首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study examined the effects of varying future reductions in emissions of oxides of nitrogen (NOx) and volatile organic compounds (VOC) on the location and magnitude of peak ozone levels within California’s South Coast Air Basin (SoCAB or Basin). As ozone formation is currently VOC-limited in the Basin, model simulations with 2030 baseline emissions (?61% for NOx and ?32% for VOC from 2008) predict 10–20% higher peak ozone levels (i.e., NOx disbenefit) in the western and central SoCAB compared with the 2008 base simulation. With additional NOx reductions of 50% beyond the 2030 baseline emissions (?81% from 2008), the predicted ozone levels are reduced by about 15% in the eastern SoCAB but remain comparable to 2008 levels in the western and central Basin. The Basin maximum ozone site shifts westward to more populated areas of the Basin and will result potentially in greater population-weighted exposure to ozone with even a relatively small shortfall in the required NOx reductions unless accompanied by additional VOC reductions beyond 2030 baseline levels. Once committed to a NOx-focused control strategy, NOx reductions exceeding 90% from 2008 levels will be necessary to attain the ozone National Ambient Air Quality Standards (NAAQS). The findings from this study and other recent work that the current VOC emission estimates are underestimated by about 50% suggest that greater future VOC reductions will be necessary to reach the projected 2030 baseline emissions. Increasing the base year VOC emissions by a factor of 1.5 result in higher 2008 baseline ozone predictions, lower relative response factors, and about 20% lower projected design values. If correct, these findings have important implications for the total and optimum mix of VOC and NOx emission reductions that will be required to attain the ozone NAAQS in the SoCAB.

Implications: Results of this study indicate that ozone levels in the western and central SoCAB would remain the same or increase with even a relatively small shortfall in the projected NOx reductions under planned NOx-focused controls. This possibility, therefore, warrants a rigorous analysis of the costs and effects of varying reductions of VOC and NOx on the formation and combined health impacts of ozone and secondary particles. Given the nonlinearity of ozone formation, such analyses should include the implications of gradually increasing global background ozone concentrations and the Basin’s topography and meteorology on the practical limits of alternative emission control strategies.  相似文献   

2.
ABSTRACT

The Clean Air Act Amendments of 1990 (CAAA90) established a national program to control sulfur dioxide (SO2) emissions from electricity generation. CAAA90's market-based approach includes trading and banking of Soumissions allowances. We analyzed data describing electric utility SO2 emissions in 1995, the first year of the program's Phase I, and market effects over the 1990-1995 period. Fuel switching and flue-gas desulfurization were the dominant means used in 1995 by targeted generators to reduce emissions to 51% of 1990 levels. Flue-gas desulfur-ization costs, emissions allowance prices, low-sulfur coal prices, and average sulfur contents of coals shipped to electric utilities declined over the 1990-1995 period. Projections indicate that 13-15 million allowances will have been banked during the program's Phase I, which ends in 1999, a quantity expected to last through the first decade of the program's stricter Phase II controls. In 1995, both allowance prices and SO2 emissions were below pre-CAAA90 expectations. The reduction of SO2 emissions beyond pre-CAAA90 expectations, combined with lower-than-expected allowance prices and declining compliance costs, can be viewed as a success for market-based environmental controls.  相似文献   

3.
Older fossil-fueled power plants provide a significant portion of emissions of criteria air pollutants in the United States, in part because these facilities are not required to meet the same emission standards as new sources under the Clean Air Act. Pending regulations for older power plants need information about any potential public health benefits of emission reductions, which can be estimated by combining emissions information, dispersion modeling, and epidemiologic evidence. In this article, we develop an analytical modeling framework that can evaluate health benefits of emission controls, and we apply our model to two power plants in Massachusetts. Using the CALPUFF atmospheric dispersion model, we estimate that use of Best Available Control Technology (BACT) for NOx and SO2 would lead to maximum annual average secondary particulate matter (PM) concentration reductions of 0.2 microg/m3. When we combine concentration reductions with current health evidence, our central estimate is that the secondary PM reductions from these two power plants would avert 70 deaths per year in a population of 33 million individuals. Although benefit estimates could differ substantially with different interpretations of the health literature, parametric perturbations within CALPUFF and other simple model changes have relatively small impacts from an aggregate risk perspective. While further analysis would be required to reduce uncertainties and expand on our analytical model, our framework can help decision-makers evaluate the magnitude and distribution of benefits under different control scenarios.  相似文献   

