首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
结合2010年苏州市出现的一次典型沙尘天气,利用环境空气自动监测数据、气象观测数据及后向轨迹模型等资料,对此次沙尘污染过程进行分析,探究苏州沙尘天气下灰霾污染的规律.结果表明:苏州沙尘天气主要是北方冷空气活动频繁,高空维持较强西北气流造成沙尘颗粒物长程传输造成的;沙尘影响过程中环境空气中可吸入颗粒物浓度明显升高,其他灰霾特征污染物也有所增长,大气能见度降低并伴随城市灰霾现象发生.  相似文献   

2.
利用TrajStat软件和全球资料同化系统数据,计算了2005~2016年北京市逐日72h气流后向轨迹,采用聚类分析方法,结合北京同期PM2.5逐日质量浓度数据,分析北京市年及四季后向气流轨迹特征及其对北京市颗粒物浓度的影响,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨研究时期内不同季节影响北京市颗粒物质量浓度的潜在源区以及不同源区对北京颗粒物质量浓度的贡献.结果表明,就全年而言,西北输送气流占总轨迹的比例最高,达59.97%,且其输送距离最远、输送高度最高、移速最快.输送高度最低、距离最短、移速最慢的东南气流占比次之,为27.64%,东北气流占比最低为12.40%,其移速和输送距离介于前两者之间.主要污染轨迹来自山东、河北,其次为来自俄罗斯、蒙古国和内蒙古荒漠戈壁地区的西北气流.PSCF和CWT分析发现,蒙中、晋中、冀西南、豫北及鲁西是影响北京PM2.5的主要潜在区域.而不同季节、不同输送路径对北京PM2.5污染影响的差异显著,春季主要受来自蒙晋交界区域的短距离输送气流影响,潜在源区位于冀南、鲁西、豫东和皖西北地区,夏季污染轨迹来自鲁、晋地区,潜在源区为豫东北、皖北和苏北地区;秋季主要受来自冀南地区的短距离气流影响,潜在源区为晋北、冀南、豫北和鲁西地区,冬季主要受来自蒙古国中西部和蒙中地区的远距离输送气流影响,潜在源区主要在冀南、鲁西、豫北、晋和蒙西地区.  相似文献   

3.
银川地区大气颗粒物输送路径及潜在源区分析   总被引:4,自引:0,他引:4  
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异.  相似文献   

4.
哈尔滨市沙尘期大气颗粒物物化特征及传输途径分析   总被引:1,自引:0,他引:1  
为了研究沙尘期大气颗粒物的物化特征及传输途径,分别采集TSP、PM10和PM2.5样品,分析3种颗粒物的分布特征、浓度变化以及离子和无机元素组成,同时利用HYSPLIT逆轨迹模式对沙尘颗粒的远距离输送来源进行了分析.研究结果显示:沙尘期,PM10~100是颗粒物的主要组成,占TSP的50%~57%,PM2.5/TSP和PM10/TSP分别达最低值0.17和0.43;在TSP和PM10中,Na、Si、Al、Ca、Fe、K、Mg浓度变化较为明显,在沙尘期是非沙尘期的2~3倍,在TSP中的最高浓度分别为7.28、1.98、19.89、25.82、18.77、4.68和6.49μg/m3,以土壤尘和扬尘为主;TSP中Ca2+、K+、Mg2+在沙尘期的浓度是非沙尘期的2~3倍,最高达22.23、2.04和1.68μg/m3,主要来自土壤、尘埃,与沙尘有相似的来源;逆轨迹模型分析结果表明,本次沙尘事件由外来沙尘输入导致,其传输途径比较明显,起始位置为内蒙古的西北部和中部地区,沿途向南经过山西,后转为东北方向,经过河北、天津、辽宁、吉林等省份,最后输送到哈尔滨.  相似文献   

