首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Ground water processes affecting seasonal variations of surface water nitrate concentrations were investigated in an incised first-order stream in an agricultural watershed with a riparian forest in the coastal plain of Maryland. Aquifer characteristics including sediment stratigraphy, geochemistry, and hydraulic properties were examined in combination with chemical and isotopic analyses of ground water, macropore discharge, and stream water. The ground water flow system exhibits vertical stratification of hydraulic properties and redox conditions, with sub-horizontal boundaries that extend beneath the field and adjacent riparian forest. Below the minimum water table position, ground water age gradients indicate low recharge rates (2-5 cm yr(-1)) and long residence times (years to decades), whereas the transient ground water wedge between the maximum and minimum water table positions has a relatively short residence time (months to years), partly because of an upward increase in hydraulic conductivity. Oxygen reduction and denitrification in recharging ground waters are coupled with pyrite oxidation near the minimum water table elevation in a mottled weathering zone in Tertiary marine glauconitic sediments. The incised stream had high nitrate concentrations during high flow conditions when much of the ground water was transmitted rapidly across the riparian zone in a shallow oxic aquifer wedge with abundant outflow macropores, and low nitrate concentrations during low flow conditions when the oxic wedge was smaller and stream discharge was dominated by upwelling from the deeper denitrified parts of the aquifer. Results from this and similar studies illustrate the importance of near-stream geomorphology and subsurface geology as controls of riparian zone function and delivery of nitrate to streams in agricultural watersheds.  相似文献   

2.
Subsurface tile‐drained agricultural fields are known to be important contributors to nitrate in surface water in the Midwest, but the effect of these fields on nitrate at the watershed scale is difficult to quantify. Data for 25 watersheds monitored by the Indiana Department of Environmental Management and located near a U.S. Geological Survey stream gage were used to investigate the relationship between flow‐weighted mean concentration (FWMC) of nitrate‐N and the subsurface tile‐drained area (DA) of the watershed. The tile DA was estimated from soil drainage class, land use, and slope. Nitrate loads from point sources were estimated based on reported flows of major permitted facilities with mean nitrate‐N concentrations from published sources. Linear regression models exhibited a statistically significant relationship between annual/monthly nonpoint source (NPS) nitrate‐N and DA percentage. The annual model explained 71% of the variation in FWMC of nitrate‐N. The annual and monthly models were tested in 10 additional watersheds, most with absolute errors within 1 mg/l in the predicted FWMC. These models can be used to estimate NPS nitrate for unmonitored watersheds in similar areas, especially for drained agricultural areas where model performance was strongest, and to predict the nitrate reduction when various tile drainage management techniques are employed.  相似文献   

3.
The ability of natural attenuation to mitigate agricultural nitrate contamination in recharging aquifers was investigated in four important agricultural settings in the United States. The study used laboratory analyses, field measurements, and flow and transport modeling for monitoring well transects (0.5 to 2.5 km in length) in the San Joaquin watershed, California, the Elkhorn watershed, Nebraska, the Yakima watershed, Washington, and the Chester watershed, Maryland. Ground water analyses included major ion chemistry, dissolved gases, nitrogen and oxygen stable isotopes, and estimates of recharge date. Sediment analyses included potential electron donors and stable nitrogen and carbon isotopes. Within each site and among aquifer-based medians, dissolved oxygen decreases with ground water age, and excess N(2) from denitrification increases with age. Stable isotopes and excess N(2) imply minimal denitrifying activity at the Maryland and Washington sites, partial denitrification at the California site, and total denitrification across portions of the Nebraska site. At all sites, recharging electron donor concentrations are not sufficient to account for the losses of dissolved oxygen and nitrate, implying that relict, solid phase electron donors drive redox reactions. Zero-order rates of denitrification range from 0 to 0.14 micromol N L(-1)d(-1), comparable to observations of other studies using the same methods. Many values reported in the literature are, however, orders of magnitude higher, which is attributed to a combination of method limitations and bias for selection of sites with rapid denitrification. In the shallow aquifers below these agricultural fields, denitrification is limited in extent and will require residence times of decades or longer to mitigate modern nitrate contamination.  相似文献   

