首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The specimens of Patella intermedia, Patella rustica, Patella ulyssiponensis and Patella vulgata were analysed for morphological and morphometric characters, and for the resistance to compression and crushing to a force applied at the apex. Shell shape in these species ranged from the high symmetrical cone, with a rounded base of P. rustica, to the flat, asymmetrical, narrow-pear-shaped base of P. ulyssiponensis. P. intermedia and P. vulgata showed intermediate morphologies. Shell thickness increased linearly with age, but differed in the four limpets. P. rustica had the thickest shells, and P. ulyssiponensis and P. vulgata had the thinnest shells. P. intermedia displayed intermediate shell thickness. Considering deformability and toughness, P. intermedia shells usually needed the highest force to compress in height, the highest pressure to collapse, and were appreciably deformed at collapse. On the opposite side, P. ulyssiponensis shells usually needed the lowest force to compress in height, the lowest pressure to collapse, and were much less deformed at collapse. P. intermedia shells were therefore the most deformable and tough, and P. ulyssiponensis, the most stiff and fragile. P. rustica and P. vulgata shells displayed intermediate behaviour. However, numerical simulations based on the finite element method using the experimentally determined shells’ geometry and thickness, but considering similar shells’ material and structure in the four species, predicted that shell toughness should be decreased in the order P. rustica >> P. intermedia > P. vulgata >> P. ulyssiponensis. P. rustica shells’ geometry (a high and centred cone) and thickness (very thick) were therefore, theoretically, the most fitted for shells to resist crushing by compression. Yet, in the experimental tests, they were not the most resistant shells. It was concluded that resistance to crushing was not a direct function of shell morphology and morphometry, but appeared to be mainly determined by shell deformability. This is most probably related to differences in the internal composition and architecture of the shell in the four species. By comparison with data reported in the literature on the pressures normally exerted by ocean waves, it was concluded that these limpets have resistances to crushing in far excess to pressures normally endured in nature, being therefore unlikely that these species are crushed by the action of even very strong waves on shores. Hard objects, like logs and boulders, can be hurled onto the shore by waves, and constitute a much greater threat to limpets than the waves themselves. The high toughness of the limpet shell can be related to resistance to the impact of incidental hard objects. There was no direct relationship between the habit preferences of these limpets and the resistance to crushing. Other factors are involved in the distribution of these species in the shores.  相似文献   

2.
Skeletochronological analysis of Kemp’s ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtle humeri and scleral ossicles was conducted to (1) describe the characteristics of scleral ossicles in these species, (2) determine whether the scleral ossicles contain annually deposited skeletal growth marks and (3) evaluate the potential for skeletochronological analysis of ossicles to obtain age data for size classes and species of sea turtles whose humeri exhibit prohibitive amounts of growth mark resorption. Humeri, entire eyes, and/or individual scleral ossicles were collected from stranded, dead sea turtles that were found along the coasts of Florida, North Carolina, Virginia, and Texas, USA. Samples were taken from a total of 77 neritic, juvenile Kemp’s ridleys ranging from 21.1 to 56.8 cm straightline carapace length (SCL), as well as two Kemp’s ridley hatchlings. For loggerheads, samples were obtained from 65 neritic juvenile and adult turtles ranging from 44.7 to 103.6 cm SCL and ten hatchlings. Examination of the ossicles revealed the presence of marks similar in appearance to those found in humeri. The number of marks in the ossicles and humeri of individual juvenile Kemp’s ridleys for which both structures were collected (n = 55) was equivalent, strongly indicating that the marks are annual. However, in large juvenile and adult loggerhead turtles (n = 65), some significant resorption of early growth marks was observed, suggesting that although ossicles might be useful for skeletochronological analysis of small juveniles, they may not provide a reasonable alternative to humeri for obtaining age estimates for older loggerhead sea turtles.  相似文献   

