首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
ABSTRACT: This paper presents a method for determining locations of observation wells to be used in conducting pumping tests in unconfined aquifers. Sensitivity coefficients, the distribution of relative errors, and the correlation coefficients between four aquifer parameters (horizontal and vertical hydraulic conductivities Kr and Kz, storage coefficient S, and specific yield Sy) are used as the criteria for the design of observation well networks and the interpretation of pumping tests. The contours of the relative errors over a vertical profile are very useful in selecting the “best” location of an observation well. Results from theoretical analyses suggest that a wide range of locations is suitable for the determination of Kr and that good locations for the determination of Kz and S may be poorly suited for the determination of Sy. Consideration must be given to the position and lengths of the pumping well screen in the selection of observation well locations. For a given location, the quality of test data can be improved by using high pumping rates and frequent sampling of drawdowns. We found that a minimum of two and preferably three observation locations are needed along a given transect. Results of the four parameters from a single well analysis may contain higher uncertainties. However, composite analyses of multiple observation wells can reduce the correlation between the four aquifer parameters, particularly between Kr and Sy, thus, improving the quality of parameter estimation. Results from two pumping tests conducted at sites located in Nebraska were examined with regard to the proposed methodology.  相似文献   

2.
ABSTRACT: A method is presented to analyze time-drawdown data from one or more observation wells for the calculation of four hydraulic parameters for unconfined aquifers: vertical hydraulic conductivity, horizontal hydraulic conductivity, storage coefficient, and specific yield. The hydraulic parameter results are further analyzed for reliability and the possible ranges of the actual parameter values. After verification using a theoretical example, the method was used to analyze pumping test data from 22 observation wells in an unconfined alluvial aquifer near Grand Island, Nebraska. Results indicate that this method can be used to efficiently calculate the four hydraulic parameters in this type of aquifer. The method can also identify the impact of measurement errors on the parameter estimates, and provide ranges of the actual parameter values. The parameter values calculated using this method were compared to those determined using other theories. It is found that this method is very useful for calculating the hydraulic properties from pumping test data and for analyzing the parameter reliability.  相似文献   

3.
ABSTRACT: The nonlinear least squares (NLS) method was applied to pumping and recovery aquifer test data in confined and unconfined aquifers with finite diameter and partially penetrating pumping wells, and with partially penetrating piezometers or observation wells. It was demonstrated that noiseless and moderately noisy drawdown data from observation points located less than two saturated thicknesses of the aquifer from the pumping well produced an exact or acceptable set of parameters when the diameter of the pumping well was included in the analysis. The accuracy of the estimated parameters, particularly that of specific storage, decreased with increases in the noise level in the observed drawdown data. With consideration of the well radii, the noiseless drawdown data from the pumping well in an unconfined aquifer produced good estimates of horizontal and vertical hydraulic conductivities and specific yield, but the estimated specific storage was unacceptable. When noisy data from the pumping well were used, an acceptable set of parameters was not obtained. Further experiments with noisy drawdown data in an unconfined aquifer revealed that when the well diameter was included in the analysis, hydraulic conductivity, specific yield and vertical hydraulic conductivity may be estimated rather effectively from piezometers located over a range of distances from the pumping well. Estimation of specific storage became less reliable for piezometers located at distances greater than the initial saturated thickness of the aquifer. Application of the NLS to field pumping and recovery data from a confined aquifer showed that the estimated parameters from the two tests were in good agreement only when the well diameter was included in the analysis. Without consideration of well radii, the estimated values of hydraulic conductivity from the pumping and recovery tests were off by a factor of four.  相似文献   

