首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   2篇
  国内免费   2篇
综合类   7篇
基础理论   2篇
  2023年   3篇
  2022年   1篇
  2021年   2篇
  2020年   3篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
受前体物排放和气象条件等因素共同驱动,大气臭氧(O3)已成为影响城市夏季环境空气质量的主要污染物.目前物理化学机制驱动的演绎模型在进行O3污染解析时需要的模型参数众多,运算时效性较差;数据驱动的归纳模型运算效率高,但存在可解释性差等问题.通过建立可解释性数据驱动的Correlation-ML-SHAP模型,Correlation模块挖掘O3浓度关联影响因素,机器学习ML模块耦合可解释性SHAP模块计算各驱动因素对O3浓度的影响贡献,实现对驱动因素的定量解析,并以晋城市2021年夏季O3污染过程为例开展应用研究.结果表明,Correlation-ML-SHAP模型能够挖掘并利用强驱动因素模拟O3浓度和量化影响贡献,其中ML模块采用XGBoost模型模拟准确度最佳. 2021年夏季晋城市O3污染强驱动因素为:气温、日照强度、湿度和前体物排放水平,贡献权重为:32.1%、 21.3%、 16.5%和15.6%,其中气温、日照强度和前体物排放...  相似文献   
2.
基于山西省11城市2015~2019年PM2.5日均浓度、社会影响因素数据和气象数据,利用小波变换确定PM2.5浓度周期,通过Spearman相关性和小波相干谱分别探究PM2.5与社会影响因素和气象因素的关联,确定PM2.5长短周期管控的主要影响因子.结果表明,2015~2017年山西省PM2.5浓度年均值呈上升趋势,年均上升率为4.3%, 2018~2019年呈下降趋势,年均下降率为4.2%;ρ(PM2.5)月均值呈“U”型分布,1月最高(95μg·m-3), 8月最低(34μg·m-3),冬季均值约为夏季的2倍;临汾等南部城市ρ(PM2.5)均值为62μg·m-3,大同等北部城市均值为45μg·m-3,空间上呈南高北低.11城市PM2.5浓度存在显著周期性变化,主要周期包括293 d左右的长周期和27 d左右的短周期.其中...  相似文献   
3.
以2018年3次沙尘天气为研究对象,分析了PM2.5和PM10浓度、水溶性离子组分、气象条件和气溶胶光学特征,研究了长治市沙尘天气的典型污染特征和传输路径.结果表明:长治市2018年共8d为受沙尘天气影响日,其中4月份最多(5d),这与春季大气环流调整,冷暖空气活动频繁有关.沙尘污染发生前一般受西方或西北方冷空气影响,大气层结不稳定,大气环流转为经向环流,平均风速达4m/s以上;沙尘污染过程中PM2.5/PM10均低于0.3,环境空气中粗颗粒物占比较大,水溶性离子总浓度在PM2.5中占比下降,Ca2+浓度为沙尘污染发生前的4倍以上.冬季沙尘为近地面扩散传输,春夏季沙尘为高空沉降传输,影响范围大,区域传输贡献明显.长治市沙尘重要潜在源区为蒙古国、哈萨克斯坦中部和新疆中北部的荒漠地区,传输路径主要为西北路径和正北路径,其中西北路径为哈萨克斯坦—新疆中北部—内蒙古西部—长治以及新疆中北部—内蒙古西部—长治两条路径,正北路径为蒙古国—内蒙古中部—山西北部—长治.  相似文献   
4.
以2018年3次沙尘天气为研究对象,分析了PM2.5和PM10浓度、水溶性离子组分、气象条件和气溶胶光学特征,研究了长治市沙尘天气的典型污染特征和传输路径.结果表明:长治市2018年共8d为受沙尘天气影响日,其中4月份最多(5d),这与春季大气环流调整,冷暖空气活动频繁有关.沙尘污染发生前一般受西方或西北方冷空气影响,大气层结不稳定,大气环流转为经向环流,平均风速达4m/s以上;沙尘污染过程中PM2.5/PM10均低于0.3,环境空气中粗颗粒物占比较大,水溶性离子总浓度在PM2.5中占比下降,Ca2+浓度为沙尘污染发生前的4倍以上.冬季沙尘为近地面扩散传输,春夏季沙尘为高空沉降传输,影响范围大,区域传输贡献明显.长治市沙尘重要潜在源区为蒙古国、哈萨克斯坦中部和新疆中北部的荒漠地区,传输路径主要为西北路径和正北路径,其中西北路径为哈萨克斯坦—新疆中北部—内蒙古西部—长治以及新疆中北部—内蒙古西部—长治两条路径,正北路径为蒙古国—内蒙古中部—山西北部—长治.  相似文献   
5.