3.
Migrating feeding aggregations (or fronts) of sea urchins can dramatically alter subtidal seascapes by destructively grazing macrophytes. While direct effects of urchin fronts on macrophytes (particularly kelps) are well documented, indirect effects on associated fauna are largely unknown. Secondary aggregations of predators and scavengers form around fronts of Strongylocentrotus droebachiensis in Nova Scotia. We recorded mean densities of the sea stars Asterias spp. (mainly A. rubens) and Henricia sanguinolenta of up to 11.6 and 1.7 individuals 0.25 m−2 along an urchin front over 1 year. For Asterias, mean density at the front was 7 and 15 times greater than in the kelp bed and adjacent barrens, respectively. There was strong concordance between locations of peak density of urchins and sea stars (Asterias r = 0.98; H. sanguinolenta r = 0.97) along transects across the kelp–barrens interface, indicating that sea star aggregations migrated along with the urchin front at rates of up to 2.5 m per month. Size–frequency distributions suggest that Asterias at the front were drawn from both the barrens (smaller individuals) and the kelp bed (larger individuals). These sea stars fed intensively on mussels on kelp holdfasts and in adjacent patches. Urchin grazing may precipitate aggregations of sea stars and other predators or scavengers by incidentally consuming or damaging mussels and other small invertebrates, and thereby releasing a strong odor cue. Consumption of protective holdfasts and turf algae by urchins could facilitate feeding by these consumers, which may obtain a substantial energy subsidy during destructive grazing events.  相似文献   

4.
Masato Owada 《Marine Biology》2007,150(5):853-860
The functional morphology of the shell of rock-boring mytilids (especially Leiosolenus and Lithophaga) is analyzed and compared with that of several epifaunal and semi-infaunal mytilids. Semi-infaunal species are generally intermediate between epifaunal and rock-boring ones both in terms of shell form and the magnitude of forces pulling the shells against the substratum. A molecular phylogenetic analyses using 18s rDNA sequence data strongly suggests that Leiosolenus and Lithophaga are monophyletic genera but that the so-called Lithophaginae (or Leiosolenus plus Lithophaga) is a paraphyletic group. The common cylindrical shell form of rock-boring species, which is here called “lithophagiform” as a third functional mytilid clade, may be due to convergence, as is the case with ‘mytiliform’ and ‘modioliform’.  相似文献   

5.
Echinoderms are major predators of anemones in temperate ecosystems. The fate of two algae, zooxanthellae and zoochlorellae, after their host anemone (Anthopleura elegantissima Brandt) was consumed by the leather star Dermasterias imbricata Grube was determined in experiments conducted in July and August 2004. Productivity, photosynthetic pigments, and mitotic index (percent of cells dividing) were used as indicators of algal health; algae released after leather stars consumed their host were compared with algae freshly isolated from anemones. Two types of waste products contained algae: pellets resulting from extraoral digestion, and feces. Zooxanthellae and zoochlorellae isolated from these waste products were photosynthetic, although to different extents. For algae from feces and pellets, light-saturated photosynthetic rates (P max) were 85 and 13%, respectively, of P max of freshly isolated zooxanthellae; and were 20 and 46%, respectively, for zoochlorellae. The photosynthetic pigments and mitotic index (percent of dividing cells) were not altered by the feeding activities of the leather star. These results show that algae released by seastar predation on their hosts remain viable, and are hence available for establishing symbioses in A. elegantissima and other potential hosts.  相似文献   

6.
Delimiting communities in marine habitats is difficult because co-occurring species often have different life histories and the life stages experience the environment at different spatial scales. The habitat of a particular community is embedded within a larger habitat or ecosystem with many species shared between the focal community and the larger system. Pen shells (Atrina rigida) are large bivalves that, once the mollusk dies, provide shelter for motile species and hard substrate for settling larval invertebrates and egg-laying fishes. In St. Joseph’s Bay, Florida (29°45′N, 85°15′W), pen shells are the most abundant source of hard substrate, especially inside sea grass (Thalassia testudinum) beds, where they reach densities of 0.1–4.0 m−2. This study, which was conducted from May to August 2005, measured the overlap in species densities between dead pen shells and the surrounding sea grass communities at eight sites to determine the discreteness of the pen shell communities. Of the 70-epibenthic taxa recorded, 66% were found on the pen shells but not in the surrounding sea grass habitat. Community structure, which varied among shells within sites and among the eight sites, could be related to sea grass characteristics such as blade density and length either directly (e.g., inhabitants of pen shells directly benefit from the surrounding sea grass) or indirectly (e.g., pen shells and sea grass both benefit from similar factors such as current and nutrients). Pen shells were randomly distributed at several spatial scales within the 15 × 15 m sites as were many motile species. Two exceptions were the shrimp, Palaemon floridanus and the amphipod, Dulichella appendiculata, whose distributions were clumped. Most of the sessile species had clumped distributions, tending to be very abundant when they were present. These pen shell communities provide an opportunity for experimental studies of factors affecting species diversity on small, discrete, naturally occurring habitats. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