4.
ABSTRACT: Simulated water quality resulting from three alternative future land‐use scenarios for two agricultural watersheds in central Iowa was compared to water quality under current and historic land use/land cover to explore both the potential water quality impact of perpetuating current trends and potential benefits of major changes in agricultural practices in the U.S. Corn Belt. The Soil Water Assessment Tool (SWAT) was applied to evaluate the effect of management practices on surface water discharge and annual loads of sediment and nitrate in these watersheds. The agricultural practices comprising Scenario 1, which assumes perpetuation of current trends (conversion to conservation tillage, increase in farm size and land in production, use of currently‐employed Best Management Practices (BMPs)) result in simulated increased export of nitrate and decreased export of sediment relative to the present. However, simulations indicate that the substantial changes in agricultural practices envisioned in Scenarios 2 and 3 (conversion to conservation tillage, strip intercropping, rotational grazing, conservation set‐asides and greatly extended use of best management practices (BMPs) such as riparian buffers, engineered wetlands, grassed waterways, filter strips and field borders) could potentially reduce current loadings of sediment by 37 to 67 percent and nutrients by 54 to 75 percent. Results from the study indicate that major improvements in water quality in these agricultural watersheds could be achieved if such environmentally‐targeted agricultural practices were employed. Traditional approaches to water quality improvement through application of traditional BMPs will result in little or no change in nutrient export and minor decreases in sediment export from Corn Belt watersheds.  相似文献   

5.
The ground water denitrification capacity of riparian zones in deep soils, where substantial ground water can flow through low-gradient stratified sediments, may affect watershed nitrogen export. We hypothesized that the vertical pattern of ground water denitrification in riparian hydric soils varies with geomorphic setting and follows expected subsurface carbon distribution (i.e., abrupt decline with depth in glacial outwash vs. negligible decline with depth in alluvium). We measured in situ ground water denitrification rates at three depths (65, 150, and 300 cm) within hydric soils at four riparian sites (two per setting) using a 15N-enriched nitrate "push-pull" method. No significant difference was found in the pattern and magnitude of denitrification when grouping sites by setting. At three sites there was no significant difference in denitrification among depths. Correlations of site characteristics with denitrification varied with depth. At 65 cm, ground water denitrification correlated with variables associated with the surface ecosystem (temperature, dissolved organic carbon). At deeper depths, rates were significantly higher closer to the stream where the subsoil often contains organically enriched deposits that indicate fluvial geomorphic processes. Mean rates ranged from 30 to 120 microg N kg(-1) d(-1) within 10 m versus <1 to 40 microg N kg(-1) d(-1) at >30 m from the stream. High denitrification rates observed in hydric soils, down to 3 m within 10 m of the stream in both alluvial and glacial outwash settings, argue for the importance of both settings in evaluating the significance of riparian wetlands in catchment-scale N dynamics.  相似文献   

6.
Rapid increases in the swine (Sus scrofa domestica) population in the 1990s and associated potential for nitrate N pollution of surface waters led the state of North Carolina to adopt stringent waste management regulations in 1993. Our objectives were to characterize (i) nitrate N movement from waste application fields (WAFs) in shallow ground water, and (ii) soil, hydrologic, and biological factors influencing the amount of nitrate N in the adjacent stream. A ground water monitoring study was conducted for 36 mo on a swine farm managed under new regulations. Water table contours and lack of vertical gradients indicated horizontal flow over most of the site. Nitrate N concentrations in water from shallow wells in WAFs averaged 30 +/- 19 mg L(-1) and delta15N ratios for nitrate N were between +20 and +25 per mil. Nitrate N concentration decreased from field-edge to streamside wells by 22 to 99%. Measurement of delta18O and delta15N enrichment of nitrate in ground water throughout the WAF-riparian system indicated that denitrification has not caused significant 15N enrichment of nitrate. Over a 24-mo period, delta15N ratios for nitrate N in the stream approached delta15N ratios for nitrate N in ground water beneath WAFs indicating delivery of some waste-derived nitrate N to the stream in shallow ground water. Nitrate N concentrations in the stream were relatively low, averaging 1 mg L(-1). Dilution of high nitrate N water in shallow horizontal flow paths with low nitrate N water from deeper horizontal flow paths at or near the stream, some denitrification as ground water discharges through the stream bottom, and some denitrification in riparian zone contributed to this low nitrate N concentration.  相似文献   