4.
Under provision of the Clean Air Act Amendments of 1990 Title III, the EPA has proposed a regulation (Early Reduction Program) to allow a six-year compliance extension from Maximum Achievable Control Technology (MACT) standards for sources that voluntarily reduce emissions of Hazardous Air Pollutants (HAPs) by 90 percent or more (95 percent or more for particulates) from a base year of 1987 or later. The emission reduction must be made before the applicable MACT standard is proposed for the source category or be subject to an enforceable commitment to achieve the reduction by January 1, 1994 for sources subject to MACT standards prior to 1994. The primary purpose of this program is to encourage reduction of HAPs emissions sooner than otherwise required. Industry would be allowed additional time in evaluating emission reduction options and developing more cost-effective compliance strategies, although, under strict guidelines to ensure actual, significant and verifiable emission reductions occur.  相似文献   

5.
On hot summer days in the eastern United States, electricity demand rises, mainly because of increased use of air conditioning. Power plants must provide this additional energy, emitting additional pollutants when meteorological conditions are primed for poor air quality. To evaluate the impact of summertime NOx emissions from coal-fired electricity generating units (EGUs) on surface ozone formation, we performed a series of sensitivity modeling forecast scenarios utilizing EPA 2018 version 6.0 emissions (2011 base year) and CMAQ v5.0.2. Coal-fired EGU NOx emissions were adjusted to match the lowest NOx rates observed during the ozone seasons (April 1–October 31) of 2005–2012 (Scenario A), where ozone decreased by 3–4 ppb in affected areas. When compared to the highest emissions rates during the same time period (Scenario B), ozone increased ~4–7 ppb. NOx emission rates adjusted to match the observed rates from 2011 (Scenario C) increased ozone by ~4–5 ppb. Finally in Scenario D, the impact of additional NOx reductions was determined by assuming installation of selective catalytic reduction (SCR) controls on all units lacking postcombustion controls; this decreased ozone by an additional 2–4 ppb relative to Scenario A. Following the announcement of a stricter 8-hour ozone standard, this analysis outlines a strategy that would help bring coastal areas in the mid-Atlantic region closer to attainment, and would also provide profound benefits for upwind states where most of the regional EGU NOx originates, even if additional capital investments are not made (Scenario A).

Implications: With the 8-hr maximum ozone National Ambient Air Quality Standard (NAAQS) decreasing from 75 to 70 ppb, modeling results indicate that use of postcombustion controls on coal-fired power plants in 2018 could help keep regions in attainment. By operating already existing nitrogen oxide (NOx) removal devices to their full potential, ozone could be significantly curtailed, achieving ozone reductions by up to 5 ppb in areas around the source of emission and immediately downwind. Ozone improvements are also significant (1–2 ppb) for areas affected by cross-state transport, especially Mid-Atlantic coast regions that had struggled to meet the 75 ppb standard.  相似文献   


6.
A goal of the acidic deposition control program in the United States has been to link emissions control policies, such as those mandated under Title IV of the US Clean Air Act Amendments (CAAA) of 1990, to improvements in air and water quality. Recently, several researchers have reported trends in the time series of pollutant data in an effort to evaluate the effectiveness of the CAAA in reducing the acidic deposition problem. It is well known that pollutant concentrations are highly influenced by meteorological and climatic variations. Also, spatial and temporal inhomogeneities in time series of pollutant concentrations, induced by differences in the data collection, reduction, and reporting practices, can significantly affect the trend estimates. We present a method to discern breaks or discontinuities in the time series of pollutants stemming from emission reductions in the presence of meteorological and climatological variability. Using data from a few sites, this paper illustrates that linear trend estimates of concentrations of SO2, aerosol SO42−, and precipitation-weighted SO42− and NO3 can be biased because of such complex features embedded in pollutant time series.  相似文献   

