首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 70 毫秒
1.
Nitrous acid (HONO), nitric acid (HNO3), and organic aerosol were measured simultaneously atop an 18-story tower in Houston, TX during August and September of 2006. HONO and HNO3 were measured using a mist chamber/ion chromatographic technique, and aerosol size and chemical composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Observations indicate the potential for a new HONO formation pathway: heterogeneous conversion of HNO3 on the surface of primary organic aerosol (POA). Significant HONO production was observed, with an average of 0.97 ppbv event?1 and a maximum increase of 2.2 ppb in 4 h. Nine identified events showed clear HNO3 depletion and well-correlated increases in both HONO concentration and POA-dominated aerosol surface area (SA). Linear regression analysis results in correlation coefficients (r2) of 0.82 for HONO/SA and 0.92 for HONO/HNO3. After correction for established HONO formation pathways, molar increases in excess HONO (HONOexcess) and decreases in HNO3 were nearly balanced, with an average HONOexcess/HNO3 value of 0.97. Deviations from this mole balance indicate that the residual HNO3 formed aerosol-phase nitrate. Aerosol mass spectral analysis suggests that the composition of POA could influence HONO production. Several previously identified aerosol-phase PAH compounds were enriched during events, suggesting their potential importance for heterogeneous HONO formation.  相似文献   

2.
Simultaneous measurements of gaseous species and fine-mode, particulate inorganic components were performed at the University of Seoul, Seoul in Korea. In the simultaneous measurements, a certain level of nitrous acid (HONO) was observed in the gas-phase, indicating possible heterogeneous HONO production on the surface of the ambient aerosols. On the other hand, high particulate nitrite (NO2?) concentrations of 1.41(±2.26) μg/m3 were also measured, which sometimes reached 18.54 μg/m3. In contrast, low HONO-to-NO2 ratios of 0.007(±0.006) were observed in Seoul. This indicates that a significant fraction of HONO is dissolved in atmospheric aerosols. Around the Seoul site, sufficient alkalinity may have been provided to the atmospheric aerosols from the excessive presence of NH3 in the gas-phase. Due to the alkaline particulate conditions (defined in this study as a particle pH >~3.29), the HONO molecules produced at the surface of the atmospheric aerosols appeared to have been converted into particulate nitrite, thereby preventing their further participation in the atmospheric O3/NOy/HOx photochemical cycles. It was estimated that a minimum average of 65% of HONO was captured by alkaline, anthropogenic, urban particles in the Seoul measurements.  相似文献   

3.
Real-world emissions of a traffic fleet on a transit route in Austria were determined in the Tauerntunnel experiment in October 1997. The total number of vehicles and the average speed was nearly the same on both measuring days (465 vehicles 30 min−1 and 76 km h−1 on the workday, 477 and 78 km h−1 on Sunday). The average workday fleet contained 17.6% heavy-duty vehicles (HDV) and the average Sunday fleet 2.8% HDV resulting in up to four times higher emission rates per vehicle per km on the workday than on Sunday for most of the regulated components (CO2, CO, NOx, SO2, and particulate matter-PM10). Emission rates of NMVOC accounted for 200 mg vehicle−1 km−1 on both days. The relative contributions of light-duty vehicles (LDV) and HDV to the total emissions indicated that aldehydes, BTEX (benzene, toluene, ethylbenzene, xylenes), and alkanes are mainly produced by LDV, while HDV dominated emissions of CO, NOx, SO2, and PM10. Emissions of NOx caused by HDV were 16,100 mg vehicle−1 km−1 (as NO2). Produced by LDV they were much lower at 360 mg vehicle−1 km−1. Comparing the emission rates to the results that were obtained by the 1988 experiment at the same place significant changes in the emission levels of hydrocarbons and CO, which accounted 1997 to only 10% of the levels in 1988, were noticed. However, the decrease of PM has been modest leading to values of 80 and 60% of the levels in 1988 on the workday and on Sunday, respectively. Emission rates of NOx determined on the workday in 1997 were 3130 mg vehicle−1 km−1 and even higher than in 1988 (2630 mg vehicle−1 km−1), presumable due to the increase of the HD-traffic.  相似文献   

