首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Doyle, Martin W. and F. Douglas Shields, 2012. Compensatory Mitigation for Streams Under the Clean Water Act: Reassessing Science and Redirecting Policy. Journal of the American Water Resources Association (JAWRA) 48(3): 494-509. DOI: 10.1111/j.1752-1688.2011.00631.x Abstract: Current stream restoration science is not adequate to assume high rates of success in recovering ecosystem functional integrity. The physical scale of most stream restoration projects is insufficient because watershed land use controls ambient water quality and hydrology, and land use surrounding many restoration projects at the time of their construction, or in the future, do not provide sufficient conditions for functional integrity recovery. Reach scale channel restoration or modification has limited benefits within the broader landscape context. Physical habitat variables are often the basis for indicating success, but are now increasingly seen as poor surrogates for actual biological function; the assumption “if you build it they will come” lacks support of empirical studies. If stream restoration is to play a continued role in compensatory mitigation under the United States Clean Water Act, then significant policy changes are needed to adapt to the limitations of restoration science and the social environment under which most projects are constructed. When used for compensatory mitigation, stream restoration should be held to effectiveness standards for actual and measurable physical, chemical, or biological functional improvement. To achieve improved mitigation results, greater flexibility may be required for the location and funding of restoration projects, the size of projects, and the restoration process itself.  相似文献   

2.
The San Francisco Bay Region of the California Regional Water Quality Control Board (SFB CRWQCB) and the San Francisco District of the US Army Corps of Engineers (US ACOE) are looking for an expeditious means to determine whether regulated wetland projects produce ecologically valuable systems and remain in compliance with their permits (i.e. fulfill their legal requirements) until project completion. A study was therefore undertaken in which 20 compensatory wetland mitigation projects in the San Francisco Bay Region were reviewed and assessed for both permit compliance and habitat function, and this was done using a rapid assessment method adapted for this purpose. Thus, in addition to determining compliance and function, a further goal of this study was to test the efficacy of the assessment method, which, if useful, could be applied not only to mitigation projects, but also to restoration projects and natural wetland systems. Survey results suggest that most projects permitted 5 or more years ago are in compliance with their permit conditions and are realizing their intended habitat functions. The larger restoration sites or those situated between existing wetland sites tend to be more successful and offer more benefits to wildlife than the smaller isolated ones. These results are consistent with regulatory experience suggesting that economies of scale could be realized both with (1) large scale regional wetland restoration sites, through which efforts are combined to control invasive species and share costs, and (2) coordinated efforts by regulatory agencies to track project information and to monitor the increasing number and size of mitigation and restoration sites. In regard to the assessment methods, we find that their value lies in providing a consistent protocol for evaluations, but that the ultimate assessment will rely heavily on professional judgment, regulatory experience, and the garnering of pre-assessment information.  相似文献   

3.
Development projects that impact wetlands commonly require compensatory mitigation, usually through creation or restoration of wetlands on or off the project site. Over the last decade, federal support has increased for third-party off-site mitigation methods. At the same time, regulators have lowered the minimum impact size that triggers the requirement for compensatory mitigation. Few studies have examined the aggregate impact of individual wetland mitigation projects. No previous study has compared the choice of mitigation method by regulatory agency or development size. We analyze 1058 locally and federally permitted wetland mitigation transactions in the Chicago region between 1993 and 2004. We show that decreasing mitigation thresholds have had striking effects on the methods and spatial distribution of wetland mitigation. In particular, the observed increase in mitigation bank use is driven largely by the needs of the smallest impacts. Conversely, throughout the time period studied, large developments have rarely used mitigation banking, and have been relatively unaffected by changing regulatory focus and banking industry growth. We surmise that small developments lack the scale economies necessary for feasible permittee responsible mitigation. Finally, we compare the rates at which compensation required by both county and federal regulators is performed across major watershed boundaries. We show that local regulations prohibiting cross-county mitigation lead to higher levels of cross- watershed mitigation than federal regulations without cross-county prohibitions. Our data suggest that local control over wetland mitigation may prioritize administrative boundaries over hydrologic function in the matter of selecting compensation sites.  相似文献   

