首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
Toxicity potentials are standard values used in life cycle assessment (LCA) to enable a comparison of toxic impacts between substances. In most cases, toxicity potentials are calculated with multi-media fate models. Until now, unrealistic system settings were used for these calculations. The present paper outlines an improved model to calculate toxicity potentials: the global nested multi-media fate, exposure and effects model USES-LCA. It is based on the Uniform System for the Evaluation of Substances 2.0 (USES 2.0). USES-LCA was used to calculate for 181 substances toxicity potentials for the six impact categories freshwater aquatic ecotoxicity, marine aquatic ecotoxicity, freshwater sediment ecotoxicity, marine sediment ecotoxicity, terrestrial ecotoxicity and human toxicity, after initial emission to the compartments air, freshwater, seawater, industrial soil and agricultural soil, respectively. Differences of several orders of magnitude were found between the new toxicity potentials and those calculated previously.  相似文献   

2.
Wang Y  Wu S  Chen L  Wu C  Yu R  Wang Q  Zhao X 《Chemosphere》2012,88(4):484-491
This study was conducted to investigate comparative toxicity of 45 pesticides, including insecticides, acaricides, fungicides, and herbicides, toward the epigeic earthworm Eisenia fetida. Results from a 48-h filter paper contact test indicated that clothianidin, fenpyroximate, and pyridaben were supertoxic to E. fetida with LC(50) values ranging from 0.28 (0.24-0.35) to 0.72 (0.60-0.94) μg cm(-2), followed by carbaryl, pyridaphenthion, azoxystrobin, cyproconazole, and picoxystrobin with LC(50) values ranging from 2.72 (2.22-0.3.19) to 8.48 (7.38-10.21) μg cm(-2), while the other pesticides ranged from being relatively nontoxic to very toxic to the worms. When tested in artificial soil for 14 d, clothianidin and picoxystrobin showed the highest intrinsic toxicity against E. fetida, and their LC(50) values were 6.06 (5.60-6.77) and 7.22 (5.29-8.68) mg kg(-1), respectively, followed by fenpyroximate with an LC(50) of 75.52 (68.21-86.57) mgkg(-1). However, the herbicides fluoroglycofen, paraquat, and pyraflufen-ethyl exhibited the lowest toxicities with LC(50) values>1000 mg kg(-1). In contrast, the other pesticides exhibited relatively low toxicities with LC(50) values ranging from 133.5 (124.5-150.5) to 895.2 (754.2-1198.0) mg kg(-1). The data presented in this paper provided useful information for evaluating the potential risk of these chemicals to soil invertebrates.  相似文献   

3.
In order to determine their tolerance to pesticides, 122 strains of rhizobia isolated from different geographical regions, and belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium and Bradyrhizobium were tested against eight herbicides, four fungicides and five insecticides. Sensitivity to the pesticides was measured by using the filter paper disk method at four concentrations, 0.45, 4.5, 45 and 450 μg per disk. When the pesticides were used at 0.45 μg per disk, a concentration similar to that found when pesticides are applied under field conditions, no inhibition was observed. Strains growth was affected at concentrations of 45 and 450 μg pesticide per disk. These higher concentrations can be encountered when seeds are treated with pesticides. Pesticides tolerance level was correlated to pesticide function, i.e rhizobial strains were more tolerant to insecticides, followed by herbicides and then fungicides. Two fungicides, captan and mancozeb, inhibited the highest number of strains. Only one insecticide, carbaryl, affected the growth of some rhizobial strains. Strains isolated from the arctic (Mesorhizobium spp. and R. leguminosarum bv. viciae), a putative pesticides-free environment, were either less or equally affected by pesticides compared to strains isolated from agricultural regions.  相似文献   