5.
2018年11月22日-12月1日,兰州市经历了一次远距离传输的沙尘天气过程,为了解此次沙尘天气过程时段细颗粒物污染特征及其污染来源变化特征,本研究基于单颗粒气溶胶质谱仪(SPAMS)细颗粒物自动采集数据,并结合常规污染物自动监测数据和气象因子数据对沙尘天气前后及其过境期间细颗粒物化学组分及污染来源变化情况进行了分析,同时利用后向轨迹模型(HYSPLIT)研究了沙尘气溶胶的输送路径.研究结果表明:受沙尘天气过境影响,兰州市PM10浓度大幅升高,PM2.5/PM10最小值仅为0.13,SO2、NO2、CO质量浓度出现明显降低,而O3质量浓度在沙尘过境时有所升高;细颗粒物质量浓度与MASS数浓度变化趋势基本一致,细颗粒物的变化趋势可一定程度上反映大气细颗粒物的污染状况;利用自适应共振神经网络法分类后经人工合并将所采集到的细颗粒分为9类:OC、EC、HOC、OCEC、MD、HM、K、Na、LEV;所选时间段内SPAMS采集到的OC(24.8%)类颗粒物数量最多,沙尘过境时MD、LEV、Na类颗粒物占比不同程度增大,其余颗粒物占比减小;沙尘过境时扬尘源、生物质燃烧源、工业工艺源、餐饮及其它源贡献率增加,其中扬尘源增幅最大,而其余源贡献占比减小;后向轨迹HYSPLIT模型输送路径结果显示沙尘天气过程的起源地为塔克拉玛干沙漠,传输方向为经新疆的塔里木盆地塔克拉玛干沙漠进入青海中部,最后影响兰州地区.  相似文献   

6.
基于甘肃省2018~2019年颗粒物质量浓度监测数据,分析了全省大气颗粒物浓度的时空变化及排放特征,并利用HYSPLIT后向轨迹模式研究了颗粒物传输路径.结果表明:颗粒物(PM10和PM2.5)空间分布呈现区域特征:PM10浓度高值位于河西走廊地区,由北向南呈阶梯式递减;PM2.5以陇中地区为高值中心,向南北两侧递减,陇南地区为全省颗粒物清洁区.不同地区PM10与PM2.5地面浓度季节变化特征存在差异,陇中、陇东和陇南地区PM10和PM2.5浓度变化特征一致,陇中和陇东地区颗粒物(PM10与PM2.5)浓度冬高夏低,陇南地区则为冬高秋低;河西走廊PM10和PM2.5浓度季节变化不同,PM2.5冬高夏低,PM10春高夏低.后向轨迹聚类结果表明全省春季、冬季均受到来自中亚及新疆的偏西气流影响,该路径输送下可吸入颗粒物(PM10)浓度明显高于其他路径,是典型的沙尘输送路径,4大分区受沙尘传输影响程度依次为河西 > 陇中 > 陇东 > 陇南,来自陕西、川渝的偏东路径是陇南地区颗粒物的主要输送路径,该路径下PM2.5/PM10比值大于0.5,明显高于偏西路径,说明偏东路径人为源污染贡献显著.研究结果有助于全面认识全省颗粒物污染特点、为分区制定颗粒物污染防治政策、以及区域污染协同治理提供科学的参考依据.  相似文献   

7.
太行山两侧污染物传输对横谷城市气溶胶的影响分析   总被引:1,自引:1,他引:0  
利用2017~2019年太行山横谷城市阳泉PM10和PM2.5逐时浓度资料和对应时刻风速风向数据,结合HYSPLIT后向轨迹模型通过聚类分析、潜在源贡献因子和浓度权重轨迹方法分析了横谷城市气流输送特征及对阳泉市气溶胶的影响,并进一步探讨了太行山两侧大气污染物的交换特征.阳泉市气溶胶日变化为单峰单谷型,冬季最高值出现在10:00~11:00,其他季节多在09:00,最小值均在15:00~16:00;月际变化呈1月最高、8月最低.受横谷地形影响,地面风向以偏东风和偏西风频率最高;除小风天气外,春秋季偏西风引起的沙尘天气和冬季偏东风输送也会引起阳泉气溶胶浓度升高;后向轨迹结合污染特征显示,各季节污染轨迹占比为春季26.2%、秋季36.4%和冬季33.7%,主要分布在阳泉的西南和东南区域,冬季在东北区域也有分布;山脉两侧均存在显著的细颗粒物传输,而起源或途经太行山西侧的轨迹粗颗粒物输送亦相对较多;污染轨迹中偏西气流输送对PM10超标率影响更大,偏东气流则主要影响PM2.5的超标率.不同季节阳泉市气溶胶主要污染潜在源区存在差异,春季为西南和东南两区域;秋季为西南及偏南区域,冬季主要位于偏南和偏东方向区域,山西东南部及与河南北部交界区域是主要的污染贡献源区,太行山两侧通过井陉通道进行大气污染物的相互传输过程显著,其中东向西的PM2.5传输影响更显著.  相似文献   