4.
ABSTRACT: This paper presents hydraulic conductivities of streambeds measured in three rivers in south‐central Nebraska: the Platte, Republican, and Little Blue Rivers. Unlike traditional permeameter tests in streams that determine only the vertical hydraulic conductivity (Kv), the extended permeameter methods used in this study can measure K in both vertical and horizontal as well as oblique directions. As a result, the anisotropy of channel sediments can be determined from streambed tests of similar sediment volumes. Sandy streambeds with occasional silt/clay layers exist in the Republican and Platte Rivers. The average Kv values range from about 15 to 47 m/day for the sandy streambed and about 1.6 m/day for the silt/clay layers. Statistical analyses indicated that the Kv values of sand and gravel in the Platte and Republican Rivers essentially have the same mean; but the Kv values from the Little Blue River have a statistically different mean. Kv is about four times smaller than the horizontal hydraulic conductivity (Kh) for the top 40 cm of sandy streambed. Measured Kh values of the sandy streambed are in the same magnitude as the Kh of the alluvial aquifer determined using pumping tests. The smaller Kv value in the whole aquifer is the result of interbedded layers of silt and clay within the sand and gravel sediments.  相似文献   

5.
Johnson, R.L., B.R. Clark, M.K. Landon, L.J. Kauffman, and S.M. Eberts, 2011. Modeling the Potential Impact of Seasonal and Inactive Multi‐Aquifer Wells on Contaminant Movement to Public Water‐Supply Wells. Journal of the American Water Resources Association (JAWRA) 47(3):588‐596. DOI: 10.1111/j.1752‐1688.2011.00526.x Abstract: Wells screened across multiple aquifers can provide pathways for the movement of surprisingly large volumes of groundwater to confined aquifers used for public water supply (PWS). Using a simple numerical model, we examine the impact of several pumping scenarios on leakage from an unconfined aquifer to a confined aquifer and conclude that a single inactive multi‐aquifer well can contribute nearly 10% of total PWS well flow over a wide range of pumping rates. This leakage can occur even when the multi‐aquifer well is more than a kilometer from the PWS well. The contribution from multi‐aquifer wells may be greater under conditions where seasonal pumping (e.g., irrigation) creates large, widespread downward hydraulic gradients between aquifers. Under those conditions, water can continue to leak down a multi‐aquifer well from an unconfined aquifer to a confined aquifer even when those multi‐aquifer wells are actively pumped. An important implication is that, if an unconfined aquifer is contaminated, multi‐aquifer wells can increase the vulnerability of a confined‐aquifer PWS well.  相似文献   

6.
ABSTRACT: Numerical models were used to examine the limitations of the assumptions used in an analytical induced infiltration model. The assumptions tested included negligible streambed effects, negligible areal recharge, two-dimensional ground water flow, fully penetrating rivers and wells, and constant surface water stage. For situations that deviate from the underlying assumptions, the analytical model becomes a less reliable predictor of induced infiltration. The numerical experiments show that streambed effects cannot be neglected if the streambed conductivity is more than one order of magnitude lower than the aquifer hydraulic conductivity. Areal recharge cannot be neglected if the ground water basin receives more than 5 in/yr of areal recharge. Three-dimensional flow effects due to well partial penetration cannot be neglected if the ratio of horizontal hydraulic conductivity to vertical hydraulic conductivity (Kh/Ku) is greater than 10. Surface water elevation fluctuations can significantly influence the induced infiltration rate, depending on the degree of fluctuations and the ground water hydraulic gradient.  相似文献   

7.
ABSTRACT: The visualization of water quality data in lakes was achieved by integrating the U.S. Environmental Protection Agency's (EPA) STORET water quality database, lake shoreline polygons from EPA's Reach File (version 3), and the UNIMAP 2-D and 3-D interactive mapping and modeling software. Based on lake name (and state abbreviation), a lake shoreline polygon can be accessed from the Reach File. The coordinates of the polygon are portrayed by the U.S. Geological Survey (USGS) 1:100,000 scale Digital Line Graph (DLG) hydrography layer. This polygon is passed, in turn, to the STORET water quality file. Monitoring stations located within the polygon boundary are extracted along with the complete sampling survey. Specific parameters, such as total phosphorus, pH, ammonia, and optional time and depth restrictions can be selected to build a file of x, y, z1, z1…, zn data which is imported to UNIMAP. Up to four parameters, including depth, can be selected at a time. Within UNIMAP, the data is gridded and then displayed as a 2-D color contour map, 3-D perspective contour map, or 2-D projected time or depth slices. This system operates on the EPA ES9000 mainframe computer located in Research Triangle Park (RIP), North Carolina. LAKEMAP is the culmination of an effort to bridge the gap between the vast array of environmental data collected by the EPA and the complex analytical and display software resident on the mainframe.  相似文献   