4.
Since chemicals’ ecotoxic effects depend for most soil species on the dissolved concentration in pore water, the equilibrium partitioning (EP) method is generally used to estimate hazardous concentrations (HC50) in the soil from aquatic toxicity tests. The present study analyzes the statistical uncertainty in terrestrial HC50s derived by the EP-method. For 47 organic chemicals, we compared freshwater HC50s derived from standard aquatic ecotoxicity tests with porewater HC50s derived from terrestrial ecotoxicity tests. Statistical uncertainty in the HC50s due to limited species sample size and in organic carbon–water partitioning coefficients due to predictive error was treated with probability distributions propagated by Monte Carlo simulations. Particularly for specifically acting chemicals, it is very important to base the HC50 on a representative sample of species, composed of both target and non-target species. For most chemical groups, porewater HC50 values were approximately a factor of 3 higher than freshwater HC50 values. The ratio of the porewater HC50/freshwater HC50 was typically 3.0 for narcotic chemicals (2.8 for nonpolar and 3.4 for polar narcotics), 0.8 for reactive chemicals, 2.9 for neurotoxic chemicals (4.3 for AChE agents and 0.1 for the cyclodiene type), and 2.5 for herbicides–fungicides. However, the statistical uncertainty associated with this ratio was large (typically 2.3 orders of magnitude). For 81% of the organic chemicals studied, there was no statistical difference between the hazardous concentration of aquatic and terrestrial species. We conclude that possible systematic deviations between the HC50s of aquatic and terrestrial species appear to be less prominent than the overall statistical uncertainty.  相似文献   

5.
The runoff of pesticides (insecticides, herbicides and fungicides) from agricultural lands is a key concern for the health of the iconic Great Barrier Reef, Australia. Relatively low levels of herbicide residues can reduce the productivity of marine plants and corals. However, the risk of these residues to Great Barrier Reef ecosystems has been poorly quantified due to a lack of large-scale datasets. Here we present results of a study tracing pesticide residues from rivers and creeks in three catchment regions to the adjacent marine environment. Several pesticides (mainly herbicides) were detected in both freshwater and coastal marine waters and were attributed to specific land uses in the catchment. Elevated herbicide concentrations were particularly associated with sugar cane cultivation in the adjacent catchment. We demonstrate that herbicides reach the Great Barrier Reef lagoon and may disturb sensitive marine ecosystems already affected by other pressures such as climate change.  相似文献   

6.
Current methods of estimating potential environmental impacts of metals in hazard and Life Cycle Impact Assessment (LCIA) do not consider differences in chemistry and landscape properties between geographic sites. Here, we developed and applied a model for regional aquatic impact characterization of metals using an updated method for estimating environmental fate factor (FF), bioavailability factor (BF) and aquatic ecotoxicity factor (EF). We applied the model to analyze differences in Comparative Toxicity Potentials (CTPs) of Cu, Ni and Zn for 24 Canadian ecoregions. The combined impacts of regional variability in ambient chemistry (in particular DOC, pH and hardness) and landscape properties (water residence time) can change the CTPs of these metals for freshwater by up to three orders of magnitude and change the relative ranking of metal hazard between ecoregions. Variation among Canadian freshwater chemistries and landscape characteristics influence the FFs within two orders of magnitude, BFs within two orders of magnitude for Ni and Zn and four orders of magnitude for Cu, and EFs within one order of magnitude. Sensitivity of metal FFs to environmental parameters alone spans three orders of magnitude when a constant water chemistry was used for all ecoregions. These results indicate that application of regionalised metal CTPs can have a significant influence in the analysis of ecotoxicological impacts in the life cycle assessment of products and processes.  相似文献   

7.
Contaminants belonging to various classes, as polychlorobiphenyls, polycyclic aromatic hydrocarbons, organochlorine pesticides, organophosphorous pesticides, pyrethroid insecticides, fungicides, herbicides, synergists, carbamates, acaricides and insect growth regulators were simultaneously analysed by GC-MS/MS in 118 Italian and Tunisian culinary herbs and spices. The results obtained in Italian samples shown that laurel samples were the most contaminated with the presence of 15 residues on 140, whereas in rosemary (max value of 35?ng/g for cis-chlorfenyvinphos) and oregano (max value of 118.16?ng/g for ethion) some occasional residues can be observed, but always lower than the maximum residue levels; all the others samples shown no contamination. Among Tunisian samples, only rosemary contains a notably high content of pollutants exceeded the EU maximum residue limits (i.e., alachlor and phosalone with level of 359.2 and 43.3?ng/g, respectively), while oregano was determined to be free of contaminant residues. Considering the comparison among the different organic pollutants in Italian and Tunisian spices and herbs evaluated and the differences observed in this study a harmonization of regulation on contaminant residues in herbs and spices for human consumption should be needed, considering their increased use in diet and cooking.  相似文献   