7.
Optical remote measurement of toxic gases.   总被引:5,自引:0,他引:5  
Enactment of the Clean Air Act Amendments (CAAA) of 1990 has resulted in increased ambient air monitoring needs for industry, some of which may be met efficiently using open-path optical remote sensing techniques. These techniques include Fourier transform spectroscopy, differential optical absorption spectroscopy, laser long-path absorption, differential absorption lidar, and gas cell correlation spectroscopy. With this regulatory impetus, it is an opportune time to consider applying these technologies to the remote and/or path-averaged measurement and monitoring of toxic gases covered by the CAAA. This article reviews the optical remote sensing technology and literature for that application.  相似文献   

8.
ABSTRACT

An alternate compliance strategy (ACS) is developed which incorporates pollution prevention and flexibility to replace traditional end-of-pipe (EOP) control strategy regulation. The ACS takes into consideration the intent of the 1990 Clean Air Act Amendments (CAAA) to incorporate pollution prevention into regulations and provides a viable mechanism for implementation. This proposed new compliance strategy was developed after studying the CAAA regulations, related compliance issues, and pollution prevention literature. The ACS is defined by amending language in the Hazardous Organic National Emission Standards for Hazardous Air Pollutants (HON) regulation into a performance-based standard permitting regulated facilities to design compliance programs to meet all requirements.

A change in regulation is considered reasonable only if it forces the same emission reductions, reduces risk a comparable amount, and is acceptable to the public, the regulators, and the regulated industry. In order to demonstrate that the ACS can meet all these requirements, an example application is summarized from an ethylene oxide-ethylene glycol plant. The example demonstrates that the ACS reduces hazardous air pollution (HAP) emissions more than the HON rule requires. Three evaluation methods are developed and applied to further demonstrate the acceptability of the ACS. They include a qualitative evaluation matrix, a total cost assessment, and

a risk reduction measurement model. Results indicate that the ACS provided a preferable compliance program.

The ACS should be adopted as an alternative method of compliance. It provides a major step in the progression of regulations from the traditional EOP treatment philosophy to pollution prevention performance-based standards.  相似文献   

9.
Reformulated gasoline (RFG) contains oxygen additives such as methyl tertiary butyl ether or ethanol. The additives enable vehicles to burn fuel with a higher air/fuel ratio, thereby lowering the emission of carbon monoxide (CO) and volatile organic compounds (VOCs). Because VOCs react with sunlight to form ozone (O3), the Clean Air Act requires severe O3 nonattainment areas such as southeastern Wisconsin to use RFG. On July 17, 2001, the U.S. Environmental Protection Agency (EPA) granted Milwaukee, WI, and Chicago, IL, a waiver from the VOC reduction requirement of Phase II RFG. The VOC reduction requirement was lowered from 27.4% of the 1990 baseline fuel to 25.4%. The assumption was that ethanol-blended RFG would lower summertime CO concentrations sufficiently to offset the increased VOC emissions. The waiver is estimated to increase VOC emissions by approximately 0.8%, or 0.4 t of VOC on a hot summer weekday. This study evaluates whether RFG has been effective in lowering southeastern Wisconsin ambient CO concentrations. Three years of ambient CO data before RFG was introduced were compared with the first three years of ambient CO data after RFG was introduced. This paper also evaluates how the meteorology, vehicle inspection/maintenance program, vehicle miles traveled, and stationary source emissions influence CO concentrations. The winter decrease in ambient CO concentrations was found to be statistically significant, while the summer data showed no statistically significant change, indicating that RFG is most effective lowering ambient CO concentrations in cold weather.  相似文献   