7.
While qualitative observations of jellyfish intraguild predation abound in the literature, there are only few rate measurements of these interactions. We quantified predation rates among two common jellyfish in northern boreal waters, Cyanea capillata and its prey Aurelia aurita, both of which also feed on crustacean zooplankton and fish larvae. A series of incubation experiments using a wide range of prey concentrations (0.38–3.8 m−3) in large containers (2.6 m3) was carried out. By replenishing the prey continuously as they were captured we maintained a nearly constant prey concentrations. Ingestion rates increased linearly up to prey concentrations of 1.92 m−3, yielding maximum clearance rates of ∼2.37 ± 0.39 m3 predator−1 h−1 for C. capillata predators 16 ± 2.3 cm in diameter. Mean ingestion rate at saturated prey concentrations (1.92–3.85 m−3) was 4.01 ± 0.78 prey predator−1 h−1. Behavioral observations suggested that predators did not alter their swimming behavior during meals, and thus that feeding rates were generally handling limited rather than encounter limited. Predators captured more prey than needed, and semi-digested prey was often discarded when fresh prey was encountered.  相似文献   

8.
Grapsoid crabs of the genera Planes and Plagusia are commonly referred to as “rafting crabs” due to their propensity to live on flotsam and pelagic marine animals. Planes minutus and Planes major (=Planes cyaneus) are epibionts of sea turtles. Occurrences of grapsoid crabs in the genera Planes and Plagusia were evaluated on a total of 27 olive ridley sea turtles, Lepidochelys olivacea, from the eastern tropic Pacific (1998–2001) and the Hawaiian Islands (2002) captured in July–December each year. This is the first report of Planes marinus and Plagusia squamosa on sea turtles, and of P. major, P. marinus, and P. squamosa in sympatry on a confined substrate. Stomach content analyses showed P. major and P. marinus consumed a variety of neuston and marine vegetation, with the former consuming considerably more animal material. Epibiotic P. squamosa consumed mostly plant material. The three Planes species had distinctive differences in gastric mill tooth morphology. The versatile mouthparts of P. marinus are described and resemble those of their congeners. Most female P. major and P. marinus collected were ovigerous and present in all survey months.  相似文献   

9.
In spite of historical and current interest in Ciona intestinalis and its congeners, little is known about evolutionary relationships among the members of the genus Ciona. Here 744-bp sequences of the mitochondrial cytochrome c oxidase subunit I (COI) gene are used to examine phylogenetic relationships among three described species (C. intestinalis, C. roulei, C. savignyi) sampled from multiple coastal sites in the Northeast Pacific (CA, USA), Northwest Atlantic (from New Hampshire to Connecticut, USA), Northeast Atlantic (Sweden and The Netherlands), and Mediterranean (Banyuls-sur-Mer, France). The samples were collected in June–October 2005. The COI sequences of Northeast Pacific/Mediterranean (Type A) and Northwest Atlantic (Type B) C. intestinalis differ by ∼12% and C. roulei is nested within Type B C. intestinalis. Ciona savignyi differs from all other haplotypes by 13–16%. A previously undescribed but morphologically distinct Ciona sp. found at the Banyuls-sur-Mer site was >10% divergent from all other haplotypes. Although these data arise from a single gene study, they indicate that further elucidation of species relationships within the genus and of the species’ distributions will be needed if continuing invasions and potential reproductive isolation are to be investigated.  相似文献   

10.
Previous studies have shown that loggerhead sea turtles (Caretta caretta), monitored by satellite telemetry, complete long-distance migration between the western and eastern Mediterranean basins following a seasonal pattern. This study investigated if these migration routes may be influenced by surface currents by superimposing the tracks of three loggerhead turtles (curved carapace length >55 cm), migrating from the western to the eastern Mediterranean basin, on Lagrangian data of current developed into pseudo-eulerian speed fields. The average travel speed of the turtles was 1.6 km h−1 and did not depend on the current speed or direction. We observed a connection between surface currents and the turtles’ migration routes, although not a conclusive one. These observations show that neritic stage loggerhead turtles conduct migration in two distinct alternate phases: the first characterized by high and constant speed of travel both when swimming with or against currents and the second typified by low travel speeds and a good concurrence between the trailed routes and the course of the currents. These two phases corresponded to two types of movements, one where the turtle migrates actively to reach a specific destination (either neritic foraging, wintering or nesting ground) and the other, where the turtle drifts with the mesoscale current and forages pelagically. It seemed thus, that the influence of currents on a turtle’s movements depends on the turtle’s momentary behaviour and location of residence.  相似文献   