8.
于2014年3—5月在国家大气背景监测福建武夷山站采集了PM2.5及PM2.5~10样品,利用离子色谱对其中的水溶性组分进行分析,并同步收集气象因子及污染物质量浓度数据,结合后向气流轨迹,分离出受沙尘影响的样品,探讨了春季沙尘过程华东高山背景区域颗粒物中水溶性组分的特征.结果表明,春季武夷山背景点沙尘影响期间颗粒物质量浓度及各水溶性离子浓度均比非沙尘期高,在粗粒子中表现更为明显;沙尘期间NO-3在粗粒子中明显富集,NO-3浓度显著升高;受沙尘影响,粗粒子中阳离子与阴离子的当量浓度比及NO2的二次转化率均明显升高.  相似文献   

9.
内陆输送过程中沙尘单颗粒类型及其非均相反应   总被引:2,自引:0,他引:2       下载免费PDF全文
采用单颗粒分析方法对2004 年2~3 月发生在北京的3 次沙尘暴的样品中沙尘颗粒物的化学成分进行了测定.3 次沙尘暴的反向轨迹图显示,它们主要来自于中国北部、西北部和蒙古的戈壁沙漠地区,且这些沙尘颗粒主要通过高空长距离输送到下游区域.使用带能谱的扫描电镜对481 个沙尘颗粒进行分析,并根据成分特征,把这些沙尘颗粒划分为8 种类型,主要类型有“富Si”、“富Ca”、“富S”、“富Fe”.将北京样品分析结果与呼和浩特、塔克拉玛干和敦煌的结果进行对比,结果显示,长距离输送的沙尘颗粒表面发生了SO2 的非均相化学反应,导致部分颗粒局部的表面发生化学修改作用,且“富Ca”的碱性矿物为非均相化学反应提供了更有利的反应界面.  相似文献   

10.
基于汾渭平原吕梁市2017~2019年颗粒物浓度监测数据和地面气象观测数据,利用后向轨迹聚类分析法以及潜在源贡献函数(PSCF)等方法研究了吕梁市冬季PM10和PM2.5大气污染特征及其潜在源区,最后结合轨迹密度分析法(TDA)、轨迹停留时间分析法(RTA)对轨迹聚类分析得到污染输送通道进行补充分类,并分析了不同输送通道的输送特征.研究发现,吕梁市2017~2019年颗粒物年均浓度逐年下降,其中PM10下降了28μg/m3,PM2.5下降了17μg/m3,冬季下降幅度最大.3a冬季风向风速和浓度的统计分析表明吕梁市颗粒物浓度受东北和西南风影响最为显著,其原因是受当地三川河河谷地形的影响.影响吕梁市PM10污染的潜在源区主要位于西南方向,PM2.5污染的潜在源区主要分布在西南、东和东南方向,颗粒物污染输送通道可概括为:西北、西南和偏东(东+东南)通道.西北通道气流移动速度快,途经新疆、内蒙、甘肃和陕西北部等区域;西南通道气流移动速度慢,主要途经陕西中南部渭河平原等污染严重的区域;偏东通道的气流移动速度慢,气流先沿太行山东麓南下,在经过太行山的横断山谷(太行陉、井陉等)时转向进入山西.PM10污染时西北通道贡献最大,偏东通道贡献最小,且两个通道下绝大多数发生的均是轻度污染,占比都在90%左右;PM2.5污染时三类通道下发生轻度污染的比重较PM10均下降,西南和偏东通道下发生中度污染以上的比重在50%左右,且西南和偏东通道途经的区域恰好是PSCF计算得到的潜在源区位置,说明了西南和偏东气流容易将细颗粒物输送至吕梁.WRF (天气预报模式)的风场模拟较为直观的解释了三类污染输送通道,且复杂地形是形成污染输送通道的一个重要因素.西北和西南污染输送通道主要受吕梁山脉的影响,偏东污染输送通道主要受太行山及其横谷的影响.  相似文献   