8.
ABSTRACT: Hydrological and geochemical spatial patterns and temporal trends were analyzed using U.S. Geological Survey (USGS) water quality data collected from 1975 to 1999 along the uppermost 600 km of the Rio Grande in Colorado and New Mexico. Data on discharge, specific conductivity (SC), total dissolved solids (TDS), pH, Ca2+, Na+, Mg2+, K+, HCO3?, SO42‐, Cl?, F?, and SiO2 came from six USGS stations ranging from the Colorado‐New Mexico border to below Albuquerque, New Mexico. Linear regression, Kendall's S, and Seasonal Kendall's S’ were used to detect trends, and ANOVA was used to analyze spatial differences between stations. Statistically significant increasing trends occurred in SC, TDS, Ca2+, Na+, Mg2+, K+, Cl?, and F?in the uppermost reaches, and significant decreasing trends of SC, TDS, Ca2+, Mg2+, K+, HCO3?, and SO42‐occurred at the lower stations around Albuquerque. Both fluoride concentrations and pH values increased at and below Albuquerque over the study period. Discharge data show an increasing trend across all stations. Spatially, data for dissolved substances show generally linear upstream to downstream increases in concentrations in the upper four stations, with several notable nonlinear increases at and below Albuquerque (SC, TDS, Na+, Cl?). Significant increases in pH appear at and below Albuquerque, relative to upstream stations, probably due to improved sewage treatment.  相似文献   

9.
ABSTRACT: Since the trend in infiltration modeling is currently toward process-based approaches such as the Green-Ampt equation, more emphasis is being placed on methods of determining appropriate parameters for this approach. The SCS curve number method is an accepted and commonly used empirical approach for estimating surface runoff, and is based on numerous data from a variety of sources. The time and expense of calibrating process-based infiltration parameters to measured data are often prohibitive. This study uses curve number predictions of runoff to develop equations to estimate the “baseline” hydraulic conductivities (Kb) for use in the Green-Ampt equation. Curve number predictions of runoff were made for 43 soils. Kb values in the Water Erosion Prediction Project (WEPP) model were then calibrated so that the annual runoff predicted by WEPP was equal to the curve number predictions. These calibrated values were used to derive an equation that estimated Kb based on the percent sand, percent clay, and cation exchange capacity of the soil. Estimated values of Kb from this equation compared favorably with measured values and values calibrated to measured natural runoff plot data. WEPP predictions of runoff using both optimized and estimated values of Kb were compared to curve number predictions of runoff and the measured values. The WEPP predictions using the optimized values of Kb were the best in terms of both average error and model efficiency. WEPP predictions using estimated values of Kb were shown to be superior to predictions obtained from the curve number method. The runoff predictions all tended to be biased high for small events and low for larger events when compared to the measured data. Confidence intervals for runoff predictions on both an annual and event basis were also developed for the WEPP model.  相似文献   