8.
The objective of this study was to determine the levels of pesticides in the fish Prochilodus costatus caught in São Francisco River, one of most important rivers in Brazil. Thirty-six fish were captured in three different areas, and samples of the dorsal muscle and pooled viscera were collected for toxicological analysis. We evaluated the presence of 150 different classes of insecticides, fungicides, herbicides and acaricides by multiresidue analysis technique using liquid chromatography-tandem mass spectrometry (LC-MS/MS), with the limit of detection of 5 ppb. In this study, organophosphorus and carbamate pesticides were detected at the highest levels in the caught fish. Among the 41 organophosphorus pesticides surveyed, nine types were detected (chlorpyrifos, diazinon, dichlorvos, disulfoton, ethion, etrimfos, phosalone, phosmet and pyrazophos) in the muscle, viscera pool, or both in 22 (61.1%) fish. Sampled tissues of 20 (55.6%) fish exhibited at least one of the eight evaluated carbamate pesticides and their metabolites: aldicarb, aldicarb sulfoxide, carbaryl, carbofuran, carbosulfan, furathiocarb, methomyl and propoxur. Fungicides (carbendazim, benalaxyl, kresoxim-methyl, trifloxystrobin, pyraclostrobin and its metabolite BF 500 pyraclostrobin), herbicides (pyridate and fluasifop p-butyl), acaricide (propargite) and pyrethroid (flumethrin) were also detected. In conclusion, P. costatus fish caught in the São Francisco River contained residues of 17 different pesticides, in both muscles and the viscera pool, indicating heavy environmental contamination by pesticides in the study area.  相似文献   

9.
The sole routine testing of the standard earthworm Eisenia fetida for the terrestrial risk assessment of pesticides has been under much debate since other soil invertebrates may be more sensitive than this standard test species. However, the very low availability of laboratory toxicity data for taxa other than E. fetida has greatly hampered sensitivity comparisons. In the present study, the relative tolerance (Trel) approach was used to enable comparing toxicity thresholds obtained from the US-EPA ECOTOX database, for main terrestrial taxonomic groups and pesticidal types of action (insecticides, fungicides, herbicides, and other) separately. Analyses confirmed previously reported lower and higher sensitivity of collembolans to fungicides and insecticides, respectively. However, various other discrepancies in susceptibility relative to E. fetida were encountered as indicated by species sensitivity distributions and/or calculated 95% confidence intervals of Trel values. Arachnids and isopods were found to be more sensitive to insecticides, and nematodes to fungicides, as compared to E. fetida. Implications of study findings for the terrestrial risk assessment of pesticides are discussed.  相似文献   

10.
The impacts of the fungicides azoxystrobin, tebuconazole and chlorothalonil on microbial properties were investigated in soils with identical mineralogical composition, but possessing contrasting microbial populations and organic matter contents arising from different management histories. Degradation of all pesticides was fastest in the high OM/biomass soil, with tebuconazole the most persistent compound, and chlorothalonil the most readily degraded. Pesticide sorption distribution coefficient (K(d)) did not differ significantly between the soils. Chlorothalonil had the highest K(d) (97.3) but K(d) for azoxystrobin and tebuconazole were similar (13.9 and 12.4, respectively). None of the fungicides affected microbial biomass in either soil. However, all fungicides significantly reduced dehydrogenase activity to varying extents in the low OM/biomass soil, but not in the high OM/biomass soil. The mineralization of subsequent applications of herbicides, which represents a narrow niche soil process was generally reduced in both soils by azoxystrobin and chlorothalonil. 16S rRNA-PCR denaturing gradient gel electrophoresis (DGGE) indicated that none of the fungicides affected bacterial community structure. 18S rRNA PCR-DGGE analysis revealed that a small number of eukaryote bands were absent in certain fungicide treatments, with each band being specific to a single fungicide-soil combination. Sequencing indicated these represented protozoa and fungi. Impacts on the specific eukaryote DGGE bands showed no relationship to the extent to which pesticides impacted dehydrogenase or catabolism of herbicides.  相似文献   

