首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

2.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

3.
Within 2 years of trace gas measurements performed at Arosa (Switzerland, 2030 m above sea level), enhanced ozone mixing ratios were observed during south foehn events during summer and spring (5–10 ppb above the median value). The enhancements can be traced back to ozone produced in the strongly industrialized Po basin as confirmed by various analyses. Backward trajectories clearly show advection from this region during foehn. NOy versus O3 correlation and comparison of O3 mixing ratios between Arosa and Mt. Cimone (Italy, 2165 m asl) suggest that ozone is the result of recent photochemical production (+5.6 ppb on average), either directly formed during the transport or via mixing of air processed in the Po basin boundary layer. The absence of a correlation between air parcel residence times over Europe and ozone mixing ratios at Arosa during foehn events is in contrast to a previous analysis, which suggested such correlation without reference to the origin of the air. In the case of south foehn, the continental scale influence of pollutants emission on ozone at Arosa appears to be far less important than the direct influence of the Po basin emissions. In contrast, winter time displays a different situation, with mean ozone reductions of about 4 ppb for air parcels passing the Po basin, probably caused by mixing with ozone-poor air from the Po basin boundary layer.  相似文献   

4.
Sensitivity of ozone (O3) concentrations in the Mexico City area to diurnal variations of surface air pollutant emissions is investigated using the WRF/Chem model. Our analysis shows that diurnal variations of nitrogen oxides (NOx = NO + NO2) and volatile organic compound (VOC) emissions play an important role in controlling the O3 concentrations in the Mexico City area. The contributions of NOx and VOC emissions to daytime O3 concentrations are very sensitive to the morning emissions of NOx and VOCs. Increase in morning NOx emissions leads to decrease in daytime O3 concentrations as well as the afternoon O3 maximum, while increase in morning VOC emissions tends to increase in O3 concentrations in late morning and early afternoon, indicating that O3 production in Mexico City is under VOC-limited regime. It is also found that the nighttime O3 is independent of VOCs, but is sensitive to NOx. The emissions of VOCs during other periods (early morning, evening, and night) have only small impacts on O3 concentrations, while the emissions of NOx have important impacts on O3 concentrations in the evening and the early morning.This study suggests that shifting emission pattern, while keeping the total emissions unchanged, has important impacts on air quality. For example, delaying the morning emission peak from 8 am to 10 am significantly reduced the morning peaks of NOx and VOCs, as well as the afternoon O3 maxima. It suggests that without reduction of total emission, the daytime O3 concentrations can be significantly reduced by changing the diurnal variations of the emissions of O3 precursors.  相似文献   

5.
Long-term observations of the nitrate radical concentration and supporting parameters in the continental boundary layer at the rural site Lindenberg near Berlin, Germany, were performed using differential optical absorption spectroscopy (DOAS). Average nighttime NO3 levels were 4.6 ppt, while NO3 steady-state lifetimes (calculated from the NO2–O3 product and the NO3 concentration) varied between 5 s and 615 s with an average of 92 s. The long-term observations offered the possibility to study the importance of NO3 for the oxidation of VOCs (volatile organic compounds) and its contribution in the non-photochemical removal of NOx from the atmosphere in different seasons. Analysis of the data showed, that NO3 was depleted by both, reactions with VOCs and indirectly by loss of N2O5 on aerosol surfaces. A clear seasonal variation of the sink distribution was found. The VOC sink dominated during summer while indirect loss was of major importance during the winter months. The results are compared with former long-term campaigns of NO3 in the marine boundary layer.  相似文献   

6.
NOx emissions from a medium speed diesel engine on board a servicing passenger ferry have been indirectly measured using a predictive emission monitoring system (PEMS) over a 1-yr period. Conventional NOx measurements were carried out with a continuous emission monitoring system (CEMS) at the start of the study to provide historical data for the empirical PEMS function. On three other occasions during the year the CEMS was also used to verify the PEMS and follow any changes in emission signature of the engine. The PEMS consisted of monitoring exhaust O2 concentrations (in situ electrochemical probe), engine load, combustion air temperature and humidity, and barometric pressure. Practical experiences with the PEMS equipment were positive and measurement data were transferred to a land-based office by using a modem data communication system. The initial PEMS function (PEMS1) gave systematic differences of 1.1–6.9% of the calibration domain (0–1725 ppm) and a relative accuracy of 6.7% when compared with CEMS for whole journeys and varying load situations. Further improvements on the performance could be obtained by updating this function. The calculated yearly emission for a total engine running time of 4618 h was 316 t NOx±38 t and the average NOx emission corrected for ambient conditions 14.3 g kWhcorr−1. The exhaust profile of the engine in terms of NOx, CO and CO2 emissions as determined by CEMS was similar for most of the year. Towards the end of the study period, a significantly lower NOx emission was detected which was probably caused by replacement of fuel injector nozzles. The study suggests that PEMS can be a viable option for continuous, long-term NOx measurements on board ships.  相似文献   