10.
Lin, Zhulu, 2011. Estimating Water Budgets and Vertical Leakages for Karst Lakes in North‐Central Florida (United States) Via Hydrological Modeling. Journal of the American Water Resources Association (JAWRA) 1‐16. DOI: 10.1111/j.1752‐1688.2010.00513.x Abstract: Newnans, Lochloosa, and Orange Lakes are closely hydrologically connected karst lakes located in north‐central Florida, United States. The complex karst hydrology in this region poses a great challenge to the hydrological modeling that is essential to the development of Total Maximum Daily Loads for these lakes. We used a Hydrological Simulation Program – Fortran model coupled with the parallel Parameter ESTimation model calibration and uncertainty analysis software to estimate effectively the hydrological interactions between the lakes and the underlying upper Floridan aquifer and the water budgets for these three lakes. The net results of the lake‐groundwater interactions in Newnans and Orange Lakes are that both lakes recharge the underlying upper Floridan aquifer, with the recharge rate of the latter one magnitude greater than that of the former. However, for Lochloosa Lake, the net lake‐groundwater interaction is that the lake gains water from groundwater in a significant amount, approximately 40% of its total terrestrial water input. The annual average vertical leakages estimated for Newnans, Lochloosa, and Orange Lakes are 6.0 × 106, ?8.9 × 106, and 44.4 × 106 m3, respectively. The average vertical hydraulic conductance (Kv/b) of the units between a lake bottom and the underlying upper Floridan aquifer in this region are also estimated to be from 1.26 × 10?4 to 1.01 × 10?3 day?1.  相似文献   

11.
ABSTRACT: In geohydrology, three-dimensional surfaces are typically represented as a series of contours. Water levels, saturated thickness, precipitation, and geological formation boundaries are a few examples of this practice. These surfaces start as point measurements that are then analyzed to interpolate between the known point measurements. This first step typically creates a raster or a set of grid points. In modeling, subsequent processing uses these to represent the shape of a surface. For display, they are usually converted to contour lines. Unfortunately, in many field applications, the (x, y) location on the earth's surface is much less confidently known than the data in the z dimension. To test the influence of (x, y) locational accuracy on z dimension point predictions and their resulting contours, a Monte Carlo study was performed on water level data from northwestern Kansas. Four levels of (x, y) uncertainty were tested ranging in accuracy from one arc degree-minute (± 2384 feet in the x dimension and ± 3036 feet in the y dimension) to Global Positioning Systems (GPS) accuracy (± 20 feet for relatively low cost systems). These span the range of common levels of locational uncertainty in data available to hydrologists in the United States. This work examines the influence that locational uncertainty can have on both point predictions and contour lines. Results indicate that overall mean error exhibits a small sensitivity to locational uncertainty. However, measures of spread and maximum errors in the z domain are greatly affected. In practical application, this implies that estimates over large regions should be asymptotically consistent. However, local errors in z can be quite large and increase with (x, y) uncertainty.  相似文献   

12.
Abstract: A nine‐layered confined‐unconfined flow and transport model is developed for the Alamitos saltwater intrusion barrier in Southern California. The conceptual model is based on the geological structure of the coastal aquifer system. The key parameters in the flow and transport models are calibrated using a two‐phase procedure which matches the types of data available for calibration. Because of the abundance of point measurements of hydraulic conductivity, the heterogeneous and random hydraulic conductivity field for each of the five aquifers is estimated by the geostatiscal method of natural‐neighbor‐kriging in Phase 1. In Phase 2, the longitudinal and transverse dispersivities in the transport model are estimated by a traditional inverse procedure that minimizes the least‐squares error for concentration (LSE‐CON). The minimum LSE‐CON is achieved near 15.2 and 1.52 m for the longitudinal and transverse dispersivities, respectively. Additional simulations with increasing transport parameter complexity did not yield significant improvements in LSE‐CON. Also, tracking least‐squares error for head while parametrically varying the transport parameters revealed there is a negligible interaction between predicted head and transport parameters.  相似文献   