4.
The United States has lost about half its wetland acreage since European settlement, and the effectiveness of current wetland mitigation policies is often questioned. In most states, federal wetland laws are overseen by the U.S. Army Corps of Engineers, but Michigan administers these laws through the state's Department of Environmental Quality (MDEQ). Our research provides insight into the effectiveness of the state's implementation of these laws. We examined wetland mitigation permit files issued in Michigan's Upper Peninsula between 2003 and 2006 to assess compliance with key MDEQ policies. Forty-six percent of files were out of compliance with monitoring report requirements, and forty-nine percent lacked required conservation easement documents. We also conducted site assessments of select compensatory wetland projects to determine compliance with MDEQ invasive plant species performance standards. Fifty-five percent were out of compliance. We found no relationship between invasive species noncompliance and past site monitoring, age of mitigation site, or proximity to roads. However, we found wetland restoration projects far more likely to be compliant with performance standards than wetland creation projects. We suggest policy changes and agency actions that could increase compliance with wetland restoration and mitigation goals.  相似文献   

5.
Wetland protection and restoration strategies that are designed to promote hydrologic resilience do not incorporate the location of wetlands relative to the main stream network. This is primarily attributed to the lack of knowledge on the effects of wetland location on wetland hydrologic function (e.g., flood and drought mitigation). Here, we combined a watershed‐scale, surface–subsurface, fully distributed, physically based hydrologic model with historical, existing, and lost (drained) wetland maps in the Nose Creek watershed in the Prairie Pothole Region of North America to (1) estimate the hydrologic functions of lost wetlands and (2) estimate the hydrologic functions of wetlands located at different distances from the main stream network. Modeling results showed wetland loss altered streamflow, decreasing baseflow and increasing stream peakflow during the period of the precipitation events that led to major flooding in the watershed and downstream cities. In addition, we found that wetlands closer to the main stream network played a disproportionately important role in attenuating peakflow, while wetland location was not important for regulating baseflow. The findings of this study provide information for watershed managers that can help to prioritize wetland restoration efforts for flood or drought risk mitigation.  相似文献   

6.
Compensatory mitigation of impacted streams and wetlands has increased over the past two decades, with the associated industry spending over US$2.9 billion in aquatic restoration annually. Despite these expenditures, evaluations by the National Research Council and U.S. Government Accountability Office have provided evidence that compensatory mitigation practices are failing to protect aquatic resource functions and services, and vague federal policy and inadequate evaluation of compensatory mitigation projects are to blame. To address these weaknesses, an update to federal regulations on compensatory mitigation was released in 2008. Additionally, the 2012 Reissuance of Nationwide Permits, some of which affects compensatory stream mitigation, was recently published. Current policy, as reflected in these documents, still uses nonspecific language to direct compensatory stream mitigation leaving most implementation decisions to the local U.S. Army Corps of Engineers district. The majority of federal mitigation policy has focused on wetland compensation, with other aquatic resources receiving less attention (e.g., streams). In this article, weaknesses of current policy are discussed, as are suggested policy changes to minimize the loss of stream ecosystem functions and services. Compensatory mitigation policy should clearly define key terms, incorporate adaptive management procedures, and provide guidelines for determining mitigation costs and compensation ratio requirements.  相似文献   

7.
Ecosystem service markets are popular policy tools for ecosystem protection. Advanced credit releases are an important factor affecting the supply side of ecosystem markets. Under an advanced credit release policy, regulators give ecosystem suppliers a fraction of the total ecosystem credits generated by a restoration project before it is verified that the project actually achieves the required ecological thresholds. In spite of their prominent role in ecosystem markets, there is virtually no regulatory or research literature on the proper design of advanced credit release policies. Using U.S. aquatic ecosystem markets as an example, we develop a principal–agent model of the behavior of regulators and wetland/stream mitigation bankers to determine and explore the optimal degree of advance credit release. The model highlights the tension between regulators’ desire to induce market participation, while at the same time ensuring that bankers successfully complete ecological restoration. Our findings suggest several simple guidelines for strengthening advanced credit release policy.  相似文献   

8.
Ecosystems, though impacted by global environmental change, can also contribute to the adaptation and mitigation of such large scale changes. Therefore, sustainable ecosystem management is crucial in reaching a sustainable future for the biosphere. Based on the published literature and publicly accessible data, this paper discussed the status and trends of forest, grassland, and wetland ecosystems in China that play important roles in the ecological integrity and human welfare of the nation. Ecological degradation has been observed in these ecosystems at various levels and geographic locations. Biophysical (e.g., climate change) and socioeconomic factors (e.g., intensive human use) are the main reasons for ecosystem degradation with the latter factors serving as the dominant driving forces. The three broad categories of ecosystems in China have partially recovered from degradation thanks to large scale ecological restoration projects implemented in the last few decades. China, as the largest and most populated developing nation, still faces huge challenges regarding ecosystem management in a changing and globalizing world. To further improve ecosystem management in China, four recommendations were proposed, including: (1) advance ecosystem management towards an application-oriented, multidisciplinary science; (2) establish a well-functioning national ecological monitoring and data sharing mechanism; (3) develop impact and effectiveness assessment approaches for policies, plans, and ecological restoration projects; and (4) promote legal and institutional innovations to balance the intrinsic needs of ecological and socioeconomic systems. Any change in China’s ecosystem management approach towards a more sustainable one will benefit the whole world. Therefore, international collaborations on ecological and environmental issues need to be expanded.  相似文献   

