, Abrolhos and Cagarras Islands) in the Atlantic Ocean, which are located at different distances from the Brazilian coast (range 4-1010 km). In addition, possible alterations in eggshell characteristics were evaluated. The average values of POPs found in eggs from the archipelago of Saint Peter and Saint Paul (0.05 μg g−1 of ΣPCBs and 0.01 μg g−1 of ΣDDT) and the archipelago of Abrolhos (0.19 μg g−1 of ΣPCBs and 0.03 μg g−1 of ΣDDT) were low compared to the reference values reported in the literature. In contrast, the concentrations measured in eggs from Cagarras (8.4 μg g−1 of ΣPCBs and 1.8 μg g−1 of ΣDDT) were the highest, and this total PCB level is close to the threshold values considered to be harmful to birds. Our findings indicate that the brown booby colony closest to the Rio de Janeiro coast has recently been exposed to DDT. Despite the high pollution levels found on the Cagarras Islands, no alterations in the eggshell weight or the thickness of the analyzed eggs were detected. Hence, more detailed studies are recommended to determine the actual effects of the selected POPs on the Cagarras breeding colony.  相似文献   

11.
The present investigation determined the effects of epibrassinolide (EBL) on the levels of indole-3-acetic acid (IAA), abscisic acid (ABA), and polyamine (PA) and antioxidant potential of 7-d old Raphanus sativus L. cv. ‘Pusa chetki’ seedlings grown under Cr (VI) metal stress. Reduced titers of free (0.767 μg g−1 FW) and bound (0.545 μg g−1 FW) IAA in Cr (VI) stressed seedlings were observed over untreated control. Supplementations of EBL to Cr (VI) stressed seedlings were able to enhance both free (2.14-5.68 μg g−1 FW) and bound IAA (2.45-7.78 μg g−1 FW) concentrations in comparison to Cr (VI) metal treatment alone. Significant rise in free (13.49 μg g−1 FW) and bound (12.17 μg g−1 FW) ABA contents were noticed for Cr (VI) stressed seedlings when compared to untreated control. No significant increase in ABA contents were recorded for Cr (VI) stressed seedlings upon supplementation with EBL over Cr (VI) treatment alone. A significant increase in Put (18.40 μg g−1 FW) and Cad (9.08 μg g−1 FW) contents were found for 10−9 M EBL plus Cr (VI) metal treatments when compared to Cr (VI) treatment alone. Spermidine (Spd) contents were found to decline significantly for EBL treatment alone or when supplemented with Cr (VI) treatments over untreated controls and Cr (VI) treatment alone. Antioxidant levels were found to enhance, with glutathione (57.98 mg g−1 FW), proline (4.97 mg g−1 FW), glycinebetaine (39.01 μmol mL−1), ascorbic acid (3.17 mg g−1 FW) and phytochelatins (65.69 μmol g−1 FW) contents noted for EBL supplemented to Cr (VI) metal solution over Cr (VI) treatment alone. Reduced activities of guaiacol peroxidase (0.391 U mg−1 protein) and catalase (0.221 U mg−1 protein) and enhanced activities of glutathione reductase (7.14 U mg−1 protein), superoxide dismutase (15.20 U mg−1 protein) and ascorbate peroxidase (4.31 U mg−1 protein) were observed in seedlings treated with EBL plus Cr (VI) over Cr metal treatment alone. Reduced MDA (2.55 μmol g−1 FW) and H2O2 (33.24 μmol g−1 FW) contents were recorded for 10−9 M EBL supplemented to Cr (VI) stress over Cr (VI) treatment alone. Enhancement in free radical scavenging potential as indicated by higher values of 1,1-diphenylpicrylhydrazyl, deoxyribose and reducing power activity assays, and increased levels of phenols and soluble sugars also showed significant influence of EBL in alleviating Cr (VI) stress in radish seedlings.  相似文献   