13.
ABSTRACT: Nonpoint source ground water contamination by nitrate nitrogen (NO3-N) leached from agricultural lands can be substantial and increase health risks to humans and animals. Accurate and rapid methods are needed to identify and map localities that have a high potential for contamination of shallow aquifers with NO3-N leached from agriculture. Evaluation of Nitrate Leaching and Economic Analysis Package (NLEAP) indices and input variables across an irrigated agricultural area on an alluvial aquifer in Colorado indicated that all leaching indices tested were more strongly correlated with aquifer NO3-N concentration than with aquifer N mass. Of the indices and variables tested, the NO3-N Leached (NL) index was the NLEAP index most strongly associated with groundwater NO3-N concentration (r2 values from 0.37 to 0.39). NO3-N concentration of the leachate was less well correlated with ground water NO3-N concentration (r2 values from 0.21 to 0.22). Stepwise regression analysis indicated that, although inorganic and organic/inorganic fertilizer scenarios had similar r2 values, the Feedlot Indicator (proximity) variable was significant over and above the NO3-N Leached index for the inorganic scenario. The analysis also showed that combination of either Movement Risk Index (MIRI) or NO3-N concentration of the leachate with the NO3-N Leached index leads to an improved regression, which provides insight into area-wide associations between agricultural activities and ground water NO3-N concentration.  相似文献   

14.
The paper presents an approach for the interpretation of hydraulic tests of a CO2 storage reservoir. The sandstone reservoir is characterised by a fluviatile channel structure embedded in a low-permeability matrix. Pumping tests were carried out in three wells, with simultaneous pressure monitoring in each well.The hydraulic parameters (permeability and storativity) and the boundary configurations were calibrated using three different approaches: (i) parameter calibration and type curve interpretation for single-hole tests, (ii) calibration of the entire build-up phase for cross-hole tests, and (iii) calibration of the initial pressure response for cross-hole pumping tests. In addition, the arrival time of the pressure response was determined and provides additional information about the pathways of hydraulic connection.The measured pumping test permeabilities of the formation were much lower than those measured on the cores, which is very unusual. The pumping test permeabilities are mainly between 50 mD and 100 mD (millidarcy), while core samples show a mean aquifer permeability of 500–1100 mD. Based on this it was concluded that some kind of continuous low-permeability structure exists, which was supported by core material. Three possible aquifer configurations were considered. The first and second were derived from traditional pumping test analysis and were conceptualised using flow boundaries. Each of the analyses provides a different result. A method was developed in which these differences were resolved by interpreting the pressure response with respect to its spatial and temporal sensitivity. This solution lead to a third configuration which was mainly based on spatially-variable permeabilities. Taking into account the pumping test results, the geological background and the behaviour of injected CO2, we consider only the third configuration to be realistic. The results are in good agreement with modelled CO2 arrival times and pressure history.  相似文献   

15.
16.
ABSTRACT: Although evidence of modern recharge in the North African and Arabian sedimentary basin aquifers exists, it is difficult to determine the volume of recharge. Also, from the evidence of regional groundwater gradients, the flow within the aquifers seems to be appreciably greater than one would intuitively expect. A hypotehtical model embodying the characteristics of the aquifers has been used to investigate the likely significance of various possible flow mechanisms. It is shown that while dewatering in the unconfined area can possibly contribute to flows for a considerable period of time, the maintenance of water levels in the unconfined zone must be the result of modern recharge. It is also shown that recharge depths of less than 10 mm per annum are sufficient given suitable aquifer parameters. Results for various combinations of aquifer parameters and configurations are given, including layered aquifers and the effects of restricted oufflows. Comparisons are made using a “bench mark” example. The work indicates that there is little point in carrying out conventional hydrological balance studies in hyper-arid areas and that, instead, more emphasis should be placed upon good groundwater hydrographic data and modeling.  相似文献   