7.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

8.
9.
The influence of traffic-induced pollutants (e.g. CO, NO, NO2 and O3) on the air quality of urban areas was investigated in the city of Essen, North Rhine-Westphalia (NRW), Germany. Twelve air hygiene profile measuring trips were made to analyse the trace gas distribution in the urban area with high spatial resolution and to compare the air hygiene situation of urban green areas with the overall situation of urban pollution. Seventeen measurements were made to determine the diurnal concentration courses within urban parks (summer conditions: 13 measurements, 530 30 min mean values, winter conditions: 4 measurements, 128 30 min mean values). The measurements were carried out during mainly calm wind and cloudless conditions between February 1995 and March 1996. It was possible to establish highly differentiated spatial concentration patterns within the urban area. These patterns were correlated with five general types of land use (motorway, main road, secondary road, residential area, green area) which were influenced to varying degrees by traffic emissions. Urban parks downwind from the main emission sources show the following typical temporal concentration courses: In summer rush-hour-dependent CO, NO and NO2 maxima only occurred in the morning. A high NO2/NO ratio was established during weather conditions with high global radiation intensities (K>800 W m−2), which may result in a high O3 formation potential. Some of the values measured found in one of the parks investigated (Gruga Park, Essen, area: 0.7 km2), which were as high as 275 μg m−3 O3 (30-min mean value) were significantly higher than the German air quality standard of 120 μg m−3 (30-min mean value, VDI Guideline 2310, 1996) which currently applies in Germany and about 20% above the maximum values measured on the same day by the network of the North Rhine–Westphalian State Environment Agency. In winter high CO and NO concentrations occur in the morning and during the afternoon rush-hour. The highest concentrations (CO=4.3 mg m−3, NO=368 μg m−3, 30-min mean values) coincide with the increase in the evening inversion. The maximum measured values for CO, NO and NO2 do not, however, exceed the German air quality standards in winter and summer.  相似文献   

10.
The sensitivity of the CHIMERE model to emission reduction scenarios on particulate matter PM2.5 and ozone (O3) in Northern Italy is studied. The emissions of NOx, PM2.5 SO2, VOC or NH3 were reduced by 50% for different source sectors for the Lombardy region, together with 5 additional scenarios to estimate the effect of local measures on improving the air quality for the Po valley area. Firstly, we evaluate the model performance by comparing calculated surface aerosol concentrations for the standard case (no emission reductions) with observations for January and June 2005. Calculated monthly mean PM10 concentrations are in general underestimated. For June, modelled PM10 concentrations slightly overestimate the measurements. Calculated monthly mean SO4, NO3?, NH4+ concentrations are in good agreement with the observations for January and June. Secondly, the model sensitivity of emission reduction scenarios on PM2.5 and O3 calculated concentrations for the Po valley area is evaluated. The most effective scenarios to abate PM2.5 concentration are based on the SNAP2 (non-industrial combustion plants) and SNAP7 (road traffic) sectors, for which the NOx and PM2.5 emissions are reduced by 50%. The number of days that the 2015 PM2.5 limit value of 25 μg m?3 in Milan is exceeded by reducing primary PM2.5 and NOx emissions for SNAP2 and 7 by 50%, does not change in January when compared to the standard case for the Milan area. It appears that 40% of the PM2.5 concentration in the greater Milan area is caused by the emissions surrounding the Lombardy region and from the model boundary conditions.This study also showed that a more effective pollutant reduction (emissions) per ton of pollutant reduced (concentrations) for the greater Milan area is obtained by reducing the primary PM2.5 emissions for SNAP7 by 50%. The most effective scenario on PM2.5 decrease for which precursor emissions are reduced is achieved by reducing SO2 emissions by 50% for SNAP7.Our study showed that during summer time, the largest reductions in O3 concentrations are achieved for SNAP7 emission reductions, when volatile organic compounds (VOCs) are reduced by 50%.  相似文献   