12.
To evaluate the bioaccumulation and the risk associated to consumption of lipid-rich detritivorous fish, a comprehensive set of organic pollutants (n = 213) including polychlorinated biphenyls (PCBs), dioxin like PCBs (dlPCBs), chlorinated pesticides (CHLPs), chlorobenzenes (CBzs), polybrominated diphenyl ethers (PBDEs), polychlorinated dibenzo dioxins and furans (PCDD/F), resolved (ALI) and unresolved aliphatic hydrocarbons (UCM) and linear alkyl benzenes (LABs) were analyzed in Sábalo fish (Prochilodus lineatus) collected in the polluted Metropolitan Buenos Aires coast and in migrating specimens. Fatty fish muscles (lipids: 74 ± 9.3% dry weight) contained homogeneous (24-51% variability) and very high-concentrations of organic pollutants ranging from 60 to 1300 μg g−1 fresh weight (fw) ALI + UCM; 10-40 μg g−1 fw LABs and PCBs; 0.1-1 μg g−1 fw dlPCBs, DDTs, chlordanes, CBzs and PBDEs; 0.01-0.1 μg g−1 fw mirex, endosulfans, aldrin, dieldrin, endrin and 0.07-0.2 ng g−1 PCDD/F. Total toxicity equivalents (TEQs) ranged from 60 to 395 pg g−1 fw (34 ± 17 and 213 ± 124 pg g−1 TEQs for PCDD/F and dlPCBs respectively). These are among the highest concentrations reported for fish and point out the remarkable ability of Sábalo to feed on anthropogenic organic-enriched particles and tolerate a high pollutant load. Contaminant signatures show partial alteration with still abundant lower molecular weight components indicating that fish feeds directly in the outfalls. Consumption limits based on reference doses ranged from 0.1 (PCBs) to >12 000 g d−1 (endosulfan) allowing a comprehensive risk-based ranking of contaminants in this long-range migrating, detritivorous fish.  相似文献   

13.
In this study, different concentrations of transfluthrin and metofluthrin have been assayed for genotoxicity by using the Wing Spot Test on Drosophila melanogaster. Standard cross was used in the experiment. Third-instar larvae that were trans-heterozygous for the two genetic markers mwh and flr3 were treated at different concentrations (0.0103 mg mL−1, 0.103 mg mL−1 for transfluthrin and 6 μg mL−1, 60 μg mL−1 for metofluthrin) of the test compounds. Feeding ended with pupation of the surviving larvae and the genetic changes induced in somatic cells of the wing’s imaginal discs lead to the formation of mutant clones on the wing blade. Results indicated that two experimental concentrations of transfluthrin and 60 μg mL−1 metofluthrin showed mutagenic and recombinogenic effects in both the marker-heterozygous (MH) flies and the balancer-heterozygous (BH) flies.  相似文献   

14.
Mechora S  Cuderman P  Stibilj V  Germ M 《Chemosphere》2011,84(11):1636-1641
The uptake of Se (VI) by two aquatic plants, Myriophyllum spicatum L. and Ceratophyllum demersum L., and its effects on their physiological characteristics have been studied. Plants were cultivated outdoors under semi-controlled conditions and in two concentrations of Na selenate solution (20 μg Se L−1 and 10 mg Se L−1). The higher dose of Se reduced the photochemical efficiency of PSII in both species, while the lower dose had no effect on PSII. Addition of Se had no effect on the amounts of chlorophyll a and b. The concentration of Se in plants grown in 10 mg Se L−1, averaged 212 ± 12 μg Se g−1 DM in M. spicatum (grown from 8-13 d), and 492 ± 85 μg Se g−1 DM in C. demersum (grown for 31 d). Both species could take up a large amount of Se. The amount of soluble Se compounds in enzyme extracts ranged from 16% to 26% in control, and in high Se solution from 48% to 36% in M. spicatum and C. demersum, respectively. Se-species were determined using HPLC-ICP-MS. The main soluble species in both plants was selenate (∼37%), while SeMet and SeMeSeCys were detected at trace levels.  相似文献   

15.
Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna   总被引:1,自引:0,他引:1  
The acute toxicity of engineered nanoparticles (NPs) in aquatic environments at high concentrations has been well-established. This study demonstrates that, at a concentration generally considered to be safe in the environment, nano-TiO2 remarkably enhanced the toxicity of copper to Daphnia magna by increasing the copper bioaccumulation. Specifically, at 2 mg L−1 nano-TiO2, the (LC50) of Cu2+ concentration observed to kill half the population, decreased from 111 μg L−1 to 42 μg L−1. Correspondingly, the level of metallothionein decreased from 135 μg g−1 wet weight to 99 μg g−1 wet weight at a Cu2+ level of 100 μg L−1. The copper was found to be adsorbed onto the nano-TiO2, and ingested and accumulated in the animals, thereby causing toxic injury. The nano-TiO2 may compete for free copper ions with sulfhydryl groups, causing the inhibition of the detoxification by metallothioneins.  相似文献   