11.
Corals harbouring genetically mixed communities of endosymbiotic algae (Symbiodinium) often show distribution patterns in accordance with differences in light climate across an individual colony. However, the physiology of these genetically characterised communities is not well understood. Single stranded conformation polymorphism (SSCP) and real time quantitative polymerase chain reaction (qPCR) analyses were used to examine the genetic diversity of the Symbiodinium community in hospite across an individual colony of Acropora valida at the spatial scale of single polyps. The physiological characteristics of the polyps were examined prior to sampling with a combined O2 microelectrode with a fibre-optic microprobe (combined sensor diameter 50–100 μm) enabling simultaneous measurements of O2 concentration, gross photosynthesis rate and photosystem II (PSII) quantum yield at the coral surface as a function of increasing irradiances. Both sun- and shade-adapted polyps were found to harbour either Symbiodinium clade C types alone or clades A and C simultaneously. Polyps were grouped in two categories according to (1) their orientation towardps light, or (2) their symbiont community composition. Physiological differences were not detected between sun- and shade-adapted polyps, but O2 concentration at 1,100 μmol photons m−2 s−1 was higher in polyps that harboured both clades A and C symbionts than in polyps that harboured clade C only. These results suggest that the acclimatisation of zooxanthellae of individual polyps of an A. valida colony to ambient light levels may not be the only determinant of the photosynthetic capacity of zooxanthellae. Here, we found that photosynthetic capacity is also likely to have a strong genetic basis and differs between genetically distinct Symbiodinium types.  相似文献   

12.
The euphausiids Thysanoessa inermis (Kroyer 1846), Thysanoessa spinifera (Holmes 1900), and Euphausia pacifica (Hansen 1911) are key pelagic grazers and also important prey for many commercial fish species in the Gulf of Alaska (GOA). To understand the role of the euphausiids in material flows in this ecosystem their growth rates were examined using the instantaneous growth rate (IGR) technique on the northern GOA shelf from March through October in 2001–2004. The highest mean molting increments (over 5% of uropod length increase per molt) were observed during the phytoplankton bloom on the inner shelf in late spring for coastal T. inermis, and on the outer shelf in summer for T. spinifera and more oceanic E. pacifica, suggesting tight coupling with food availability. The molting rates were higher in summer and lower in spring, for all species and were strongly influenced by temperature. Mean inter-molt periods calculated from the molting rates, ranged from 11 days at 5°C to 6 days at 8°C, and were in agreement with those measured directly during long-term laboratory incubations. Growth rate estimates depended on euphausiid size, and were close to 0 in early spring, reaching maximum values in May (0.123 mm day−1 or 0.023 day−1 for T. inermis) and July (0.091 mm day−1 or 0.031 day−1 for T. spinifera). The growth rates for E. pacifica remained below 0.07 mm day−1 (0.016 day−1) throughout the season. The relationship between T. inermis weight specific growth rate (adjusted to 5°C) and ambient chlorophyll-a concentration fit a Michaelis–Menten curve (r 2 = 0.48) with food saturated growth rate of 0.032 day−1 with half saturation occurring at 1.65 mg chl-a m−3, but such relationships were not significant for T. spinifera or E. pacifica.  相似文献   