9.
Despite rapid growth in river restoration, few projects receive the necessary evaluation and reporting to determine their success or failure and to learn from experience. As part of the National River Restoration Science Synthesis, we interviewed 39 project contacts from a database of 1,345 restoration projects in Michigan, Wisconsin, and Ohio to (1) verify project information; (2) gather data on project design, implementation, and coordination; (3) assess the extent of monitoring; and (4) evaluate success and the factors that may influence it. Projects were selected randomly within the four most common project goals from a national database: in-stream habitat improvement, channel reconfiguration, riparian management, and water-quality improvement. Roughly half of the projects were implemented as part of a watershed management plan and had some advisory group. Monitoring occurred in 79% of projects but often was minimal and seldom documented biological improvements. Baseline data for evaluation often relied on previous data obtained under regional monitoring programs using state protocols. Although 89% of project contacts reported success, only 11% of the projects were considered successful because of the response of a specific ecological indicator, and monitoring data were underused in project assessment. Estimates of ecological success, using three criteria from Palmer and others (2005), indicated that half or fewer of the projects were ecologically successful, markedly below the success level that project contacts self-reported, and sent a strong signal of the need for well-designed evaluation programs that can document ecological success.  相似文献   

10.
A detailed evaluation of past wetland restoration projects in San Francisco Bay was undertaken to determine their present status and degree of success. Many of the projects never reached the level of success purported and others have been plagued by serious problems. On the basis of these findings, it is debatable whether any sites in San Francisco Bay can be described as completed, active, or successful restoration projects at present. In spite of these limited accomplishments, wetland creation and restoration have been adopted in the coastal permit process as mitigation to offset environmental damage or loss of habitat. However, because the technology is still largely experimental, there is no guarantee that man-made wetlands will persist as permanent substitutes for sacrificed natural habitats. Existing permit policies should be reanalyzed to insure that they actually succeed in safeguarding diminishing wetlands resources rather than bartering them away for questionable habitat substitutes. Coastal managers must be more specific about project requirements and goals before approval is granted. Continued research on a regional basis is needed to advance marsh establishment techniques into a proven technology. In the meantime, policies encouraging or allowing quid pro quo exchanges of natural wetlands with man-made replacements should proceed with caution. The technology and management policies used at present are many steps ahead of the needed supporting documentation.  相似文献   

11.
Monitoring of stream restoration projects is often limited and success often focuses on a single taxon (e.g., salmonids), even though other aspects of stream structure and function may also respond to restoration activities. The Ottawa National Forest (ONF), Michigan, conducted a site-specific trout habitat improvement to enhance the trout fishery in Cook’s Run, a 3rd-order stream that the ONF determined was negatively affected by past logging. Our objectives were to determine if the habitat improvement increased trout abundances and enhanced other ecological variables (overall habitat quality, organic matter retention, seston concentration, periphyton abundance, sediment organic matter content, and macroinvertebrate abundance and diversity) following rehabilitation. The addition of skybooms (underbank cover structures) and k-dams (pool-creating structures) increased the relative abundance of harvestable trout (>25 cm in total length) as intended but not overall trout abundances. Both rehabilitation techniques also increased maximum channel depth and organic matter retention, but only k-dams increased overall habitat quality. Neither approach significantly affected other ecological variables. The modest ecological response to this habitat improvement likely occurred because the system was not severely degraded beforehand, and thus small, local changes in habitat did not measurably affect most physical and ecological variables measured. However, increases in habitat volume and in organic matter retention may enhance stream biota in the long term.  相似文献   

12.
We developed an approach for inventorying wetland resources, assessing their condition, and determining restoration potential in a watershed context. This article outlines how this approach can be developed into a Wetland Monitoring Matrix (WMM) that can help resource management agencies make regulatory and nonregulatory decisions. The WMM can be embedded in a standard planning process (Wetlands, Wildlife, and Watershed Assessment Techniques for Evaluation and Restoration, or W3ATER) involving the setting of objectives, assessing the condition of the resource, prioritizing watersheds or sites, implementing projects, and evaluating progress. To that process we have added the concepts of reference, hydrogeomorphic (HGM) classification, and prioritization for protection and restoration by triage or adaptive management. Three levels of effort are possible, increasing in detail and diagnostic reliability as data collection shifts from remote sensing to intensive sampling on the ground. Of key importance is the use of a consistent set of monitoring protocols for conducting condition assessments, designing restoration and creation projects, and evaluating the performance of mitigation projects; the same variables are measured regardless of the intended use of the data. This approach can be tailored to any region by establishing a reference set of wetlands organized by HGM subclasses, prioritizing watersheds and individual wetlands, and implementing consistent monitoring protocols. Application of the approach is illustrated with examples from wetlands and streams of the Spring Creek Watershed in central Pennsylvania, USA.  相似文献   