4.
NOx emissions from a medium speed diesel engine on board a servicing passenger ferry have been indirectly measured using a predictive emission monitoring system (PEMS) over a 1-yr period. Conventional NOx measurements were carried out with a continuous emission monitoring system (CEMS) at the start of the study to provide historical data for the empirical PEMS function. On three other occasions during the year the CEMS was also used to verify the PEMS and follow any changes in emission signature of the engine. The PEMS consisted of monitoring exhaust O2 concentrations (in situ electrochemical probe), engine load, combustion air temperature and humidity, and barometric pressure. Practical experiences with the PEMS equipment were positive and measurement data were transferred to a land-based office by using a modem data communication system. The initial PEMS function (PEMS1) gave systematic differences of 1.1–6.9% of the calibration domain (0–1725 ppm) and a relative accuracy of 6.7% when compared with CEMS for whole journeys and varying load situations. Further improvements on the performance could be obtained by updating this function. The calculated yearly emission for a total engine running time of 4618 h was 316 t NOx±38 t and the average NOx emission corrected for ambient conditions 14.3 g kWhcorr−1. The exhaust profile of the engine in terms of NOx, CO and CO2 emissions as determined by CEMS was similar for most of the year. Towards the end of the study period, a significantly lower NOx emission was detected which was probably caused by replacement of fuel injector nozzles. The study suggests that PEMS can be a viable option for continuous, long-term NOx measurements on board ships.  相似文献   

5.
The quality of an emission calculation model based on emission factors measured on roller test stands and statistical traffic data was evaluated using source strengths and emission factors calculated from real-world exhaust gas concentration differences measured upwind and downwind of a motorway in southwest Germany. Gaseous and particulate emissions were taken into account. Detailed traffic census data were taken during the measurements. The results were compared with findings of similar studies.The main conclusion is the underestimation of CO and NOx source strengths by the model. On the average, it amounts to 23% in case of CO and 17% for NOx. The latter underestimation results from an undervaluation by 22% of NOx emission factors of heavy-duty vehicles (HDVs). There are significant differences between source strengths on working days and weekends because of the different traffic split between light-duty vehicles (LDVs) and HDVs. The mean emission factors of all vehicles from measurements are 1.08 g km−1 veh−1 for NOx and 2.62 g km−1 veh−1 for CO. The model calculations give 0.92 g km−1 veh−1 for NOx and 2.14 g km−1 veh−1 for CO.The source strengths of 21 non-methane hydrocarbon (NMHC) compounds quantified are underestimated by the model. The ratio between the measured and model-calculated emissions ranges from 1.3 to 2.1 for BTX and up to 21 for 16 other NMHCs. The reason for the differences is the insufficient knowledge of NMHC emissions of road traffic.Particulate matter emissions are dominated by ultra-fine particles in the 10–40 nm range. As far as aerosols larger than 29 nm are concerned, 1.80×1014 particles km−1 veh−1 are determined for all vehicles, 1.22×1014 particles km−1 veh−1 and an aerosol volume of 0.03 cm3 km−1 veh−1 are measured for LDVs, and for HDVs 7.79×1014 particles km−1 veh−1 and 0.41 cm3 km−1 veh−1 are calculated. Traffic-induced turbulence has been identified to have a decisive influence on exhaust gas dispersion near the source.  相似文献   

6.
This paper evaluates the relative impact on air quality of harbour emissions, with respect to other emission sources located in the same area. The impact assessment study was conducted in the city of Taranto, Italy. This area was considered as representative of a typical Mediterranean harbour region, where shipping, industries and urban activities co-exist at a short distance, producing an ideal case to study the interaction among these different sources. Chemical and meteorological field campaigns were carried out to provide data to this study. An emission inventory has been developed taking into account industrial sources, traffic, domestic heating, fugitive and harbour emissions. A 3D Lagrangian particle dispersion model (SPRAY) has then been applied to the study area using reconstructed meteorological fields calculated by the diagnostic meteorological model MINERVE. 3D short term hourly concentrations have been computed for both all and specific sources. Industrial activities are found to be the main contributor to SO2. Industry and traffic emissions are mainly responsible for NOx simulated concentrations. CO concentrations are found to be mainly related to traffic emissions, while primary PM10 simulated concentrations tend to be linked to industrial and fugitive emissions. Contributions of harbour activities to the seasonal average concentrations of SO2 and NOx are predicted to be up to 5 and 30 μg m−3, respectively to be compared to a overall peak values of 60 μg m−3 for SO2 and 70 μg m−3 for NOx. At selected urban monitoring stations, SO2 and NOx average source contributions are predicted to be both of about 9% from harbour activities, while 87% and 41% respectively of total concentrations are predicted to be of industrial origin.  相似文献   