7.
Sediment and nutrient concentrations in surface water in agricultural regions are strongly influenced by agricultural activities. In the Corn Belt, recent changes in farm management practices are likely to affect water quality, yet there are few data on these linkages at the landscape scale. We report on trends in concentrations of N as ammonium (NH(4)) and nitrate (NO(3)), soluble reactive phosphorus (SRP), and suspended sediment (SS) in three Corn Belt streams with drainage areas of 12 to 129 km(2) for 1994 through 2006. During this period, there has been an increase in conservation tillage, a decline in fertilizer use, and consolidation of animal feeding operations in our study watersheds and throughout the Corn Belt. We use an autoregressive moving average model to include the effects of discharge and season on concentrations, LOWESS plots, and analyses of changes in the relation between discharge and concentration. We found significant declines in mean monthly concentrations of NH(4) at all three streams over the 13-yr period, declines in SRP and SS in two of the three streams, and a decline in NO(3) in one stream. When trend coefficients are converted to percent per year and weighted by drainage, area changes in concentration are -8.5% for NH(4), -5.9% for SRP, -6.8% for SS, and -0.8% for NO(3). Trends in total N and P are strongly tied to trends in NO(3), SRP, and SS and indicate that total P is declining, whereas total N is not.  相似文献   

8.
Agriculture is a major nonpoint source of phosphorus (P) in the Midwest, but how surface runoff and tile drainage interact to affect temporal concentrations and fluxes of both dissolved and particulate P remains unclear. Our objective was to determine the dominant form of P in streams (dissolved or particulate) and identify the mode of transport of this P from fields to streams in tile-drained agricultural watersheds. We measured dissolved reactive P (DRP) and total P (TP) concentrations and loads in stream and tile water in the upper reaches of three watersheds in east-central Illinois (Embarras River, Lake Fork of the Kaskaskia River, and Big Ditch of the Sangamon River). For all 16 water year by watershed combinations examined, annual flow-weighted mean TP concentrations were >0.1 mg L(-1), and seven water year by watershed combinations exceeded 0.2 mg L(-1). Concentrations of DRP and particulate P (PP) increased with stream discharge; however, particulate P was the dominant form during overland runoff events, which greatly affected annual TP loads. Concentrations of DRP and PP in tiles increased with discharge, indicating tiles were a source of P to streams. Across watersheds, the greatest DRP concentrations (as high as 1.25 mg L(-1)) were associated with a precipitation event that followed widespread application of P fertilizer on frozen soils. Although eliminating this practice would reduce the potential for overland runoff of P, soil erosion and tile drainage would continue to be important transport pathways of P to streams in east-central Illinois.  相似文献   

9.
Maximum rates of nitrate removal in a denitrification wall   总被引:3,自引:0,他引:3  
Denitrification walls are constructed by mixing a carbon source such as sawdust into soils through which ground water passes. These systems can reduce nitrate inputs to receiving waters by enhancing denitrification. Maximum rates of nitrate removal by denitrification need to be determined for design purposes. To determine maximum rates of nitrate removal we added excess nitrate (50 mg N L(-1)) to a trench up-gradient of a denitrification wall during a 9-d trial. Bromide (100 g L(-1)) was also added as a conservative tracer. Movement of nitrate and bromide was measured from shallow wells and soil samples were removed for measurements of denitrification, carbon availability, nitrate, and other microbial parameters. Rates of nitrate removal, determined from the ratio of NO3-N to Br and ground water flow, averaged 1.4 g N m(-3) of wall d(-1) and were markedly greater than denitrification rates determined using the acetylene block technique (average: 0.11 g N m(-3) of wall d(-1)). These nitrate removal rates were generally lower than reported in other denitrification walls. Denitrification rates increased when nitrate was added to the laboratory incubations, indicating that despite large nitrate inputs in the field, denitrification remained limited by nitrate. This limitation was partially attributed to nitrate predominantly moving through zones of greater hydraulic conductivity or in the mobile fraction of the ground water and slow diffusion to the immobile fraction where denitrifiers were active.  相似文献   