16.
The aim of this study was to determine and quantify effects of copper and lithium in tissues of early juveniles of the ramshorn snail, Marisa cornuarietis. For this purpose, hatchlings of M. cornuarietis were exposed for 7 days to a range of five different sublethal concentrations of copper (5, 10, 25, 50, and 75 μg Cu2+ L−1) and lithium (50, 100, 200, 1000, and 5000 μg Li+ L−1). Both metals changed the tissue structure of epidermis, hepatopancreas, and gills, varying between slight and strong reactions, depending on the copper and lithium concentration. The histopathological changes included alterations in epithelial and mucous cells of the epidermis, swelling of hepatopancreatic digestive cells, alterations in the number of basophilic cells, abnormal apices of digestive cells, irregularly shaped cilia and changes in the amount of mucus in the gills. The most sensible organ in M. cornuarietis indicating Cu or Li pollution is the hepatopancreas (LOECs were 10 μg Cu2+ L−1, or 200 μg Li+ L−1). In epidermis, mantle and gills relevant effects occurred with higher LOECs (50 μg Cu2+ L−1, or 1000 μg Li+ L−1). Base on LOECs, our results indicated that histopathological endpoints are high sensitivity to copper and lithium compared to endpoints for embryonic developmental toxicity.  相似文献   

17.
Silver (Ag) ions are among the most toxic metallic ions to aquatic biota. In southern Argentina, fish from Patagonian lakes have liver Ag concentrations [Ag] among the highest ever reported globally. Silver concentration in phytoplankton from Lake Moreno (1.82 ± 3.00 μg g−1 dry weight, DW) was found to be significantly higher than [Ag] in zooplankton (0.25 ± 0.13 μg g−1). Values in snails and decapods (0.60 ± 0.28 μg g−1 and 0.47 ± 0.03 μg g−1 respectively), were higher than in insect larvae (0.28 ± 0.39 μg g−1 for Trichoptera). We examined trophic transfer of Ag in the biota using stable nitrogen and carbon isotopes ratios (δ15N and δ13C respectively). Silver concentrations in the biota of Lake Moreno were not associated with any particular C source, as assessed by δ13C. Hepatic [Ag] significantly increased with trophic position, as measured by δ15N, within the brook trout sample set. Biodilution of Ag was observed between primary producers and small forage fish when whole body [Ag] was analyzed. Nevertheless, when considering whole food web biomagnification and hepatic [Ag] of top predator fish, a significant positive regression was found between [Ag] and trophic position, as measured by δ15N. The importance of species-specific and tissue-specific considerations to obtain more information on Ag trophodynamics than that usually presented in the literature is shown. To the best of our knowledge, this is the first study in assessing Ag trophodynamics and tissue-specific biomagnification in a whole freshwater food web.  相似文献   

18.
We assessed changes in spontaneous swimming activity and acetylcholinesterase (AchE) activity of Jenynsia multidentata exposed to Endosulfan (EDS). Females of J. multidentata were exposed to 0.072 and 1.4 μg L−1 EDS. Average speed and movement percentage were recorded during 48 h. We also exposed females to EDS at five concentrations between 0.072 and 1.4 μg L−1 during 24 h, and measured the AchE activity in brain and muscle. At 0.072 μg L−1 EDS swimming motility decreased relative to the control group after 45 h, while at 1.4 μg L−1 EDS swimming motility decreased after 24 h. AchE activity significantly decreased in muscle when J. multidentata were exposed to EDS above 0.072 μg L−1, while no significant changes were observed in brain. Thus, changes in swimming activity and AchE activity in muscle are good biomarkers of exposure to EDS in J. multidentata.  相似文献   