13.
Bivalves are important in shallow marine habitats, not at least being the major food resource for seaducks such as the common scoter (Melanitta nigra), thousands of which are wintering on the Western Coastal Banks, near the Belgian-French border (North Sea). Next to this ecological importance, fishable stocks of one of these bivalves, Spisula subtruncata, occur in the area. This study aimed at investigating S. subtruncata’s spatial distribution, population dynamics and productivity and its implications for a sustainable Spisula fishery in seaduck wintering areas. The spatial distribution of S. subtruncata was studied in 1994 and 1997 in two areas of the Belgian Western Coastal Banks. The population dynamics and production were investigated by monthly sampling of two stations between April 1995 and April 1996 and a seasonal sampling between April 1996 and April 1998. Spisula subtruncata had a patchy distribution in the deeper (6 m), fine sandy (200 ± 20 μm) sediments of the Abra alba community, mainly found in the western most part of the Western Coastal Banks. In August 1995, an overwhelming and successful recruitment was observed in this area: local densities were as high as 150,000 ind m−2. Minor, non-successful recruitments were detected in August 1996 and 1997. Due to space limitation, high densities of S. subtruncata are hypothesized to be responsible for the occurrence of aberrant shapes as observed from August 1996 onwards. Growth was described by a seasonally oscillating version of the von Bertalanffy growth function (VBGF): a growth stop was observed from late autumn till early spring. The VBGF parameters K (growth constant) and L (asymptotic length) were estimated at 0.7–0.9 and 31–33 mm. A combination of length and individual biomass increment showed: (1) a faster length increment of smaller individuals during the second growing period (catching-up phenomenon), (2) a constant length combined with a decreasing individual biomass during the suboptimal winter periods (except for the first winter, when the individual biomass slightly increased), (3) a positive relationship between the individual biomass decrease and the seawater temperature during the winter periods, and (4) a strong increase of the individual biomass in early spring (April 1997 and 1998) because of gametogenesis, followed by a decrease because of spawning (August 1997). The extremely high total production of the 1995 year class in the tidal gully (Potje) during the study period was estimated at approximately 1,500 g ash-free dry weight (ADW) m−2 or 600 g ADW m−2 on average per year. Shellfisheries for S. subtruncata within seaduck wintering areas, such as the Western Coastal Banks, should be carefully deliberated since (1) an important food resource for the seaducks will decrease, (2) the ecologically most diverse and rich macrobenthic A. alba community will be heavily affected, and (3) the recovery of Spisula populations after depletion is expected to be erratic.  相似文献   

14.
Age, growth and population structure of Modiolus barbatus from Mali Ston Bay, Croatia were determined using modal size (age) classes in length frequency distributions, annual pallial line scars on the inner shell surface, internal annual growth lines in shell sections of the middle nacreous layer and Calcein marked and transplanted mussels. The length frequency distributions indicated that M. barbatus attain a length of ∼40 mm in 5–6 years indicating that a large proportion of the population in Mali Ston Bay is <5 years old. Some mussels of ∼60 mm were predicted to be 14 years old using the Von Bertalanffy growth (VBG) equation. Up to the first 6 pallial line scars were visible in young (<6 years) mussels but in older shells the first scars became obscured by nacre deposition as the mussel increased in length and age. The age of the older shells (>6 years) was determined from the middle nacreous lines in shell section, which formed annually in winter between February and March; the wider dark increments forming during summer (June to September). The oldest mussel, determined from the middle nacreous lines, was >12 years, with the majority of mussels aged between 3 and 6 years of age. The ages of mussels ascertained using the growth lines were not dissimilar to the ages predicted from the length frequency distributions. Age at length curves produced using modal size class data were not different from the data obtained using the pallial scar rings and internal growth lines. Taken together these data suggest that M. barbatus attains a length of 40 and 50 mm within 5 and 8 years, respectively. Eighty one percent of individual M. barbatus injected with a Calcein seawater solution (300 mg Calcein l−1), into their mantle cavity successfully deposited a fluorescent line, which was visible in suitably prepared shell sections under ultra violet light. Incorporation of Calcein into the mussel shells was seasonally variable with the lowest frequency of incorporation in mussels marked in February and recovered in May. Seasonal shell growth was observed with significantly higher growth rates in mussels marked in May and removed in August (ANCOVA, F 3,149 = 23.11, P < 0.001). Mussels (∼18 to 22 mm) marked in May and recovered in August displayed maximal growth rates of >2.5 mm month−1 compared with a mean mussel growth rate of 1.2 ± 0.6 mm month−1. At other times of the year mussel shell growth ranged from immeasurable to 1.48 mm month−1.  相似文献   