10.
Abstract

Reformulated gasoline (RFG) contains oxygen additives such as methyl tertiary butyl ether or ethanol. The additives enable vehicles to burn fuel with a higher air/fuel ratio, thereby lowering the emission of carbon monoxide (CO) and volatile organic compounds (VOCs). Because VOCs react with sunlight to form ozone (O3), the Clean Air Act requires severe O3 nonattainment areas such as southeastern Wisconsin to use RFG. On July 17, 2001, the U.S. Environmental Protection Agency (EPA) granted Milwaukee, WI, and Chicago, IL, a waiver from the VOC reduction requirement of Phase II RFG. The VOC reduction requirement was lowered from 27.4% of the 1990 baseline fuel to 25.4%. The assumption was that ethanol-blended RFG would lower summertime CO concentrations sufficiently to offset the increased VOC emissions. The waiver is estimated to increase VOC emissions by ~0.8%, or 0.4 t of VOC on a hot summer weekday. This study evaluates whether RFG has been effective in lowering southeastern Wisconsin ambient CO concentrations. Three years of ambient CO data before RFG was introduced were compared with the first three years of ambient CO data after RFG was introduced. This paper also evaluates how the meteorology, vehicle inspection/maintenance program, vehicle miles traveled, and stationary source emissions influence CO concentrations. The winter decrease in ambient CO concentrations was found to be statistically significant, while the summer data showed no statistically significant change, indicating that RFG is most effective lowering ambient CO concentrations in cold weather.  相似文献   

11.
ABSTRACT

This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations.  相似文献   

12.
This paper introduces an integrated observational-modeling approach to transform the deterministic nature of attainment demonstrations of the National Ambient Air Quality Standard (NAAQS) into the probabilistic framework. While the methods presented here can be used to address any air quality standard that is based on extreme values, this paper focuses on the application to the 1-hr and 8-hr NAAQS for ozone. Extreme value statistics and resampling techniques are applied to estimate the probability of exceeding the NAAQS for both 1-hr and 8-hr ozone concentrations. Within the integrated observation-modeling analysis approach, we show that the model-to-model differences in the predicted responses to emission reductions are smaller than the model-to-model differences in predicted absolute ozone concentrations. We illustrate that the emission reductions stemming from a real-world emission control strategy would substantially reduce the probability of exceeding the NAAQS over a large portion of the eastern United States, especially for the 8-hr average ozone concentrations.  相似文献   

13.
A general formula is derived that can be used to calculate the reductions in emissions of inert pollutants required to achieve National Ambient Air Quality Standards (NAAQS) and to predict future urban atmospheric concentrations. The derivation incorporates the main features of atmospheric diffusion modeling and takes account of all categories of sources and their spatial distribution. In our previous paper, carbon monoxide (CO) emissions from light duty vehicles were considered separately with the approximation that emissions from other sources of CO would grow and be controlled proportionately to that of light duty vehicles.

The new general formula is applied to Phoenix-Tucson using EPA data. It Is found that Phoenix-Tucson will meet the NAAQS for CO by 1985 if a 12 g/mi light duty vehicle emission standard is adopted. The EPA, using the same data in a modified rollback analysis, had predicted that Phoenix-Tucson, as well as a number of other localities, would not achieve the NAAQS even if the 3.4 g/mi statutory standard went into effect on schedule.