11.
In this study, we compared the sensitivity of freshwater and marine organisms to two structurally similar substances, acrylic acid and methacrylic acid. Reported acute toxicity data (L(E)C50-values) for freshwater organisms range from 0.1 to 222 mg/l and 85 to >130 mg/l for acrylic acid and methacrylic acid, respectively. The large variation in toxicity data for acrylic acid is due to a specific toxicity to certain species of freshwater microalgae, with algae EC50-values being two to three orders of magnitude lower than L(E)C50-values reported for fish and invertebrates. To evaluate the sensitivity of marine organisms, ecotoxicity data was generated for ten species of microalgae, one invertebrate species and one fish species. For methacrylic acid, we found a marine acute toxicity that ranged from 110 to >1260 mg/l, which is comparable to reported data on freshwater organisms. In strong contrast, the resulting L(E)C50-values for acrylic acid ranged from 50 to >1000 mg/l, and there was no specific sensitivity of marine algae when compared to marine invertebrates and fish. For acrylic acid, therefore, use of the available freshwater toxicity data for an effects assessment for the marine environment is likely to overestimate the hazard and risk from this substance. Overall, the results of the study suggest that ecotoxicity data generated on freshwater species may not always be appropriate for the effects assessments of organic chemicals in the marine environment, thus emphasising the importance of using ecologically relevant data to assess environmental risk.  相似文献   

12.
The use of zebrafish (Danio rerio) has arisen as a promising biological platform for toxicity testing of pesticides such as herbicides, insecticides, and fungicides. Therefore, it is relevant to assess the use of zebrafish in models of exposure to investigate the diversity of pesticide-associated toxicity endpoints which have been reported. Thus, this review aimed to assess the recent literature on the use of zebrafish in pesticide toxicity studies to capture data on the types of pesticide used, classes of pesticides, and zebrafish life stages associated with toxicity endpoints and phenotypic observations. A total of 352 articles published between September 2012 and May 2019 were curated. The results show an increased trend in the use of zebrafish for testing the toxicity of pesticides, with a great diversity of pesticides (203) and chemical classes (58) with different applications (41) being used. Furthermore, experimental outcomes could be clustered in 13 toxicity endpoints, mainly developmental toxicity, oxidative stress, and neurotoxicity. Organophosphorus, pyrethroid, azole, and triazine were the most studied classes of pesticides and associated with various toxicity endpoints. Studies frequently opted for early life stages (embryos and larvae). Although there is an evident lack of standardization of nomenclatures and phenotypic alterations, the information gathered here highlights associations between (classes of) pesticides and endpoints, which can be used to relate mechanisms of action specific to certain classes of chemicals.  相似文献   

13.
Toxicity potentials are scaling factors used in life cycle assessment (LCA) indicating their relative importance in terms of potential toxic impacts. This paper presents the results of an uncertainty assessment of toxicity potentials for 181 substances that were calculated with the global nested multi-media fate, exposure and effects model USES-LCA. The variance in toxicity potentials resulting from choices in the modelling procedure was quantified by means of scenario analysis. A first scenario analysis showed to what extent potential impacts in the relatively short term are obscured by the inclusion of impacts on the very long term. Toxicity potentials representing potential impacts over time horizons of 20, 100 and 500 years were compared with toxicity potentials representing potential impacts over an infinite time horizon. Time horizon dependent differences up to 6.5 orders of magnitude were found for metal toxicity potentials, while for toxicity potentials of organic substances under study, differences remain within 0.5 orders of magnitude. The second scenario analysis addressed to what extent potential impacts on the continental scale are obscured by the inclusion of impacts on the global scale. Exclusion of potential impacts on the global scale changed the toxicity potentials of metals and volatile persistent halogenated organics up to 2.3 orders of magnitude. These scenario analyses also provide the basis for determining exports to future generations and outside the emission area.  相似文献   