15.
In this study, we present evidence that the invasive alga Codium fragile ssp. tomentosoides is chemically defended against grazing by a wound-activated chemical defense involving dimethylsulfoniopropionate (DMSP) and the products of its cleavage, dimethylsulfide (DMS), and acrylic acid (AA). DMSP in C. fragile ssp. tomentosoides was present throughout the year, but concentrations varied seasonally and were highest in the winter. Intra-thallus variation was neither large, nor consistent over time. High DMSP concentrations were uncommon among northwestern Atlantic macrophytes. Of 26 other species tested, only two, Ulva lactuca and Polysiphonia harveyi contained concentrations comparable to, or higher than, those of C. fragile ssp. tomentosoides. DMS and AA, both individually and together, deterred grazing by the green sea urchin Strongylocentrotus droebachiensis at “natural” concentrations. These results suggest that DMS and AA contribute to the avoidance of C. fragile ssp. tomentosoides by S. droebachiensis. As a result, the production of DMSP and its subsequent cleavage, upon injury, may reduce herbivory on C. fragile ssp. tomentosoides and contribute to its success.  相似文献   

16.
Fine-scale movement patterns in penaeid prawns are rarely observed in situ, but are essential in understanding habitat use, foraging, and anti-predator behaviour. Acoustic telemetry was applied to examine the activity, space utilization, and habitat use of the eastern king prawn Penaeus (Melicertus) plebejus, at small temporal and spatial scales. Tracking of sub-adult P. plebejus (n = 9) in Wallagoot Lake (36.789°S, 149.959°E; 23 April–12 May 2009) and calculation of a minimum activity index (MAI) revealed high variation in activity rates across diel periods and in different habitats. Elevated activity rates and movement indicated foraging in unvegetated habitats during the night. Areas within the 95 and 50% space utilization contours averaged 2,654.1 ± 502.0 and 379.9 ± 103.9 m2, respectively, and there was a significant negative relationship between these areas and prawn activity rates in unvegetated habitats. This study provides the first estimates of prawn activity rates and space utilization in the field. Application of acoustic telemetry can increase knowledge of prawn movements and their interactions with other marine species in different habitats.  相似文献   

17.
Paraeuchaeta norvegica (8.5 mm total length) and yolk-sac stage Atlantic cod larvae (4 mm total length) (Gadus morhua) larvae were observed in aquaria (3 l of water) using silhouette video photography. This allowed direct observations (and quantitative measurement) of predator–prey interactions between these two species in 3-dimensions. Tail beats, used by cod larvae to propel themselves through the viscous fluid environment, also generate signals detectable by mechanoreceptive copepod predators. When the prey is close enough for detection and successful capture (approximately half a body-length), the copepod launches an extremely rapid high Reynolds number attack, grabbing the larva around its midsection. While capture itself takes place in milliseconds, minutes are required to subdue and completely ingest a cod larva. The behavioural observations are used to estimate the hydrodynamic signal strength of the cod larva’s tail beats and the copepod’s perceptive field for larval fish prey. Cod larvae are more sensitive to fluid velocity than P. norvegica and also appear capable of distinguishing between the signal generated by a swimming and an attacking copepod. However, the copepod can lunge at much faster velocities than a yolk-sac cod larva can escape, leading to the larva’s capture. These observations can serve as input to the predator–prey component of ecosystem models intended to assess the impact of P. norvegica on cod larvae.  相似文献   