10.
Watson, Tara K., Dorothy Q. Kellogg, Kelly Addy, Arthur J. Gold, Mark H. Stolt, Sean W. Donohue, and Peter M. Groffman, 2010. Groundwater Denitrification Capacity of Riparian Zones in Suburban and Agricultural Watersheds. Journal of the American Water Resources Association (JAWRA) 46(2):237-245. DOI: 10.1111/j.1752-1688.2010.00418.x Abstract: We evaluated the relationship of dominant watershed land use to the structure and nitrogen (N) sink function of riparian zones. We focused on groundwater denitrification capacity, water table dynamics, and the presence and pattern of organically enriched deposits. We used the push-pull method (measurement of 15N-enriched denitrification gases derived from an introduced groundwater plume of 15N-enriched nitrate) to evaluate groundwater denitrification capacity on nine forested wetland riparian sites developed in alluvial or outwash parent materials in southern New England. Three replicate sites were located in each of the three watershed types, those with substantial (1) irrigated agriculture, (2) suburban development, and (3) forest. Soil morphology and water table dynamics were assessed at each site. We found significantly lower mean annual water tables at sites within watersheds with substantial irrigated agriculture or suburban development than forested watersheds. Water table dynamics were more variable at sites within suburban watersheds, especially during the summer. Groundwater denitrification capacity was significantly greater at sites within forested watersheds than in watersheds with substantial irrigated agriculture. Because of the high degree of variability observed in riparian sites within suburban watersheds, groundwater denitrification capacity was not significantly different from either forested or agricultural watersheds. The highly variable patterns of organically enriched deposits and water tables at sites within suburban watersheds suggests that depositional events are irregular, limiting the predictability of groundwater N dynamics in these riparian zones. The variability of riparian N removal in watersheds with extensive suburbia or irrigated agriculture argues for N management strategies emphasizing effective N source controls in these settings.  相似文献   

11.
Abstract: In this study, a set of nitrogen reduction strategies were modeled to evaluate the feasibility of improving water quality to meet total maximum daily loads (TMDLs) in two agricultural watersheds. For this purpose, a spatial‐process model was calibrated and used to predict monthly nitrate losses (1994‐96) from Sand and Bevens Creek watersheds located in south‐central Minnesota. Statistical comparison of predicted and observed flow and nitrate losses gave r2 coefficients of 0.75 and 0.70 for Sand Creek watershed and 0.72 and 0.67 for Bevens Creek watershed, respectively. Modeled alternative agricultural management scenarios included: six different N application rates over three application timings and three different percentages of crop land with subsurface drainage. Predicted annual nitrate losses were then compared with nitrate TMDLs assuming a 30% reduction in observed nitrate losses is required. Reductions of about 33 (8.6 to 5.8 kg/ha) and 35% (23 to 15 kg/ha) in existing annual nitrate losses are possible for Sand and Bevens Creek watersheds, respectively, by switching the timing of fertilizer application from fall to spring. Trends towards increases in tile‐drained crop land imply that attaining nitrate TMDLs in future may require other alternative management practices in addition to fertilizer management such as partial conversion of crop land to pasture.  相似文献   