17.
Quality control is a crucial aspect of database management, particularly for physicochemical parameters that are widely used in modeling environmental fate processes. Complete rechecking of original studies to verify environmental fate parameters is time consuming and difficult. This paper evaluates an alternative, more efficient approach to identifying database errors. The approach focuses verification efforts on a targeted subset of entries by making use of the relationship between water solubility (S) and soil organic carbon partition coefficient (K oc ). Two regression equations, one selected from the literature and one calculated from entries in the database, were used to evaluate the reasonableness of (S, K oc ) pairs among control compared to the targeted outlier group from a total of 59 pesticides. Our hypothesis was that (S, K oc ) pairs that lay far from the regression line were more likely to be in error than those that fit the regression. Database values were checked against original studies. Identified errors in the database included coding mistakes, miscalculations, and incorrect chemical identification codes. The error rate in outlier (S, K oc ) pairs was about twice that of pairs that conformed to the regression equation; however, the error rate differential was probably not large enough to justify the use of this quality control method. Through our close scrutiny of database entries we were able to identify administrative practices that led to mistakes in the data base. Resolution of these problems will significantly decrease the number of future mistakes.  相似文献   

18.
Exergo-economic analysis of the pinch point temperature difference (PPTD) in both evaporator and condenser of sub-critical organic Rankine cycle system (ORCs) are performed based on the first and second laws of thermodynamics. Taking mixture R13I1/R601a as a working fluid and the annual total cost per net output power Z as exergo-economic performance evaluation criterion, the effects of PPTD in evaporator ΔTe, and the PPTD ratio of condenser to evaporator y, on the exergo-economic performance of ORCs are analyzed. Moreover, how some other parameters influence the optimal PPTD in evaporator ΔTe,opt and the optimal PPTD ratio of condenser to evaporator yopt are also discussed. It has been found that the exergo-economic performance of ORCs is remarkably influenced by ΔTe and y, and there exists ΔTe,opt and yopt. In addition, ΔTe,opt and yopt are affected by heat transfer coefficient ratio of condenser to evaporator ß, the temperature of working fluid at dew point in condenser T1a, and composition of R13I1/R601a: larger ß and T1a lead to lower ΔTe,opt and yopt; by contraries, larger mass fraction of R13I1 makes ΔTe,opt and yopt increase, and yopt increases linearly. The effects of the temperature of working fluid at bubble point in evaporator T3a, mass flow rate of exhaust flue gas mg, and inlet temperature of exhaust flue gas Tgi on ΔTe,opt and yopt are very slight. For comparison, three additional working fluids, namely R601a, R245fa, and 0.32R245fa/0.68R601a, are also taken into account.  相似文献   

19.
After the end of pumping the water level in the observation well starts to recover and the reduced drawdown during the recovery period is named as the residual drawdown. Traditional approaches in analyzing the data of residual drawdown for estimating the aquifer hydraulic parameters are mostly based on the application of superposition principle and Theis equation. In addition, the effect of wellbore storage is commonly ignored in the evaluation even if the test well has a finite diameter. In this article, we develop a mathematical model for describing the residual drawdown with considering the wellbore storage effect and the existing drawdown distribution produced by the pumping part of the test. The Laplace‐domain solution of the model is derived using the Laplace transform technique and the time‐domain result is inverted based on the Stehfest algorithm. This new solution shows that the residual drawdown associated with the boundary and initial conditions are related to the well drawdown and the aquifer drawdown, respectively. The well residual drawdown will be overestimated by the Theis residual drawdown solution in the early recovery part if neglecting the wellbore storage. On the other hand, the Theis residual drawdown solution can be used to approximate the present residual drawdown solution in the late recovery part of the test.  相似文献   

20.
ABSTRACT: A numerical method is presented for the analysis of a pumped well in a homogeneous aquifer with allowance made for the decrease in saturated depth, vertical components of flow, the possibility of regions of the aquifer changing between the confined and unconfined states and the effect of different outer boundaries. The method is based on a discrete space, backward difference time, approximation. A particular example considered in detail concerns heavy pumping from one of a regular array of wells in an unconfined aquifer until the drawdown in the well reaches a critical value. Non-dimensional curves are presented relating the time and volume dewatered to the quantity discharged from the well. A further example investigates the effect of an initial confining pressure on the aquifer behaviour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号