The underlying reasons for these very different predictions can be readily identified by means of the general formula. It is essential that the data and parameters used in these predictions be internally consistent. It is also noted that the current Federal Test Procedure (CVS-CH) for vehicle emissions gives data inconsistent with that needed to predict CO air quality with a correct methodology.  相似文献   

14.
Abstract

The 1990 Clean Air Act amendments require the U.S. Environmental Protection Agency (EPA) to set guidelines for states to follow in designing and running vehicle inspection and maintenance (I/M) programs. Included in this charge was a requirement to implement an on‐board diagnostic (OBD) test for both basic and enhanced I/M programs. This paper provides the results to date of an ongoing EPA study undertaken to assess the durability of the OBD system as vehicles age and as mileage is accrued. The primary results of this effort indicate the points described below. First, the majority of high‐mileage vehicles tested had emission levels within their certification limits, and their malfunction indicator light (MIL) was not illuminated, indicating that the systems are capable of working throughout the life of a vehicle. Second, OBD provides better air quality benefits than an IM240 test (using the federal test procedure [FTP] as the benchmark comparison). This statement is based on greater emissions reductions from OBD‐directed repairs than reductions associated with IM240‐identified repairs. In general, the benefits of repairing the OBD fails were smaller, but the aggregate benefits were greater, indicating that OBD tests find both the high‐emitting and a number of marginally high‐emitting vehicles without false failures that can occur with any tailpipe test. Third, vehicles that truly had high‐tailpipe emissions as confirmed by laboratory IM240 and FTP testing also had illuminated MILs at a statistically significant level. Last, field data from state programs have demonstrated MIL illumination rates comparable with those seen in this work, suggesting that the vehicles sampled in this study were representative of the larger fleet. Nonetheless, it is important to continue the testing of high‐mileage OBD vehicles into the foreseeable future to ensure that the systems are operating correctly as the fleet ages and as changes in emission certification levels take effect.  相似文献   

15.
Urban Airshed Model-Version IV (UAM-IV) simulations on 7–8 July, 1988 for the Atlanta, Georgia, nonattainment area are used to investigate how recent changes in the National Ambient Air Quality Standard (NAAQS) and changes in boundary concentrations may affect attempts to comply with the standard through local emissions reductions. According to model results, the recently promulgated 8 h NAAQS at a level of 0.08 ppmv will require larger emission reductions to comply with the standard than those that are necessary to comply with the previous 1 h/0.12 ppmv NAAQS. Regardless of the form of the NAAQS or the magnitude of the concentrations of O3 and its precursors at the model domain boundary, UAM-IV simulations for Atlanta predict that NOx (NO+NO2) emission reductions are more effective than volatile organic compound reductions in mitigating O3 pollution. Moreover, the simulations indicate that NOx emission reductions greater than 60–75% would be required to demonstrate attainment under either form of the standard, even if boundary concentrations of O3 and its precursors were substantially reduced. Further research is necessary to determine if this weak response to emission controls is truly representative of the real atmosphere, or is a result of the meteorological conditions specific to this episode, or is an artifact of the UAM-IV model or its inputs.  相似文献   

16.
Particulate emission from diesel engines is one of the most important pollutants in urban areas. As a result, particulate emission control from urban bus diesel engines using particle filter technology is being evaluated at several locations in the US. A project entitled "Clean Diesel Air Quality Demonstration Program" has been initiated by the New York City Metropolitan Transit Authority (MTA) under the supervision of New York State Department of Environmental Conservation and with active participation from Johnson Matthey, Corning, Equilon, Environment Canada and RAD Energy. Under this program, several MTA transit buses with DDC Series 50 engines were equipped with Continuously Regenerating Technology (CRTTM) particulate filter systems and have been operated with ultra low sulfur diesel (<30 ppm S) in transit service in Manhattan since February 2000. These buses were evaluated over a 9-month period for durability and maintainability of the particulate filter. In addition, an extensive emissions testing program was carried out using transient cycles on a chassis dynamometer to evaluate the emissions reductions obtained with the particle filter. In this paper, the emissions testing data from the Clean Diesel Air Quality Demonstration Program are discussed in detail.  相似文献   

17.
Pollution control efforts are motivated by the desire to protect human health and the environment. Often, those efforts involve selecting among multiple options for attaining air quality objectives. For example, state and local decision-makers must choose the mix of control strategies for meeting the requirements of the National Ambient Air Quality Standards (NAAQS) and the Regional Haze Rule. We demonstrate that including assessments of the human health and environmental benefits when evaluating alternative strategies may help decision-makers to identify multipollutant attainment strategies that achieve greater net benefits than would accrue under strategies optimized for cost alone. This paper presents a conceptual framework that decision-makers could use to choose among alternative multipollutant control strategies, accounting for the benefits and the costs of different types and locations of emissions reductions.  相似文献   