13.
Bioassessments have formed the foundation of many water quality monitoring programs throughout the United States. Like many state water quality programs, Connecticut has developed a relational database containing information about species richness, species composition, relative abundance, and feeding relationships among macroinvertebrates present in stream and river systems. Geographic Information Systems can provide estimates of landscape condition and watershed characteristics and when combined with measurements of stream biology, provide a useful visual display of information that is useful in a management context. The objective of our study was to estimate the stream health for all wadeable stream kilometers in Connecticut using a combination of macroinvertebrate metrics and landscape variables. We developed and evaluated models using an information theoretic approach to predict stream health as measured by macroinvertebrate multimetric index (MMI) and identified the best fitting model as a three variable model, including percent impervious land cover, a wetlands metric, and catchment slope that best fit the MMI scores (adj-R 2 = 0.56, SE = 11.73). We then provide examples of how modeling can augment existing programs to support water management policies under the Federal Clean Water Act such as stream assessments and anti-degradation.  相似文献   

14.
Twenty-three Section 404 permits in central Pennsylvania (covering a wetland age range of 1–14 years) were examined to determine the type of mitigation wetland permitted, how the sites were built, and what success criteria were used for evaluation. Most permits allowed for mitigation out-of-kind, either vegetatively or through hydrogeomorphic class. The mitigation process has resulted in a shift from impacted wetlands dominated by woody species to less vegetated mitigation wetlands, a trend that appears to be occurring nationwide. An estimate of the percent cover of emergent vegetation was the only success criterion specified in the majority of permits. About 60% of the mitigation wetlands were judged as meeting their originally defined success criteria, some after more than 10 years. The permit process appears to have resulted in a net gain of almost 0.05 ha of wetlands per mitigation project. However, due to the replacement of emergent, scrub–shrub, and forested wetlands with open water ponds or uplands, mitigation practices probably led to a net loss of vegetated wetlands.  相似文献   

15.
The Effect of Wetland Mitigation Banking on the Achievement of No-Net-Loss   总被引:3,自引:2,他引:1  
/ This study determines whether the 68 wetland mitigation banks in existence in the United States through 1 January 1996 are achieving no-net-loss of wetland acreage nationally and regionally. Although 74% of the individual banks achieve no-net-loss by acreage, overall, wetland mitigation banks are projected to result in a net loss of 21,328 acres of wetlands nationally, 52% of the acreage in banks, as already credited wetland acreages are converted to otheruses. While most wetland mitigation banks are using appropriate compensation methods and ratios, several of the largest banks use preservation or enhancement, instead of restoration or creation. Most of these preservation/enhancement banks use minimum mitigation ratios of 1:1, which is much lower than ratios given in current guidelines. Assuming that mitigation occurs in these banks as preservation at the minimum allowable ratio, ten of these banks, concentrated in the western Gulf Coast region, will account for over 99% of projected net wetland acreage loss associated with banks. We conclude that wetland mitigation banking is a conceptually sound environmental policy and planning tool, but only if applied according to recently issued guidelines that ensure no-net-loss of wetland functions and values. Wetland mitigation banking inevitably leads to geographic relocation of wetlands, and therefore changes, either positively or negatively, the functions they perform and ecosystem services they provide. KEY WORDS: Mitigation banking; Wetlands; Army Corps of Engineers; No-net-loss  相似文献   