19.
Guo Y  Zhang J  Yu R  Zhu KY  Guo Y  Ma E 《Chemosphere》2012,86(7):709-717
Composite samples of Australian farmed Yellowtail Kingfish (Seriola lalandi) (YTKF) (n = 27), Mulloway (Argyrosomus hololepidotus) (n = 6) and manufactured feed (n = 5) were analysed to benchmark levels of a broad range of residues and contaminants of potential public health and trade significance. A subset of these samples [YTKF (n = 5), Mulloway (n = 2) and feed (n = 5)] was analysed for dioxins and polychlorinated biphenyls (PCBs). The mean concentration of dioxins in YTKF was 0.6 pg TEQ g−1 (range 0.22-0.8) and in Mulloway was 0.16 pg TEQ g−1 (range 0.16-0.16). The mean concentration of dioxins and dioxin-like PCBs in YTKF was 2.6 pg TEQ g−1 (range 1.4-3.5), while Mulloway had a mean concentration of 0.67 pg TEQ g−1 (range 0.57-0.76). The mean concentration of PCBs in YTKF was 21 μg kg−1 (range 8.6-29) and in Mulloway was 5.4 μg kg−1 (mean 4.7-6). The mean concentration of dioxin-like PCBs in YTKF was 2.1 pg TEQ g−1 (range 1.2-2.8) and in Mulloway was 0.51 pg TEQ g−1 (range 0.41-0.61). The mean mercury concentration in YTKF was 0.03 mg kg−1 (range 0.02-0.05) and in Mulloway it was 0.02 mg kg−1 (range 0.02-0.04). There were no detectable levels of any pesticide or antimicrobial compounds in any sample of YTKF or Mulloway. Attention is drawn to technical differences in port of entry testing programs such as sampling strategies, portion tested, laboratory methodology, residue definitions and reporting conventions that exporters’ products may be subject to. All residues and contaminants were either undetectable or present at very low levels when judged against Australian, Japanese and European Union regulatory standards (where set).  相似文献   

20.
A comprehensive surveillance program was conducted to determine the occurrence of three cyclic volatile methylsiloxanes (cVMS) octamethylcyclotetrasiloxane (D4), decamethylcyclopentasiloxane (D5), and dodecamethylcyclohexasiloxane (D6) in environmental compartments impacted by wastewater effluent discharges. Eleven wastewater treatment plants (WWTPs), representative of those found in Southern Ontario and Southern Quebec, Canada, were investigated to determine levels of cVMS in their influents and effluents. In addition, receiving water and sediment impacted by WWTP effluents, and biosolid-amended soil from agricultural fields were also analyzed for a preliminary evaluation of the environmental exposure of cVMS in media impacted by wastewater effluent and solids. A newly-developed large volume injection (septumless head adapter and cooled injection system) gas chromatography – mass spectrometry method was used to avoid contamination originating from instrumental analysis. Concentrations of D4, D5, and D6 in influents to the 11 WWTPs were in the range 0.282–6.69 μg L−1, 7.75–135 μg L−1, and 1.53–26.9 μg L−1, respectively. In general, wastewater treatment showed cVMS removal rates of greater than 92%, regardless of treatment type. The D4, D5, and D6 concentration ranges in effluent were <0.009–0.045 μg L−1, <0.027–1.56 μg L−1, and <0.022–0.093 μg L−1, respectively. The concentrations in receiving water influenced by effluent, were lower compared to those in effluent in most cases, with the ranges <0.009–0.023 μg L−1, <0.027–1.48 μg L−1, and <0.022–0.151 μg L−1 for D4, D5, and D6, respectively. Sediment concentrations ranged from <0.003–0.049 μg g−1 dw, 0.011–5.84 μg g−1 dw, and 0.004–0.371 μg g−1 dw for D4, D5, and D6, respectively. The concentrations in biosolid-amended soil, having values of <0.008–0.017 μg g−1 dw, <0.007–0.221 μg g−1 dw, and <0.009–0.711 μg g−1 dw for D4, D5, and D6, respectively, were lower than those in sediment impacted by wastewater effluent in most cases. In comparison with the no-observed-effected concentrations (NOEC) and IC50 (concentration that causes 50% inhibition of the response) values, the potential risks to aquatic, sediment-dwelling, and terrestrial organisms from these reported concentrations are low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号