11.
基于1969~2018年再分析气象资料,运用拉格朗日混合单粒子轨道(HYSPLIT)模型,计算了以咸海为中心未来7d的逐日气团轨迹,采用核密度分析法,绘制了5个层次(0~0.5,0.5~1,1~1.5,1.5~2,2~5km·agl)的气团轨迹密度图,分析了咸海干涸湖床粉尘扩散的时空变异.结果显示,粉尘潜在扩散具有季节分异.春、冬季粉尘扩散范围与密度最大,沿东北方向扩散比例分别占61%、35%,最远可达亚洲东部地区,其次是秋季;夏季粉尘扩散以0.5km为界限表现明显的高度差异.随着高度的增加,粉尘潜在扩散的密度逐渐降低.受地形与天气系统的影响,春、夏粉尘扩散呈现向东北,西南方向扩散趋势,秋、冬呈现沿东北方向扩散趋势.有利的天气条件下,咸海干涸湖床粉尘可远距离输送:在近源区沉降,影响乌兹别克斯坦及周边国家,在山区沉降,则可能加速天山雪冰融化.  相似文献   

12.
利用常规气象观测资料、颗粒物监测数据,并结合污染源溯源,采用天气学原理和轨迹分析等方法对2019年5月青海东部一次沙尘重污染天气的主要成因及沙尘传输特征进行了分析.结果表明,此次沙尘重污染天气主要由贝加尔湖低槽东移携带的强冷空气沿河西走廊东移下滑,沿湟水河谷自东向西倒灌入青海东部导致,污染物随着强劲的东风影响青海东部....  相似文献   

13.
2017年春季华北地区一次典型沙尘重污染天气过程研究   总被引:1,自引:0,他引:1  
结合空气质量监测站小时监测数据、NECP资料、卫星遥感资料,分析了2017年5月3—5日华北地区一次典型沙尘重污染天气过程.结果表明,此次重污染过程主要由前期的浮尘和后期的扬沙天气造成.前期,蒙古气旋强烈发展将沙尘源地的沙尘抽吸到空中并在偏西风作用下,长距离传输到华北地区沉降,造成大范围浮尘天气,多个城市出现严重污染,PM10浓度增高显著.后期,随着高空横槽转竖并东移,受强冷锋影响,京津等地出现大风扬沙天气,大风过后,空气质量转好,PM10浓度降低至较低水平.起沙源地高空辐散、近地面辐合产生强烈的上升运动将沙尘带到空中并向东传输至华北上空,近地面处于弱辐散场,高空的沙尘缓慢下沉,形成了浮尘天气;高空槽东移,高空辐合,近地面辐散,700 hPa至近地面为强烈下沉运动,是形成此次扬沙天气的主要原因.结合天气形势分析和特征量诊断,给出了华北地区此次浮尘和扬沙天气的天气学概念模型.  相似文献   

14.
采用数值模拟与观测资料相结合的方式,对沈阳市2018年1—3月发生的1次重污染过程的气象条件、天气形势和潜在来源进行初步分析。结果表明:重污染过程与当地的气象条件密切相关,沈阳市重污染期间的PM2.5和PM10浓度与风速和气温呈负相关,与气压和相对湿度呈正相关。中度、重度及以上污染主要集中于相对湿度为50%~70%条件下;重污染主要在高压、高湿、低风速、近地层逆温的天气形势下,污染物不易扩散。高空若有暖平流、受槽前脊后暖平流的影响也会导致区域空气质量下降。潜在来源分析表明,沈阳市的气团共有4条运输路线,其中来自内蒙古的轨迹携带了大量的PM10;属于簇团2(34.72%)的内蒙古自治区中东部,属于簇团3(21.94%)的河北省以及属于簇团4(13.06%)的吉林省西部地区对沈阳市的污染贡献比较高。  相似文献   

15.
利用多源遥感数据和NCEP再分析资料,从沙尘源区的地理环境和气候特征出发,对2021年中国北方首次沙尘天气事件每日的大气环流形势以及沙尘的水平,垂直分布特征进行深入的研究分析.结果表明:源区内异常增温,降水稀少的气候背景下致使大面积裸露松散的土壤含水量较低,为大范围,高强度沙尘天气的形成提供了物质基础;频繁活动的冷空气,是沙尘天气爆发的动力因子.沙尘在强风中沿东南方向向下游地区输送和扩散,中国西北,华北,黄淮,江淮,江汉地区和江南北部等地先后受到沙尘天气的影响,空气质量迅速恶化,首要污染物为PM10.此外,沙尘气溶胶东移也波及朝鲜半岛,日本等下游地区.在输送过程中,内陆地区沙尘主要分布在1~6km,而下游地区的沙尘则集中分布在2km高度附近,粒径较大的沙尘出现在近地表的频率较高,较小的颗粒主要分布在对流层中下层.  相似文献   