16.
Both permit requirements and ecological assessments have been used to evaluate mitigation success. This analysis combines these two approaches to evaluate mitigation required under Section 404 of the United States Clean Water Act (CWA) and Section 10 of the Rivers and Harbors Act, which allow developers to provide compensatory mitigation for unavoidable impacts to wetlands. This study reviewed permit files and conducted field assessments of mitigation sites to evaluate the effectiveness of mitigation required by the US Army Corps of Engineers for all permits issued in Orange County, California from 1979 through 1993. The 535 permit actions approved during this period allowed 157 ha of impacts. Mitigation was required on 70 of these actions, with 152 ha of enhanced, restored, and created habitat required for 136 ha of impacts. In 15 permit actions, no mitigation project was constructed, but in only two cases was the originally permitted project built; the two cases resulted in an unmitigated loss of 1.6 ha. Of the remaining 55 sites, 55% were successful at meeting the permit conditions while 11% failed to do so. Based on a qualitative assessment of habitat quality, only 16% of the sites could be considered successful and 26% were considered failures. Thus, of the 126 ha of habitat lost due to the 55 projects, only 26 ha of mitigation was considered successful. The low success rate was not due to poor enforcement, although nearly half of the projects did not comply with all permit conditions. Mitigation success could best be improved by requiring mitigation plans to have performance standards based on habitat functions.  相似文献   

17.
Stream restoration projects are often based on morphological form or stream type and, as a result, there needs to be a clear tie established between form and function of the stream. An examination of the literature identifies numerous relationships in naturally forming streams that link morphologic form and stream processes. Urban stream restoration designs often work around infrastructure and incorporate bank stabilization and grade control structures. Because of these imposed constraints and highly altered hydrologic and sediment discharge regimens, the design of urban channel projects is rather unclear. In this paper, we examine the state of the art in relationships between form and processes, the strengths and weaknesses of these existing relationships, and the current lack of understanding in applying these relationships in the urban environment. In particular, we identify relationships that are critical to urban stream restoration projects and provide recommendations for future research into how this information can be used to improve urban stream restoration design. It is also suggested that improving the success of urban restoration projects requires further investigation into incorporating process-based methodologies, which can potentially reduce ambiguity in the design and the necessity of using an abundant amount of in-stream structures.  相似文献   

18.
ABSTRACT

The success of ecological restoration efforts is tightly coupled with the effectiveness of many U.S. environmental policies. Yet scholars have raised questions about the ability of restoration to produce intended results. We use a case study of tidal wetland restoration planning in Oregon to examine how neoliberal environmental governance exercises influence through a set of knowledge politics that produces subpar outcomes. We present three main findings: (1) restoration policies produce a restoration economy based on a conception of wetland as commodity (2) practitioners in this restoration economy exhibit competitive behavior resulting in a piecemeal rather than a landscape approach to restoration; and (3) limited monitoring prevents changes to existing policies. Practitioners offer insight into the challenge of treating wetlands as a commodity and call for more monitoring to challenge the assumptions of hegemonic knowledge practices that reinforce a neoliberal environmental governance regime. The divergent ideas of reflexive practitioners, though not yet manifest as action, show where changes to restoration governance might be possible.  相似文献   

19.
Creating False Images: Stream Restoration in an Urban Setting   总被引:1,自引:0,他引:1  
Stream restoration has become a multibillion dollar business with mixed results as to its efficacy. This case study utilizes pre‐ and post‐monitoring data from restoration projects on an urban stream to assess how well stream conditions, publicly stated project goals, and project implementation align. Our research confirms previous studies showing little communication among academic researchers and restoration practitioners as well as provides further evidence that restoration efforts tend to focus on small‐scale, specific sites without considering broader land use patterns. This study advances our understanding of restoration by documenting that although improving ecological conditions is a stated goal for restoration projects, the implemented measures are not always focused on those issues that are the most ecologically salient. What these projects have accomplished is to protect the built environment and promote positive public perception. We argue that these disconnects among publicized goals for restoration, the implemented features, and actual stream conditions may create a false image of what an ecologically stable stream looks like and therefore perpetuate a false sense of optimism about the feasibility of restoring urban streams.  相似文献   

20.
Traditionally, wetland management strategies have focused on single familiar objectives, such as improving water quality, strengthening biodiversity, and providing flood control. Despite the relevant amount of studies focused on wetland creation or restoration with these and other objectives, still little is known on how to integrate objectives of wetland creation or restoration at different landscape scales. We have reviewed the literature to this aim, and based on the existing current knowledge, we propose a four step approach to take decisions in wetland creation or restoration planning. First, based on local needs and limitations we should elucidate what the wetland is needed for. Second, the scale at which wetland should be created or restored must be defined. Third, conflicts and compatibilities between creation or restoration objectives must then be carefully studied. Fourth, a creation or restoration strategy must be defined. The strategy can be either creating different unipurpose wetlands or multipurpose wetlands, or combinations of them at different landscape scales. In any case, in unipurpose wetland projects we recommend to pursue additional secondary objectives. Following these guidelines, restored and created wetlands would have more ecological functions, similar to natural wetlands, especially if spatial distribution in the landscape is considered. Restored and created wetlands could then provide an array of integrated environmental services adapted to local ecological and social needs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号