7.
Comparisons were made between the predictions of six photochemical air quality simulation models (PAQSMs) and three indicators of ozone response to emission reductions: the ratios of O3/NOz and O3/NOy and the extent of reaction. The values of the two indicator ratios and the extent of reaction were computed from the model-predicted mixing ratios of ozone and oxidized nitrogen species and were compared to the changes in peak 1 and 8 h ozone mixing ratios predicted by the PAQSMs. The ozone changes were determined from the ozone levels predicted for base-case emission levels and for reduced emissions of volatile organic compounds (VOCs) and oxides of nitrogen (NOx). For all simulations, the model-predicted responses of peak 1 and 8 h ozone mixing ratios to VOC or NOx emission reductions were correlated with the base-case extent of reaction and ratios of O3/NOz and O3/NOy. Peak ozone values increased following NOx control in 95% (median over all simulations) of the high-ozone (>80 ppbv hourly mixing ratio in the base-case) grid cells having mean afternoon O3/NOz ratios less than 5 : 1, O3/NOy less than 4 : 1, or extent less than 0.6. Peak ozone levels decreased in response to NOx reductions in 95% (median over all simulations) of the grid cells having peak hourly ozone mixing ratios greater than 80 ppbv and where mean afternoon O3/NOz exceeded 10 : 1, O3/NOy was greater than 8 : 1, or extent exceeded 0.8. Ozone responses varied in grid cells where O3/NOz was between 5 : 1 and 10 : 1, O3/NOy was between 4 : 1 and 8 : 1, or extent was between 0.6 and 0.8. The responses in such grid cells were affected by ozone responses in upwind grid cells and by the changes in ozone levels along the upwind boundaries of the modeling domains.  相似文献   

8.
The heterogeneous reactivity of nitrogen dioxide with pyrene and 1-nitropyrene (1NP) adsorbed on silica particles has been investigated using a fast-flow-tube in the absence of light. Reactants and products were extracted from particles using pressurised fluid extraction (PFE) and concentration measurements were performed using gas chromatography/mass spectrometry (GC/MS). The pseudo-first order rate constants were obtained from the fit of the experimental decay of particulate polycyclic compound concentrations versus reaction time. Experiments were performed at three different NO2 concentrations and second order rate constants were calculated considering the oxidant concentration. The following rate constant values were obtained at room temperature: k(NO2 + pyrene) = (9.3 ± 2.3) × 10?17 cm3 molecule?1 s?1 and k(NO2 + 1NP) = (6.2 ± 1.5) × 10?18 cm3 molecule?1 s?1, showing that the reactivity of 1NP was slower by a factor of 15 than that of pyrene. 1NP was identified as the only NO2-initiated oxidation product of pyrene and all the three dinitropyrenes were identified in the case of the 1NP reaction. The product quantification allowed showing that the kinetics of oxidation product formation was equal to that measured for parent compounds degradation, within uncertainties, confirming the validity of the reaction kinetics measurements.  相似文献   

9.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

10.
In the United States, fertilized corn fields, which make up approximately 5% of the total land area, account for approximately 45% of total soil NOx emissions. Leaf chamber measurements were conducted of NO and NO2 fluxes between individual corn leaves and the atmosphere in (1) field-grown plants near Champaign, IL (USA) in order to assess the potential role of corn canopies in mitigating soil–NOx emissions to the atmosphere, and (2) greenhouse-grown plants in order to study the influence of various environmental variables and physiological factors on the dynamics of NO2 flux. In field-grown plants, fluxes of NO were small and inconsistent from plant to plant. At ambient NO concentrations between 0.1 and 0.3 ppbv, average fluxes were zero. At ambient NO concentrations above 1 ppbv, NO uptake occurred, but fluxes were so small (14.3±0.0 pmol m−2 s−1) as to be insignificant in the NOx inventory for this site. In field-grown plants, NO2 was emitted to the atmosphere at ambient NO2 concentrations below 0.9 ppbv (the NO2 compensation point), with the highest rate of emission being 50 pmol m−2 s−1 at 0.2 ppbv. NO2 was assimilated by corn leaves at ambient NO2 concentrations above 0.9 ppbv, with the maximum observed uptake rate being 643 pmol m−2 s−1 at 6 ppbv. When fluxes above 0.9 ppbv are standardized for ambient NO2 concentration, the resultant deposition velocity was 1.2±0.1 mm s−1. When scaled to the entire corn canopy, NO2 uptake rates can be estimated to be as much as 27% of the soil-emitted NOx. In greenhouse-grown and field-grown leaves, NO2 deposition velocity was dependent on incident photosynthetic photon flux density (PPFD; 400–700 nm), whether measured above or below the NO2 compensation point. The shape of the PPFD dependence, and its response to ambient humidity in an experiment with greenhouse-grown plants, led to the conclusion that stomatal conductance is a primary determinant of the PPFD response. However, in field-grown leaves, measured NO2 deposition velocities were always lower than those predicted by a model solely dependent on stomatal conductance. It is concluded that NO2 uptake rate is highest when N availability is highest, not when the leaf deficit for N is highest. It is also concluded that the primary limitations to leaf-level NO2 uptake concern both stomatal and mesophyll components.  相似文献   