18.
A modeling system consisting of MM5, Calmet, and Calgrid was used to investigate the sensitivity of anthropogenic volatile organic compound (VOC) and oxides of nitrogen (NOx) reductions on ozone formation within the Cascadia airshed of the Pacific Northwest. An ozone episode that occurred on July 11-14, 1996, was evaluated. During this event, high ozone levels were recorded at monitors downwind of Seattle, WA, and Portland, OR, with one monitor exceeding the 1 hr/120 ppb National Ambient Air Quality Standard (at 148 ppb), and six monitors above the proposed 8 hr/80 ppb standard (at 82-130 ppb). For this particular case, significant emissions reductions, between 25 and 75%, would be required to decrease peak ozone concentrations to desired levels. Reductions in VOC emissions alone, or a combination of reduced VOC and NOx emissions, were generally found to be most effective; reducing NOx emissions alone resulted in increased ozone in the Seattle area. When only VOC emissions were curtailed, ozone reductions occurred in the immediate vicinity of densely populated areas, while NOx reductions resulted in more widespread ozone reductions.  相似文献   

19.
The Acid Rain Provisions (Title IV) of the Clean Air Act Amendments of 1990 call for about a 10 million ton reduction in annual SO2 emissions in the United States. Although the provisions apply nationwide, most of the reduction will occur in the eastern half of the country, where use of high-sulfur coal for electricity generation is most common. One potentially large benefit of Title IV is the expected improvement in visibility conditions in the eastern United States due to the reductions in secondary sul-fate aerosols. This paper combines available economic estimates of willingness to pay for improvements in visibility with current estimates of the difference between expected visibility conditions in the eastern United States with and without Title I V, to estimate the expected visibility benefits of Title IV. The results suggest an annual value of $2.3 billion (in 1994 dollars) in the year 2010, as a result of visibility improvements due to Title IV in residential areas of the eastern United States. The results also suggest a possible additional annual value for eastern U.S. residents of as much as $1-2 billion for visibility improvements at national parks in the Southeast.  相似文献   

20.
The 1990 Clean Air Act amendments require the U.S. Environmental Protection Agency (EPA) to set guidelines for states to follow in designing and running vehicle inspection and maintenance (I/M) programs. Included in this charge was a requirement to implement an on-board diagnostic (OBD) test for both basic and enhanced I/M programs. This paper provides the results to date of an ongoing EPA study undertaken to assess the durability of the OBD system as vehicles age and as mileage is accrued. The primary results of this effort indicate the points described below. First, the majority of high-mileage vehicles tested had emission levels within their certification limits, and their malfunction indicator light (MIL) was not illuminated, indicating that the systems are capable of working throughout the life of a vehicle. Second, OBD provides better air quality benefits than an IM240 test (using the federal test procedure [FTP] as the benchmark comparison). This statement is based on greater emissions reductions from OBD-directed repairs than reductions associated with IM240-identified repairs. In general, the benefits of repairing the OBD fails were smaller, but the aggregate benefits were greater, indicating that OBD tests find both the high-emitting and a number of marginally high-emitting vehicles without false failures that can occur with any tailpipe test. Third, vehicles that truly had high-tailpipe emissions as confirmed by laboratory IM240 and FTP testing also had illuminated MILs at a statistically significant level. Last, field data from state programs have demonstrated MIL illumination rates comparable with those seen in this work, suggesting that the vehicles sampled in this study were representative of the larger fleet. Nonetheless, it is important to continue the testing of high-mileage OBD vehicles into the foreseeable future to ensure that the systems are operating correctly as the fleet ages and as changes in emission certification levels take effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号