16.
石家庄一次沙尘气溶胶污染过程及光学特性   总被引:1,自引:0,他引:1  
为掌握沙尘气溶胶远距离输送特征及其规律,对2015年4月15日影响石家庄空气质量的沙尘天气背景、污染特征进行了分析,利用HYSPLIT-4模式分析了沙尘气溶胶的后向轨迹,并利用微脉冲激光雷达和太阳光度计CE318监测资料分析了沙尘气溶胶的垂直分布和光学特性演变,与大风无沙尘沉降另一过程进行了对比,探讨了沙尘沉降对消光系数的影响,估算了沙尘沉降对地面PM10浓度的贡献.结果表明:来自蒙古国的沙尘气溶胶以西北路径远距离输送沉降是导致石家庄PM10浓度骤升的主要因素;沙尘沉降对消光系数和地面PM10浓度具有重要贡献;气溶胶快速沉降时间与冷锋过境、冷空气下沉相一致;微脉冲激光雷达监测到整个沙尘气溶胶输送沉降过程,沉降之前沙尘气溶胶主要分布在1500~3000m高空,气溶胶消光系数随高度上升而增大,输送飘浮空中到沉降持续时间较长,为沙尘污染预警提供了"强信号"特征;气溶胶光学厚度随沙尘到达明显上升,浑浊度较高,粒径偏大,地面能见度随气溶胶光学厚度呈幂指数递减.  相似文献   

17.
选取2017~2020南京地区冬季3个典型霾天气过程,综合分析了霾天气过程中污染物、气象要素以及边界层条件等影响机制与特征变化.结果表明,3次过程中,AQI指数峰值分别为304(严重污染)、227(重度污染)与176(中度污染),且与PM2.5、PM10浓度变化基本趋于一致,PM25与PM10比值基本都大于0.7;污染...  相似文献   

18.
以2018年3次沙尘天气为研究对象,分析了PM2.5和PM10浓度、水溶性离子组分、气象条件和气溶胶光学特征,研究了长治市沙尘天气的典型污染特征和传输路径.结果表明:长治市2018年共8d为受沙尘天气影响日,其中4月份最多(5d),这与春季大气环流调整,冷暖空气活动频繁有关.沙尘污染发生前一般受西方或西北方冷空气影响,大气层结不稳定,大气环流转为经向环流,平均风速达4m/s以上;沙尘污染过程中PM2.5/PM10均低于0.3,环境空气中粗颗粒物占比较大,水溶性离子总浓度在PM2.5中占比下降,Ca2+浓度为沙尘污染发生前的4倍以上.冬季沙尘为近地面扩散传输,春夏季沙尘为高空沉降传输,影响范围大,区域传输贡献明显.长治市沙尘重要潜在源区为蒙古国、哈萨克斯坦中部和新疆中北部的荒漠地区,传输路径主要为西北路径和正北路径,其中西北路径为哈萨克斯坦—新疆中北部—内蒙古西部—长治以及新疆中北部—内蒙古西部—长治两条路径,正北路径为蒙古国—内蒙古中部—山西北部—长治.  相似文献   

19.
以2018年3次沙尘天气为研究对象,分析了PM2.5和PM10浓度、水溶性离子组分、气象条件和气溶胶光学特征,研究了长治市沙尘天气的典型污染特征和传输路径.结果表明:长治市2018年共8d为受沙尘天气影响日,其中4月份最多(5d),这与春季大气环流调整,冷暖空气活动频繁有关.沙尘污染发生前一般受西方或西北方冷空气影响,大气层结不稳定,大气环流转为经向环流,平均风速达4m/s以上;沙尘污染过程中PM2.5/PM10均低于0.3,环境空气中粗颗粒物占比较大,水溶性离子总浓度在PM2.5中占比下降,Ca2+浓度为沙尘污染发生前的4倍以上.冬季沙尘为近地面扩散传输,春夏季沙尘为高空沉降传输,影响范围大,区域传输贡献明显.长治市沙尘重要潜在源区为蒙古国、哈萨克斯坦中部和新疆中北部的荒漠地区,传输路径主要为西北路径和正北路径,其中西北路径为哈萨克斯坦—新疆中北部—内蒙古西部—长治以及新疆中北部—内蒙古西部—长治两条路径,正北路径为蒙古国—内蒙古中部—山西北部—长治.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号