11.
The new National Ambient Air Quality Standard for ozone in the US uses 8 h averaging for the concentration. Based on the 1993 ambient data for Southern California, 8 h averaging has a moderate tendency to move the location of the peak ozone concentration east of the location of the peak 1 h ozone concentration. Reducing the area-wide peak 8 h ozone concentration to 80 ppb would require an effective reduction of the area-wide peak 1 h ozone concentration to around 90 ppb. The Urban Airshed Model with improved numerical solvers, meteorological input based on a mesoscale model and an adjusted emissions inventory was used to study the effect of reactive organic gases (ROG) and NOx controls on daily-maximum and peak 8 h ozone concentrations under the 26–28 August 1987 ozone episodic conditions in Southern California. The NOx disbenefit remains prominent for the case of 8 h ozone concentration but is somewhat less prominent, especially when areal ozone exposure is considered, than the case for 1 h ozone concentration. The role of two indicators – O3/NOy and H2O2/HNO3 – for NOx- and ROG-sensitivity for 1 and 8 h ozone concentrations were also studied. In general, the indicator trends are consistent with model predictions, but the discriminating power of the indicators is rather limited.  相似文献   

12.
Ozone was measured in six- and NOx in five sampling periods in 1996–97, mostly during summer, at a 1070 m altitude site in northern Peloponnese. Mean values in each sampling period ranged from 43–48 ppb exceeding the European Union 24 h plant protection standard. The background ozone concentration of 43 ppb derived from the correlation of ozone with NOx also exceeded the EU plant protection standard. Ozone exhibited maxima in the afternoon and minima during the night; in certain 24–48 h periods, however, the ozone concentrations remained practically constant; in these short periods air mass back trajectories indicated air masses which originated in north Africa. NOx concentrations had maximum of 24 h around noon. Their mean concentrations ranged from 0.5–0.7 ppb, smaller than respective concentrations in north-central Europe.  相似文献   

13.
Real-world emissions of a traffic fleet on a transit route in Austria were determined in the Tauerntunnel experiment in October 1997. The total number of vehicles and the average speed was nearly the same on both measuring days (465 vehicles 30 min−1 and 76 km h−1 on the workday, 477 and 78 km h−1 on Sunday). The average workday fleet contained 17.6% heavy-duty vehicles (HDV) and the average Sunday fleet 2.8% HDV resulting in up to four times higher emission rates per vehicle per km on the workday than on Sunday for most of the regulated components (CO2, CO, NOx, SO2, and particulate matter-PM10). Emission rates of NMVOC accounted for 200 mg vehicle−1 km−1 on both days. The relative contributions of light-duty vehicles (LDV) and HDV to the total emissions indicated that aldehydes, BTEX (benzene, toluene, ethylbenzene, xylenes), and alkanes are mainly produced by LDV, while HDV dominated emissions of CO, NOx, SO2, and PM10. Emissions of NOx caused by HDV were 16,100 mg vehicle−1 km−1 (as NO2). Produced by LDV they were much lower at 360 mg vehicle−1 km−1. Comparing the emission rates to the results that were obtained by the 1988 experiment at the same place significant changes in the emission levels of hydrocarbons and CO, which accounted 1997 to only 10% of the levels in 1988, were noticed. However, the decrease of PM has been modest leading to values of 80 and 60% of the levels in 1988 on the workday and on Sunday, respectively. Emission rates of NOx determined on the workday in 1997 were 3130 mg vehicle−1 km−1 and even higher than in 1988 (2630 mg vehicle−1 km−1), presumable due to the increase of the HD-traffic.  相似文献   