11.
The influence of traffic-induced pollutants (e.g. CO, NO, NO2 and O3) on the air quality of urban areas was investigated in the city of Essen, North Rhine-Westphalia (NRW), Germany. Twelve air hygiene profile measuring trips were made to analyse the trace gas distribution in the urban area with high spatial resolution and to compare the air hygiene situation of urban green areas with the overall situation of urban pollution. Seventeen measurements were made to determine the diurnal concentration courses within urban parks (summer conditions: 13 measurements, 530 30 min mean values, winter conditions: 4 measurements, 128 30 min mean values). The measurements were carried out during mainly calm wind and cloudless conditions between February 1995 and March 1996. It was possible to establish highly differentiated spatial concentration patterns within the urban area. These patterns were correlated with five general types of land use (motorway, main road, secondary road, residential area, green area) which were influenced to varying degrees by traffic emissions. Urban parks downwind from the main emission sources show the following typical temporal concentration courses: In summer rush-hour-dependent CO, NO and NO2 maxima only occurred in the morning. A high NO2/NO ratio was established during weather conditions with high global radiation intensities (K>800 W m−2), which may result in a high O3 formation potential. Some of the values measured found in one of the parks investigated (Gruga Park, Essen, area: 0.7 km2), which were as high as 275 μg m−3 O3 (30-min mean value) were significantly higher than the German air quality standard of 120 μg m−3 (30-min mean value, VDI Guideline 2310, 1996) which currently applies in Germany and about 20% above the maximum values measured on the same day by the network of the North Rhine–Westphalian State Environment Agency. In winter high CO and NO concentrations occur in the morning and during the afternoon rush-hour. The highest concentrations (CO=4.3 mg m−3, NO=368 μg m−3, 30-min mean values) coincide with the increase in the evening inversion. The maximum measured values for CO, NO and NO2 do not, however, exceed the German air quality standards in winter and summer.  相似文献   

12.
A highly sensitive technique for the measurement of atmospheric HONO and HNO3 is reported. The technique is based on aqueous scrubbing using two coil samplers, followed by conversion of HNO3 to nitrite, derivatization of nitrite to a highly light-absorbing azo dye with sulfanilamide (SA) and N-(1-naphthyl) ethylenediamine (NED), and high performance liquid chromatography (HPLC) analysis. HNO3 concentration was obtained by the difference of the two channels. Two scrubbing solutions were used for sampling the two species: a 1-mM phosphate buffer solution (pH 7) for the measurement of HONO and a 180 mM NH4Cl/NH3 buffer solution (pH 8.5) for the measurement of HONO+HNO3. The scrubbing solution flow rate was 0.24 ml min−1 and the gas sampling flow rate was 2 l min−1. HNO3 in the NH4Cl/NH3 buffer solution was quantitatively reduced to nitrite along an on-line 0.8-cm Cd reductor column. Nitrite in both channels was derivatized with 2 mM SA and 0.2 mM NED in 25 mM HCl. Quantitative derivatization was achieved within 5 min at 55°C. The azo dye derivative was then separated from the SA/NED reagent by reversed-phase HPLC and detected with a UV-vis detector at 540 nm. With an on-line SEP-PAK C-18 cartridge for the reagent purification, the method detection limit is estimated to be better than 1 pptv for HONO and about 20 pptv for HNO3. The sample integration time was about 2 min and the sampling frequency is every 10 min. Data collected in downtown Albany and Whiteface Mountain, NY, are shown as examples of applications of this technique in both urban and remote clean environments.  相似文献   