14.
The acute toxicity of sulfonylurea herbicides bensulfuron-methyl and cinosulfuron was tested on the five species of freshwater phytoplankton: Scenedesmus acutus, Scenedesmus subspicatus, Chlorella vulgaris and Chlorella saccharophila. Herbicide concentrations eliciting a 50% growth reduction over 96 h (EC50) ranged from 8 to 104 mg/l for cinosulfuron and from 0.015 to 6.2 mg/l for bensulfuron-methyl. The pesticides bensulfuron-methyl, atrazine and benthiocarb were more toxic than cinosulfuron, chlorsulfuron, molinate, fenitrothion and pyridaphenthion in a toxicity study with the same algal species. The transformation of effective concentrations of bensulfuron-methyl and cinosulfuron and other pesticides, obtained from toxicity measurements, into percent of the saturation level in water is used as a first evaluation of potential hazard to aquatic systems. The herbicides cinosulfuron, methyl-bensulfuron, atrazine and chlorsulfuron were more dangerous than the herbicides benthiocarb and molinate and than the insecticides fenitrothion and pyridaphenthion, in a study of hazard evaluation. The two species of Chlorella were more tolerant to both herbicides than the two species of Scenedesmus. A potential environmental hazard of sulfonylurea herbicides to aquatic systems has to be expected even at low environmental concentrations.  相似文献   

15.
Despite heavy insecticide usage in urban areas, only a few studies have investigated the impact of current-use insecticides on benthic invertebrates in urban streams. The objective of this study was to measure the presence and concentration of current-use pesticides in sediments of residential streams in central Texas. Additionally, toxicity of these sediments to Hyalella azteca was evaluated. Sediment samples were collected from several sites in urban streams over the course of a year, of which, 66% had greater than one toxic unit (TU) of insecticide. Bifenthrin was the greatest contributor accounting for 65% of the TUs, and sediment toxicity to H. azteca correlated with the magnitude of total insecticides and bifenthrin TUs. The results of this study further raise concerns over the environmental consequences posed by many current-use insecticides, especially pyrethroids, in urban settings.  相似文献   

16.
Abstract

Closed lakes located in urban parks act as sinks of organochlorine pesticides (OCPs), which have been used, for decades, as insecticides, herbicides and fungicides. The closed lakes from Bucharest, Romania, are periodically managed to prevent eutrophication and accumulation of pollutants. However, it is not known if these practices reduce or enhance the legacy pollution with OCPs. The aim of this study was to explore the spatial variation of OCPs in closed lakes. The total concentration of OCPs in water and sediments ranged between 0.0176 and 37.1?µg/L, and between 122 to 1,890?ng/g, respectively. The concentrations of OCPs were compared with the consensus-based sediment quality guidelines (SQGs) in order to evaluate the ecological risks of sediments. The highest potential adverse effects were associated with γ-HCH exposure. Periodical draining and dredging of lakes lead to the resuspension of contaminants, increasing pesticide bioavailability and accumulation in sediments. In addition, we observed that fluorescent dissolved organic matter (DOM) might influence the OCPs cycle. The quantity and character of fluorescent DOM can provide further insight into OCPs degradation. Also, this study may help urban planners to determine the state of urban waters and to find the best solution for water management.  相似文献   

17.
The introduction of glyphosate-tolerant (GT) crops is expected to mitigate the environmental contamination by herbicides because glyphosate is less persistent and toxic than the herbicides used on non-GT crops. Here, we compared the environmental balances of herbicide applications for both crop types in three French field trials. The dynamic of herbicides and their metabolites in soil, groundwater and air was simulated with PRZM model and compared to field measurements. The associated impacts were aggregated with toxicity potentials calculated with the fate and exposure model USES for several environmental endpoints. The impacts of GT systems were lower than those of non-GT systems, but the accumulation in soils of one glyphosate metabolite (aminomethylphosphonic acid) questions the sustainability of GT systems. The magnitude of the impacts depends on the rates and frequency of glyphosate application being highest for GT maize monoculture and lowest for combination of GT oilseed rape and non-GT sugarbeet crops.  相似文献   