12.
Best management practices (BMPs) are widely promoted in agricultural watersheds as a means of improving water quality and ameliorating altered hydrology. We used a paired watershed approach to evaluate whether focused outreach could increase BMP implementation rates and whether BMPs could induce watershed-scale (4000 ha) changes in nutrients, suspended sediment concentrations, or hydrology in an agricultural watershed in central Illinois. Land use was >90% row crop agriculture with extensive subsurface tile drainage. Outreach successfully increased BMP implementation rates for grassed waterways, stream buffers, and strip-tillage within the treatment watershed, which are designed to reduce surface runoff and soil erosion. No significant changes in nitrate-nitrogen (NO-N), total phosphorus (TP), dissolved reactive phosphorus, total suspended sediment (TSS), or hydrology were observed after implementation of these BMPs over 7 yr of monitoring. Annual NO-N export (39-299 Mg) in the two watersheds was equally exported during baseflow and stormflow. Mean annual TP export was similar between the watersheds (3.8 Mg) and was greater for TSS in the treatment (1626 ± 497 Mg) than in the reference (940 ± 327 Mg) watershed. Export of TP and TSS was primarily due to stormflow (>85%). Results suggest that the BMPs established during this study were not adequate to override nutrient export from subsurface drainage tiles. Conservation planning in tile-drained agricultural watersheds will require a combination of surface-water BMPs and conservation practices that intercept and retain subsurface agricultural runoff. Our study emphasizes the need to measure conservation outcomes and not just implementation rates of conservation practices.  相似文献   

13.
Transport and fate of nitrate in headwater agricultural streams in Illinois   总被引:2,自引:0,他引:2  
Nitrogen inputs to the Gulf of Mexico have increased during recent decades and agricultural regions in the upper Midwest, such as those in Illinois, are a major source of N to the Mississippi River. How strongly denitrification affects the transport of nitrate (NO(3)-N) in Illinois streams has not been directly assessed. We used the nutrient spiraling model to assess the role of in-stream denitrification in affecting the concentration and downstream transport of NO(3)-N in five headwater streams in agricultural areas of east-central Illinois. Denitrification in stream sediments was measured approximately monthly from April 2001 through January 2002. Denitrification rates tended to be high (up to 15 mg N m(-2) h(-1)), but the concentration of NO(3)-N in the streams was also high (>7 mg N L(-1)). Uptake velocities for NO(3)-N (uptake rate/concentration) were lower than reported for undisturbed streams, indicating that denitrification was not an efficient N sink relative to the concentration of NO(3)-N in the water column. Denitrification uptake lengths (the average distance NO(3)-N travels before being denitrified) were long and indicated that denitrification in the streambed did not affect the transport of NO(3)-N. Loss rates for NO(3)-N in the streams were <5% d(-1) except during periods of low discharge and low NO(3)-N concentration, which occurred only in late summer and early autumn. Annually, most NO(3)-N in these headwater sites appeared to be exported to downstream water bodies rather than denitrified, suggesting previous estimates of N losses through in-stream denitrification may have been overestimated.  相似文献   

14.
Topographically heterogeneous agricultural landscapes can complicate and accelerate agrochemical contamination of streams due to rapid transport of water and chemicals to poorly drained lower-landscape positions and shallow ground water. In the semiarid Palouse region, large parts of these landscapes have been tile drained to enhance crop yield. From 2000-2004 we monitored the discharge of a tile drain (TD) and a nearby profile of soil water for nitrate concentration ([NO(3)]), electrical conductivity level (EC), and water content to develop a conceptual framework describing soil nitrate occurrence and loss via subsurface pathways. Tile-drain baseflow [NO(3)] was consistently 4 mg N L(-1) and baseflow EC was 200 to 300 microS cm(-1). Each year sudden synoptic increases in TD discharge and [NO(3)] occurred in early winter following approximately 150 mm of fall precipitation, which saturated the soil and mobilized high-[NO(3)] soil water throughout the profile. The greatest TD [NO(3)] (20-30 mg N L(-1)) occurred approximately contemporaneous with greatest TD discharges. The EC decrease each year (to approximately 100 microS cm(-1)) during high discharge, a dilution effect, lagged approximately 1 mo behind the first appearance of high [NO(3)] and was consistent with advective transport of low-EC water from the shallow profile under saturated conditions. Water-budget considerations and temporal [NO(3)] patterns suggest that these processes deliver water to the TD from both lower- and upper-slope positions, the latter via lateral flow during the high-flow season. Management practices that reduce the fall reservoir of soil nitrate might be effective in reducing N loading to streams and shallow ground water in this region.  相似文献   