13.
Urban areas are significant contributors to global carbon dioxide emissions. Vehicle emissions and other anthropogenic related activities are a frequent source of CO2 to the atmosphere, contributing to global warming. Micrometeorological techniques used for observations in Northern Hemisphere cities have found that urban CO2 fluxes are consistently a source. This study investigates CO2 fluxes in an Australian city, adding to the global database of CO2 fluxes in a bid to aid in future development of planning policies concerning reductions in CO2 emissions. Using the eddy covariance approach, fluxes of CO2 were measured at a suburban site (Preston) in Melbourne, Australia from February 2004 to June 2005 to investigate temporal variability. A second site (Surrey Hills) with differing surface characteristics (in particular, greater vegetation cover) was also established in Melbourne and ran simultaneously for 6 months (February 2004–July 2004). Results showed that both sites were a net source of CO2 to the atmosphere. Diurnal patterns of fluxes were largely influenced by traffic volumes, with two distinct peaks occurring at the morning and evening traffic peak hours, with the winter morning peak averaging 10.9 μmol m−2 s−1 at Preston. Summer time fluxes were lower than during winter due to greater vegetative influence and reduced natural gas combustion. Vegetation limited the source of CO2 in the afternoon, yet was not enough to combat the strong local anthropogenic emissions. Surrey Hills showed higher fluxes of CO2 despite greater vegetation cover because of higher local traffic volumes. Annual emissions from Preston were estimated at 84.9 t CO2 ha−1 yr−1. Magnitudes and patterns of suburban CO2 fluxes in Melbourne were similar to those observed in Northern Hemisphere suburban areas.  相似文献   

14.
A series of source tests were conducted to characterize emissions of particulate matter (PM), carbon monoxide (CO), carbon dioxide (CO2), methane (CH4), and total hydrocarbon (THC ) from five types of portable combustion devices. Tested combustion devices included a kerosene lamp, an oil lamp, a kerosene space heater, a portable gas range, and four unscented candles. All tests were conducted either in a well-mixed chamber or a well-mixed room, which enables us to determine emission rates and emission factors using a single-compartment mass balance model. Particle mass concentrations and number concentrations were measured using a nephelometric particle monitor and an eight-channel optical particle counter, respectively. Real-time CO concentrations were measured with an electrochemical sensor CO monitor. CO2, CH4, and THC were measured using a GC-FID technique. The results indicate that all particles emitted during steady burning in each of the tested devices were smaller than 1.0 μm in diameter with the vast majority in the range between 0.1 and 0.3 μm. The PM mass emission rates and emission factors for the tested devices ranged from 5.6±0.1 to 142.3±40.8 mg h−1 and from 0.35±0.06 to 9.04±4.0 mg g−1, respectively. The CO emission rates and emission factors ranged from 4.7±3.0 to 226.7±100 mg h−1 and from 0.25±0.12 to 1.56±0.7 mg g−1, respectively. The CO2 emission rates and emission factors ranged from 5500±700 to 210,000±90,000 mg h−1 and from 387±45 to 1689±640 mg g−1, respectively. The contributions of CH4 and THC to emission inventories are expected to be insignificant due both to the small emission factors and to the relatively small quantity of fuel consumed by these portable devices. An exposure scenario analysis indicates that every-day use of the kerosene lamp in a village house can generate fine PM exposures easily exceeding the US promulgated NAAQS for PM2.5.  相似文献   

15.
The temporal behavior of HONO and NO2 was investigated at an urban site in Guangzhou city, China, by means of a DOAS system during the Pearl River Delta 2006 intensive campaign from 10 to 24 July 2006. Within the whole measurement period, unexpected high HONO mixing ratios up to 2 ppb were observed even during the day. A nocturnal maximum concentration of about 8.43 ± 0.4 ppb was detected on the night of 24 July 2006. Combining the data simultaneously observed by different instruments, the coupling of HONO–NO2 and the possible formation sources of HONO are discussed. During the measurement period, concentration ratios of HONO to NO2 ranged from (0.03 ± 0.1) to (0.37 ± 0.09), which is significantly higher than previously reported values (0.01–0.1). Surprisingly, in most cases a strong daytime correlation between HONO and NO2 was found, contrary to previous observations in China. Aerosol was found to have a minor impact on HONO formation during the whole measurement period. Using a pseudo steady state approach for interpreting the nocturnal conversion of NO2 to HONO suggests a non-negligible role of the relative humidity for the heterogeneous HONO formation from NO2.  相似文献   