14.
In the United States, fertilized corn fields, which make up approximately 5% of the total land area, account for approximately 45% of total soil NOx emissions. Leaf chamber measurements were conducted of NO and NO2 fluxes between individual corn leaves and the atmosphere in (1) field-grown plants near Champaign, IL (USA) in order to assess the potential role of corn canopies in mitigating soil–NOx emissions to the atmosphere, and (2) greenhouse-grown plants in order to study the influence of various environmental variables and physiological factors on the dynamics of NO2 flux. In field-grown plants, fluxes of NO were small and inconsistent from plant to plant. At ambient NO concentrations between 0.1 and 0.3 ppbv, average fluxes were zero. At ambient NO concentrations above 1 ppbv, NO uptake occurred, but fluxes were so small (14.3±0.0 pmol m−2 s−1) as to be insignificant in the NOx inventory for this site. In field-grown plants, NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.9 ppbv (the NO2 compensation point), with the highest rate of emission being 50 pmol m−2 s−1 at 0.2 ppbv. NO2 was assimilated by corn leaves at ambient NO2 concentrations above 0.9 ppbv, with the maximum observed uptake rate being 643 pmol m−2 s−1 at 6 ppbv. When fluxes above 0.9 ppbv are standardized for ambient NO2 concentration, the resultant deposition velocity was 1.2±0.1 mm s−1. When scaled to the entire corn canopy, NO2 uptake rates can be estimated to be as much as 27% of the soil-emitted NOx. In greenhouse-grown and field-grown leaves, NO2 deposition velocity was dependent on incident photosynthetic photon flux density (PPFD; 400–700 nm), whether measured above or below the NO2 compensation point. The shape of the PPFD dependence, and its response to ambient humidity in an experiment with greenhouse-grown plants, led to the conclusion that stomatal conductance is a primary determinant of the PPFD response. However, in field-grown leaves, measured NO2 deposition velocities were always lower than those predicted by a model solely dependent on stomatal conductance. It is concluded that NO2 uptake rate is highest when N availability is highest, not when the leaf deficit for N is highest. It is also concluded that the primary limitations to leaf-level NO2 uptake concern both stomatal and mesophyll components.  相似文献   

15.
The quality of an emission calculation model based on emission factors measured on roller test stands and statistical traffic data was evaluated using source strengths and emission factors calculated from real-world exhaust gas concentration differences measured upwind and downwind of a motorway in southwest Germany. Gaseous and particulate emissions were taken into account. Detailed traffic census data were taken during the measurements. The results were compared with findings of similar studies.The main conclusion is the underestimation of CO and NOx source strengths by the model. On the average, it amounts to 23% in case of CO and 17% for NOx. The latter underestimation results from an undervaluation by 22% of NOx emission factors of heavy-duty vehicles (HDVs). There are significant differences between source strengths on working days and weekends because of the different traffic split between light-duty vehicles (LDVs) and HDVs. The mean emission factors of all vehicles from measurements are 1.08 g km−1 veh−1 for NOx and 2.62 g km−1 veh−1 for CO. The model calculations give 0.92 g km−1 veh−1 for NOx and 2.14 g km−1 veh−1 for CO.The source strengths of 21 non-methane hydrocarbon (NMHC) compounds quantified are underestimated by the model. The ratio between the measured and model-calculated emissions ranges from 1.3 to 2.1 for BTX and up to 21 for 16 other NMHCs. The reason for the differences is the insufficient knowledge of NMHC emissions of road traffic.Particulate matter emissions are dominated by ultra-fine particles in the 10–40 nm range. As far as aerosols larger than 29 nm are concerned, 1.80×1014 particles km−1 veh−1 are determined for all vehicles, 1.22×1014 particles km−1 veh−1 and an aerosol volume of 0.03 cm3 km−1 veh−1 are measured for LDVs, and for HDVs 7.79×1014 particles km−1 veh−1 and 0.41 cm3 km−1 veh−1 are calculated. Traffic-induced turbulence has been identified to have a decisive influence on exhaust gas dispersion near the source.  相似文献   

16.
We investigated a two-week episode with high PM concentrations in California Central Valley during the Christmas–New Year of 2000–2001 using a modeling system that consists of a computationally efficient, 3-D photochemical–microphysical transport model, a mesoscale meteorological model, emission models, and an evaluation package. One hundred simulations were conducted with fine resolutions and observational constraints, to reproduce spatial and temporal features of observed PM concentrations and to understand the formation mechanism of the episode. Simulated PM concentrations consist of secondary inorganic components, mainly ammonium nitrate, and total carbon in areas with elevated concentrations in the accumulation mode, and consist of mainly dust and sea salt in the coarse mode. Simulated oxidants and nitrate were significantly elevated over the valley, and the latter showed much less amplitude than the former. Simulated PM concentrations were evaluated with observations systematically with spatially and temporally paired method, a more restrictive multivariate method (NMFROC), and a more flexible “gradient evaluation” method. The paired evaluation shows that high correlation coefficient (R = ~0.8) and low fractional error (FE = ~0.1) could be achieved at stations with elevated 24-h concentration of PM in the accumulation mode in some simulations. The NMFROC method was used to extract useful information from seemingly failed simulations. A “gradient evaluation” method is introduced here to extract additional information from simulations. We found that emission reductions of NOx and AVOC showed similar effects on percentage basis in different areas, and both are more effective than reducing NH3 for abating elevated concentrations of accumulation mode PM in California Central Valley during the winter episode.  相似文献   