15.
ABSTRACT: Dissolved gas analysis permits direct detection of ground water denitrification, a technique we used in this study to assess the fate of nitrate in a riparian wetland. Dissolved argon (Ar) and dinitrogen (N2) were measured in transects of nested piezometers installed at different depths within upwelling regions of a riparian wetland. The method uses the Ar content in the water as a natural inert tracer for assessing background content of N2 from the previous air/water equilibrium. Within the wetland under study, anoxic to suboxic ground water became more oxic in piezometers close to the aquifer layer, indicating upwelling of oxic ground water. Assessment of loss of nitrate and Ar in ground water within an upwelling zone indicated that shallow piezometers had significant N2 loss through degassing. Most of the measured nitrate‐nitrogen (NO3?‐N) loss of 205 μM in a piezometer nest could be accounted for by total N2‐N produced (169 μM N), calculated from changes in dissolved N2 and estimated N2 degassed. Degassing due to methane (CH4) production was also detected in some shallow piezometers within nests. This technique for analysis of dissolved gases in ground water can be applied to detect small changes in N gas concentration and aids in assessing the fate of nitrate along a ground water flow path.  相似文献   

16.
Physical, chemical, hydrologic, and biologic factors affecting nitrate (NO3(-)) removal were evaluated in three agricultural streams draining orchard/dairy and row crop settings. Using 3-d "snapshots" during biotically active periods, we estimated reach-level NO3(-) sources, NO3(-) mass balance, in-stream processing (nitrification, denitrification, and NO3(-) uptake), and NO3(-) retention potential associated with surface water transport and ground water discharge. Ground water contributed 5 to 11% to stream discharge along the study reaches and 8 to 42% of gross NO3(-) input. Streambed processes potentially reduced 45 to 75% of ground water NO3(-) before discharge to surface water. In all streams, transient storage was of little importance for surface water NO3(-) retention. Estimated nitrification (1.6-4.4 mg N m(-2) h(-1)) and unamended denitrification rates (2.0-16.3 mg N m(-2) h(-1)) in sediment slurries were high relative to pristine streams. Denitrification of NO3(-) was largely independent of nitrification because both stream and ground water were sources of NO3(-). Unamended denitrification rates extrapolated to the reach-scale accounted for <5% of NO3(-) exported from the reaches minimally reducing downstream loads. Nitrate retention as a percentage of gross NO3(-) inputs was >30% in an organic-poor, autotrophic stream with the lowest denitrification potentials and highest benthic chlorophyll a, photosynthesis/respiration ratio, pH, dissolved oxygen, and diurnal NO3(-) variation. Biotic processing potentially removed 75% of ground water NO3(-) at this site, suggesting an important role for photosynthetic assimilation of ground water NO3(-) relative to subsurface denitrification as water passed directly through benthic diatom beds.  相似文献   