采集北京市某一地下停车场内环境空气样品,利用气相色谱-质谱/氢火焰离子化检测器(GCMSD/FID)测定了挥发性有机物(VOCs)的组成,分析其浓度特征、组分特征和影响因素,运用特征物种比值法和正定矩阵因子分析模型(PMF)解析VOCs来源,采用健康风险评估模型定量评估部分VOCs的健康风险.结果表明,地下停车场内VOCs平均浓度为514.16μg·m-3,其中烷烃占比最大(43.76%),其次是芳香烃(28.89%)、烯烃(10.97%).影响停车场内VOCs浓度的主要因素包括机动车运行工况、机动车进出车次及扩散条件.冷启动工况、较多的出入车次和不利的扩散条件会导致VOCs浓度显著上升.苯/乙苯和苯/甲基叔丁基醚(MTBE)的均值分别为1.5和0.8,表明机动车尾气和汽油挥发是地下停车场内VOCs的主要来源. PMF解析结果表明地下停车场内VOCs的首要来源为机动车尾气源(44.58%),汽油挥发源和汽车内饰挥发源分别贡献24.56%和9.18%.其中,汽油挥发源在08:00—10:00时段贡献最大,机动车尾气源在16:00—18:00时段贡献最大.健康风险评估...  相似文献   
6.
长治市冬季典型大气重污染过程特征分析   总被引:4,自引:0,他引:4  
  相似文献   
7.
分析长治市夏季环境VOCs浓度及其反应活性(以OH·消耗速率计),基于聚类分析与正定矩阵因子分解法 (PMF)解析VOCs来源.结果表明:长治市总VOCs平均浓度为37.40 μg/m3,平均活性水平为5.07s-1,具有本地新鲜排放和反应后混合的特征.机动车排放、燃煤、液化石油气/天然气(LPG/ NG)使用、工艺过程和溶剂使用源对环境VOCs的贡献分别为29.7%、29.2%、23.5%、11.6%和6.1%;对具有新鲜排放特征VOCs的贡献分别为34.6%、38.4%、10.1%、8.5%和8.5%.长治市VOCs主要受本地机动车与燃煤源排放的影响,而LPG/ NG使用源与工艺过程源可通过区域传输影响本地环境VOCs.可见,有效控制本地机动车与燃煤源排放、加强市区周边LPG/NG使用与工艺过程源的联防联控,是降低长治市环境VOCs浓度与O3生成的有效途径.  相似文献   
8.
采用预浓缩仪-气相色谱/质谱(GC/MS)联用方法测定了2020年夏季青藏高原高海拔背景站点纳木措(海拔4730 m)的卤代烃浓度,结合后向轨迹模型分析了采样点卤代烃传输轨迹及潜在源区域。结果表明:纳木措站大气中主要卤代烃为氯甲烷(3.81×10-10)、一氟三氯甲烷(CFC-11,2.32×10-10)、四氯化碳(9.30×10-11)、三氯三氟乙烷(CFC-113,8.60×10-11)和二氯甲烷(6.80×10-11);纳木措站的氟氯烃化合物(CFCs)浓度在全球范围其他背景站点中处于较低水平。采样点CFC-11和CFC-113浓度变化之间呈显著相关(r=0.928,P<0.01),分析认为是受大气本底传输的影响;而其浓度的变化幅度较大,与现有其他高海拔背景站点特征一致,大于平原地区两者浓度变化幅度。除CFC-11和CFC-113外,其他卤代烃化合物日变化幅度均较小(2%~12%),无明显昼夜变化特征。后向轨迹模型分析结果显示,四氯化碳浓度可能受印度等周边地区传输的...  相似文献   
9.
为研究山西省太原、阳泉、长治和晋城冬季PM2.5中碳质组分的污染特征和来源,于2017-11-15—12-31同步采集了冬季PM2.5样品,采用热/光分析法分析了样品中有机碳(OC)和元素碳(EC)组分含量,使用最小相关系数法估算了二次有机碳(SOC)浓度,并利用相关分析及正定矩阵因子分析法(PMF)研究了各城市PM2.5中碳质组分的来源。结果表明:采样期间各城市OC、EC的平均浓度分别为(13.5±5.7),(8.0±4.4)μg/m3,均呈阳泉((17.3±4.5),(13.6±3.0)μg/m3)>太原((16.5±7.0),(7.8±4.2)μg/m3)>长治((12.8±4.0),(7.7±2.8)μg/m3)>晋城((8.3±2.9),(2.9±1.3)μg/m3)的空间分布特点。各城市OC、EC与气态污染物SO2、NO2和CO均显著相关,表明燃煤源和机动车尾气对碳质组分的影响较大。OC和SOC与相对湿度均呈显著正相关,各城市SOC在OC的占比排序为太原(48%)>长治(45%)>晋城(36%)>阳泉(34%),与相对湿度一致,说明各城市冬季SOC的形成可能主要来自液相反应。PMF解析结果显示:各城市冬季PM2.5中碳质组分主要来源于燃煤源(24.2%~30.4%)、汽油车尾气(21.0%~30.9%)、柴油车尾气(16.1%~24.3%)和扬尘源(17.2%~20.5%),其中燃煤源对长治冬季PM2.5中碳质组分的贡献(30.4%)高于其他3个城市,汽油车尾气对太原的贡献(30.9%)高于其他城市,而柴油车尾气(24.3%)和扬尘(20.5%)对阳泉的贡献均高于其他城市。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号