16.
A field experiment was conducted in August 1998 to investigate the concentrations of isoprene and isoprene reaction products in the surface and mixed layers of the atmosphere in Central Texas. Measured near ground-level concentrations of isoprene ranged from 0.3 (lower limit of detection – LLD) to 10.2 ppbv in rural regions and from 0.3 to 6.0 ppbv in the Austin urban area. Rural ambient formaldehyde levels ranged from 0.4 ppbv (LLD) to 20.0 ppbv for 160 rural samples collected, while the observed range was smaller at Austin (0.4–3.4 ppbv) for a smaller set of samples (37 urban samples collected). Methacrolein levels did not vary as widely, with rural measurements from 0.1 ppbv (LLD) to 3.7 ppbv and urban concentrations varying between 0.2 and 5.7 ppbv. Isoprene flux measurements, calculated using a simple box model and measured mixed-layer isoprene concentrations, were in reasonable agreement with emission estimates based on local ground cover data. Ozone formation attributable to biogenic hydrocarbon oxidation was also calculated. The calculations indicated that if the ozone formation occurred at low VOC/NOx ratios, up to 20 ppbv of ozone formed could be attributable to biogenic photooxidation. In contrast, if the biogenic hydrocarbon reaction products were formed under low NOx conditions, ozone production attributable to biogenics oxidation would be as low as 1 ppbv. This variability in ozone formation potentials implies that biogenic emissions in rural areas will not lead to peak ozone levels in the absence of transport of NOx from urban centers or large rural NOx sources.  相似文献   

17.
The nonlinear dynamical analysis of ground level ozone concentration is carried out by using correlation integral method to examine its scale invariance property. The dynamics of the time series is often studied at one temporal scale. It is assumed that if the time series is determined to be chaotic at one temporal scale, its behavior at another scale can be determined as the scale shifts are allowed due to scale invariance property. The actual dynamics at other scales is however not yet analyzed. The assumption of scale invariance of the time series at different time scales is tested in this study. The analysis is carried out for ground ozone levels observed during 2006 at two sites of different land use characteristics, as traffic and mixed-use in Delhi at four temporal scales as 1 h, 4 h, 8 h and 24 h. The chaotic nature is observed for the ozone concentration with 1 h and 4 h frequency, whereas at 8 h and 24 h time scale, the ozone concentration shows random behavior. As expected, a decrease in the variability is observed in the ozone levels with increase in the scales from 1 h to 24 h. The results indicated the temporal scale shifts are allowed from 1 h to 4 h resolution and vice versa. The ozone time series at 8 h and 24 h scalings however, should be dealt separately. Further analysis for corresponding NO2 concentration at two sites suggested finite d2 for 1 h, 4 h and 8 h scalings with higher value at traffic site than that at mixed-use site. The analysis also indicated same degrees of freedom for ozone and NO2 concentration at traffic site whereas at mixed-use site the number of variables governing the NO2 pollution are less than the ozone concentration.  相似文献   

18.
The objective of these analyses was to determine whether highways significantly influence ambient concentrations of NO2 at distances greater than 200 m. NO2 was sampled for 14 consecutive days in May 2003 at 67 sites across Montréal, Canada. The association between logarithmic concentrations of NO2 and land-use variables was assessed using multiple regressions. Locations less than 100 m from the nearest highways were excluded, leaving 61 data points. Then, locations less than 200 m were excluded, leaving 55 data points. Excluding sampling locations located less than 100 or 200 m from the nearest highway did not substantially change the regression parameters. NO2 was still significantly associated with both the distance from nearest highway and the traffic count on the nearest highway. These findings indicate that the negative association found between distance from highways and NO2 concentration in several land-use regression studies in Europe and North America was not generated solely by the high concentrations found in the immediate vicinity of highways.  相似文献   

19.
The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas–aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl, NO2, NO3, SO42−, Na+, NH4+, K+, Mg2+ and Ca2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m−3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.  相似文献   

20.
The CALINE4 roadway dispersion model has been applied to concentrations of NOx and NO2 measured near Gandy Boulevard in Tampa, FL (USA) during May 2002. A NOx emission factor of 0.86 gr mi−1 was estimated by treating NO+NO2 (NOx) as a conserved species and minimizing the differences between measured and calculated NOx concentrations. This emission factor was then used to calculate NO2 concentrations using the NO/NO2 transformation reactions built into CALINE4. A comparison of measured and calculated NO2 concentrations indicates that for ambient O3 concentrations less than 40 ppb the model under-predicts the chemical transformation of NO. The enhanced transformation of NO may be due to reactions of NO with oxidants such as peroxy radicals that are present either in the atmosphere or in vehicle exhaust.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号