18.
In November 2003, we first observed prevalent occurrence of a hydroid, Eutima japonica, on soft body tissues of age zero Japanese scallop (Mizuhopecten yessoensis) juveniles cultured in large areas of Funka Bay, Hokkaido. The occurrence coincided with massive death of juvenile scallops. A major objective was to clarify ecological relationships between the symbionts, and to infer the relationship between symbiosis and the massive mortality. To do this, we investigated distributions of association rates of hydroids with juvenile scallops at 15–34 sites over 3 years (2003–2005), with age one adult scallops at 24 sites in 2003, and with mussels at 13 sites in 2004. We studied seasonal changes in association rates with juvenile scallops, and numbers of polyps per juvenile scallop at three sites from November 2003 to June 2004. We also quantified the hydroid impacts on juvenile scallop shell length growth and triglyceride accumulation in the digestive gland. The association rate of E. japonica polyps with juvenile scallops was high in large areas of Funka Bay in 2003, and overlapped the distribution of mussels bearing polyps. Association rates with age one adult scallops were very low in November 2003, even at the sites where polyps were very common on juvenile scallops. Levels of hydroid occurrence in juvenile scallops varies by year. We found that hydroids presence in juvenile scallops declined drastically in 2004 and 2005. The association rates with juvenile scallops, and numbers of polyps per juvenile scallop declined during winter, until they disappeared completely in the following June. Since polyps were rare in adult scallops, we believe that infection of juvenile scallops was probably initiated from the planulae produced by medusae released from polyps growing on Mytilus spp., especially M. galloprovincialis. Subsequently, the inhabitation spread intraspecifically and interspecifically. In juvenile scallops, inhabitation of polyps reduced shell length growth by 43%, and triglyceride accumulation in digestive glands by 24–47%. Inhabitation of E. japonica on juvenile scallop is best regarded as parasitism, rather than inquilinism or commensalism. Occurrence of polyps was probably not a direct lethal factor for juvenile scallops, because there were some sites where association rates were high, but mortalities were low. Massive mortalities in 2003 may have resulted from simultaneous impacts of heavy polyp load and stresses caused by the way in which the animals were handled (transferred from cages for pre-intermediate culture to cages for intermediate culture), because the massive mortality occurred within a month of the transfer. The presence of polyps in juvenile scallops does not affect the quality of the product in Funka Bay, because market size scallops are hydroid-free.  相似文献   

19.
To better understand sublethal effects of harmful algal blooms (HABs) on fish, mummichog, Fundulus heteroclitus (L.), were exposed in the laboratory to varying, environmentally relevant densities of Pfiesteria shumwayae (Glasgow et Burkholder, CCMP 2089, dinoflagellate) and Chaetoceros concavicornis (Mangin, CCMP 169, diatom). Two experiments were conducted during the spring of 2003 and 2004 to quantitatively examine the effects of acute (2 h) P. shumwayae and C. concavicornis algal exposure on mummichog brain activity using c-Fos expression as a marker of altered neuronal activity. Brains from HAB-exposed fish were removed, sectioned, and stained using immunocytochemistry prior to quantifying neuronal c-Fos expression. Fish exposed to P. shumwayae and C. concavicornis showed increased c-Fos expression compared to unexposed control fish. A significant dose-response relationship was observed, with increased labeling in brains of fish exposed to higher cell densities for both HAB species tested (P ≤ 0.01). Increased labeling was found in the telencephalon, optic lobes, midbrain, and portions of the medulla. The greatest increases in expression were observed in the telencephalon of P. shumwayae-exposed fish, and in the telencephalon and optic lobes of C. concavicornis-exposed fish (P ≤ 0.01). These increases in c-Fos expression are consistent with other physical and chemical stress exposures observed in fish. Neuronal stress, evidenced by c-Fos expression, demonstrates a sublethal effect of exposure and changes in brain activity in fish exposed to HAB species.  相似文献   

20.
The effects of ultraviolet radiation (UVR), desiccation and conditions in tidal pools on embryonic survival were examined for two common pulmonate limpets that lay intertidal benthic egg masses on rocky shores in New Zealand: Benhamina obliquata and Siphonaria australis. Field surveys and manipulative experiments were conducted between December 2006 and September 2007 in the Wellington region of New Zealand (41°17′S, 174°47′E). Egg mass deposition sites in the field were species-specific: B. obliquata deposited eggs primarily in shaded crevices, whereas S. australis predominantly deposited egg masses in the sun and in tidal pools. For both species, however, embryonic mortality was greater in egg masses that had been in full sun compared to shade. For S. australis, there was also high mortality in egg masses in tidal pools or desiccated compared to those that remained submerged in flowing seawater at low tide. In outdoor experiments, embryonic mortality was also always greatest for egg masses exposed to full sun, and lowest for those in shaded treatments. Mortality was also higher if egg masses were in simulated tidal pools, and for S. australis, if desiccated, compared to those submerged in flowing seawater. Periods of particularly sunny conditions with high temperatures also resulted in higher overall mortality. Finally, egg masses of both species that were initially deposited in the shade had greater mortality in response to subsequent UV exposure compared to egg masses initially deposited in full sun. Results from this study suggest that the egg masses of these two species are highly vulnerable to UVR, as well as other intertidal stressors. Embryos of both of these species may be at risk of high mortality particularly during summer when extreme conditions of UV intensity and high temperature coincide with low tide cycles. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号