18.
Ambient air samples were collected, from 2006 to 2008 at three rural and two urban sites in Centre Region (France) and analyzed for 56 currently used pesticides (CUPs), of which 41 were detected. The four CUPs most frequently detected were the herbicides trifluralin, acetochlor and pendimethalin and the fungicide chlorothalonil, which were found with frequencies ranging between 52 and 78%, and with average concentrations of 1.93, 1.32, 1.84 and 12.15 ng m?3, respectively. Among the detected pesticides, concentrations of eight fungicides (spiroxamine, fenpropimorph, cyprodinil, tolyfluanid, epoxiconazole, vinchlozolin, fluazinam, fludioxinil), two insecticides (propargite, ethoprophos), and one herbicide (oxyfluorfen) are, to our knowledge, reported for the first time in the literature.The majority of the CUPs showed a seasonal trend, with most of the detections and the highest concentrations occurring during the spring and early summer. The most important pesticides detected were related to arable crops and fruit orchards, the main cultures in this region, highlighting the fact that the main sources come from local applications. Minor differences were found in the profiles of pesticides within rural areas and between rural and urban areas.  相似文献   

19.
Life cycle impact assessment (LCIA), a feature of the Life cycle assessment (LCA) methodology, is used in this work outside the LCA framework, as a means to quantify the potential environmental impacts on ecotoxicity and human toxicity of wastewater containing priority and emerging pollutants. In order to do this, so-called characterisation factors are obtained for 98 frequently detected pollutants, using two characterisation models, EDIP97 and USES-LCA. The applicability of this methodology is shown in a case study in which wastewater influent and effluent samples from a Spanish wastewater treatment plant located in the Mediterranean coast were analysed. Characterisation factors were applied to the average concentration of each pollutant, obtaining impact scores for different scenarios: discharging wastewater to aquatic recipient, and using it for crop irrigation. The results show that treated wastewater involves a substantially lower environmental impact when compared to the influent, and pharmaceuticals and personal care products (PPCPs) are very important contributors to toxicity in this wastewater. Ciprofloxacin, fluoxetine, and nicotine constitute the main PPCPs of concern in this case study, while 2,3,7,8-TCDD, Nickel, and hexachlorobenzene are the priority pollutants with highest contribution. Nevertheless, it must be stressed that the new characterisation factors are based on very limited data, especially with regard to toxicology, and therefore they must be seen as a first screening to be improved in the future when more and higher quality data is available.  相似文献   

20.
The goal of this paper is to assess the relative impacts of pest-control methods in greenhouses, based on current LCA tools. As a case study, the relative impacts of two tomato production methods, chemical pest management (CPM) and integrated pest management (IPM), are assessed. The amount of the active ingredients applied, the fate of the ingredients in the various greenhouse and environmental compartments, the human exposure routes via the various compartments and the inherent toxicity of the ingredients were taken into account in the relative impact calculations. To assess the importance of model selection in the assessment, pesticide-specific fate and exposure factors for humans and aquatic and terrestrial ecosystems, used to aggregate pesticide emissions, were calculated with two different models: (1) the USES-LCA model, adapted in order to calculate the pesticide transfer from greenhouse air and soil to fruits, and (2) the empirical model critical surface time (CST). Impact scores have in general shown a higher level of potential contamination in greenhouses treated with CPM compared to IPM (a factor of 1.4 to 2.3). Relative impacts have been shown highly dependent on the selection of specific pesticides and crop stage development at the moment of pesticide application. This means that both CPM and IPM could be improved by a careful selection of pesticides. In order to improve the relative impact calculations, future research in pesticide transfer to food will be necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号