17.
Changes in agricultural management can minimize NO3-N leaching, but then the time needed to improve ground water quality is uncertain. A study was conducted in two first-order watersheds (30 and 34 ha) in Iowa's Loess Hills. Both were managed in continuous corn (Zea mays L.) from 1964 through 1995 with similar N fertilizer applications (average 178 kg ha(-1) yr(-1)), except one received applications averaging 446 kg N ha(-1) yr(-1) between 1969 and 1974. This study determined if NO3-N from these large applications could persist in ground water and baseflow, and affect comparison between new crop rotations implemented in 1996. Piezometer nests were installed and deep cores collected in 1996, then ground water levels and NO3-N concentrations were monitored. Tritium and stable isotopes (2H, 18O) were determined on 33 water samples in 2001. Baseflow from the heavily N-fertilized watershed had larger average NO3-N concentrations, by 8 mg L(-1). Time-of-travel calculations and tritium data showed ground water resides in these watersheds for decades. "Bomb-peak" precipitation (1963-1980) most influenced tritium concentrations near lower slope positions, while deep ground water was dominantly pre-1953 precipitation. Near the stream, greater recharge and mixed-age ground water was suggested by stable isotope and tritium data, respectively. Using sediment-core data collected from the deep unsaturated zone between 1972 and 1996, the increasing depth of a NO3-N pulse was related to cumulative baseflow (r2 = 0.98), suggesting slow downward movement of NO3-N since the first experiment. Management changes implemented in 1996 will take years to fully influence ground water NO3-N. Determining ground water quality responses to new agricultural practices may take decades in some watersheds.  相似文献   

18.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

19.
Natural-abundance delta15N showed that nitrate generated from commercial land application of swine (Sus scrofa domesticus) waste within a North Carolina Coastal Plain catchment was being discharged to surface waters by ground water passing beneath the sprayfields and adjacent riparian buffers. This was significant because intensive swine farms in North Carolina are considered non-discharge operations, and riparian buffers with minimum widths of 7.6 m (25 ft) are the primary regulatory control on ground water export of nitrate from these operations. This study shows that such buffers are not always adequate to prevent discharge of concentrated nitrate in ground water from commercial swine farms in the Mid-Atlantic Coastal Plain, and that additional measures are required to ensure non-discharge conditions. The median delta15N-total N of liquids in site swine waste lagoons was +15.4 +/- 0.2% vs. atmospheric nitrogen. The median delta15N-NO3 values of shallow ground water beneath and adjacent to site sprayfields, a stream draining sprayfields, and waters up to 1.5 km downstream were + 15.3 +/- 0.2 to + 15.4 +/- 0.2%. Seasonal and spatial isotopic variations in lagoons and well waters were greatly homogenized during ground water transport and discharge to streams. Neither denitrification nor losses of ammonia during spraying significantly altered the bulk ground water delta15N signal being delivered to streams. The lagoons were sources of chloride and potassium enrichment, and shallow ground water showed strong correlation between nitrate N, potassium, and chloride. The 15N-enriched nitrate in ground water beneath swine waste sprayfields can thus be successfully traced during transport and discharge into nearby surface waters.  相似文献   

20.
Nitrate N fluxes from tile-drained watersheds have been implicated in water quality studies of the Mississippi River basin, but actual NO3-N loads from small watersheds during long periods are poorly documented. We evaluated discharge and NO3-N fluxes passing the outlet of an Iowa watershed (5134 ha) and two of its tile-drained subbasins (493 and 863 ha) from mid-1992 through 2000. The cumulative NO3-N load from the catchment was 168 kg ha(-1), and 176 and 229 kg ha(-1) from the subbasins. The outlet had greater total discharge (1831 mm) and smaller flow-weighted mean NO3-N concentration (9.2 mg L(-1)) than the subbasins, while the larger subbasin had greater discharge (1712 vs. 1559 mm) and mean NO3-N concentration (13.4 vs. 11.3 mg L(-1)) than the smaller subbasin. Concentrations exceeding 10 mg L(-1) were common, but least frequent at the outlet. Nitrate N was generally not diluted by large flows, except during 1993 flooding. The outlet showed smaller NO3-N concentrations at low flows. Relationships between discharge and NO3-N flux showed log-log slopes near 1.0 for the subbasins, and 1.2 for the outlet, considering autocorrelation and measurement-error effects. We estimated denitrification of subbasin NO3-N fluxes in a hypothetical wetland using published data. Assuming that temperature and NO3-N supply could limit denitrification, then about 20% of the NO3-N would have been denitrified by a wetland constructed to meet USDA-approved criteria. The low efficiency results from the seasonal timing and NO3-N content of large flows. Therefore, agricultural and wetland best management practices (BMPs) are needed to achieve water quality goals in tile-drained watersheds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号