17.
Simultaneous measurements of nitrous acid (HONO) and nitrogen dioxide (NO2) using a differential optical absorption spectroscopy system, nitrogen oxide (NO) by an in situ chemiluminescence analyser and carbon dioxide (CO2) by a gas chromatographic technique were carried out in the Wuppertal Kiesbergtunnel. At high traffic density HONO concentrations of up to 45 ppbV were observed. However, at low traffic density unexpectedly high HONO concentrations of up to 10 ppbV were measured caused by heterogeneous HONO formation on the tunnel walls. In addition to the tunnel campaigns, emission measurements of HONO, NO2, NO and CO2 from different single vehicles (a truck, a diesel and a gasoline passenger car) were also performed. For the correction of the HONO emission data, the heterogeneous HONO formation on the tunnel walls was quantified by two different approaches (a) in different NO2 emission experiments in the tunnel without traffic and (b) on tunnel wall residue in the laboratory. The HONO concentration corrected for heterogeneous formation on the tunnel walls, in relation to the CO2 concentration can be used to estimate the amount of HONO, which is directly emitted from the vehicle fleet. From the measured data, emission ratios (e.g. HONO/NOx) and emission indices (e.g. mg HONO kg−1 fuel) were calculated. The calculated emission index of 88±18 mg HONO kg−1 fuel allows an estimation of the HONO emission rates from traffic into the atmosphere. Furthermore, the heterogeneous formation of HONO from NO2 on freshly emitted exhaust particles is discussed.  相似文献   

18.
The ozonolysis of isobutene and isoprene was performed in a 570 ℓ static reactor at 295 K and 730 Torr synthetic air in the presence and absence of water vapour, with the reactant concentration ranges of 1–6 ppmv. Products were analysed by a combination of FTIR spectroscopy, GC-FID, and HPLC. For both alkenes, the yields of H2O2 and the primary carbonyl products (acetone for isobutene, methacrolein and methylvinyl ketone for isoprene) increased under humid conditions. In the isoprene ozonolysis, the H2O2 yields relative to the O3 conversion were, as determined from the initial rate of the formation, 1 and 9% for dry and humid conditions, respectively. The increase in its yield under the humid conditions was correlated with the sum of the increase in the yields of methacrolein and methylvinyl ketone (∼13%). This was explained by rapid decomposition of the transient α-hydroxy hydroperoxides formed in the reaction of H2O with the two stabilised C4 Criegee intermediates. Atmospheric relevance of the results is discussed.  相似文献   

19.
Nocturnal chemistry can play an important role in determining the initial morning conditions for daytime chemistry in urban areas. However, the impact on daytime O3 levels is difficult to assess as the suppression of vertical trace gas transport leads to highly altitude dependent nocturnal chemistry, in particular with respect to the removal and conversion of nitrogen oxides (NOx) and volatile organic compounds (VOC). One-dimensional (1-D) chemical transport model calculations for different nighttime vertical stabilities and different ozone formation regimes (i.e. NOx- vs. VOC-sensitive) were performed assuming a 1000 m high daytime boundary layer and a growing nocturnal boundary layer reaching 200 m height at the end of the night. Exclusion of NO3 chemistry from the model leads to daytime O3 concentration changes from ?4% to +16% for different O3 sensitivities. In all cases strong nocturnal vertical concentration profiles of NOx, O3, NO3 and N2O5 and a dependence of these profiles on vertical stability were found at night. The nocturnal NOx loss averaged over the lowest 1000 m changes by 9–24% for different vertical stabilities and ozone sensitivities. The impact of nocturnal vertical stability leads to 7–12% difference in O3 concentration in the morning and ~0–2.5% in the afternoon.  相似文献   

20.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号