首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Soit carbon (C) stock is the largest C pool in terrestrial ecosystems, and the emission of CO2 through soil respiration contributes to the majority of soil C expenditure and atmospheric C. Soil respiration is also one of the major processes controlling the C budget of terrestrial ecosystems. A slight change in soil CO2 emission might cause drastic variations in global C balance. Therefore, it is of great significance to investigate the characteristics of soil respiration of soils growing different types of vegetation over a long period, and determine its relationship with variables such as soil temperature and moisture. The rate of soil respiration was measured each month in the growing seasons (from April to October) of 2011, 2013, and 2014 using the Li-8100 CO2 flux measurement system in the central Loess Plateau. Four types of vegetation (Quercus liaotungensis, Platycladus orientalis, Robinia pseudoacacia, and a natural shrub) were chosen for the periodical measurements. A permanent sample plot was established for each type of vegetation, and five polyvinyl chloride (PVC) collars were placed in each plot for the measurements. The temperature and water content of the soil in the upper 12 cm near the collar were measured using a digital soil temperature probe and a TDR 200 soil moisture meter at the same time when the soil respiration was measured. The soil respiration rates were fitted to the soil temperature and moisture with an exponential function, power function, linear function, and an equation combining the two variables. The results showed that: (1) the seasonal variation in the rates of soil respiration in the soils growing the four types of vegetation were almost the same, and were lower in the earlier period and then increased to high levels in the middle and later periods; (2) the rates of soil respiration in the same month varied with the type of vegetation grown, and were in the descending order: Q. liaotungensis > P. orientalis > shrub > R. pseudoacacia; (3) the average values of the rates of soil respiration in 2011, 2013, and 2014 were 2.77, 3.48, and 5.08 μmol m-2 s-1, respectively. The variation in soil respiration was higher across the three years than the variation for the types of vegetation grown; and (4) the rate of soil respiration was positively correlated to soil temperature and moisture for all the types of vegetation. A better fit was obtained by using the equation that included both the variables, soil temperature and moisture, than by an equation that included a single factor. Our results suggested that both seasonal and inter-annual variations of soil respiration occurred in the soils growing the four types of vegetation in the region. The temperature and water content of soils are the major regulating factors, and soil respiration in the Loess Plateau is more greatly affected by environment factors than by the type of vegetation. © 2018 Science Press. All rights reserved.  相似文献   

2.
Soil erosion has a critical effect on ecological security and socioeconomics, which may deteriorate ecosystem services and common human well-being. The revised universal soil loss equation (RUSLE) was applied to assess soil erosion from 1984 to 2013 in the Tibetan Plateau and analyzed the temporal and spatial variation of soil erosion intensity. Furthermore, the temporal and spatial variation rates of soil erosion were explored across different ecosystems. The results indicated that the annual soil erosion fuctuated in the Tibetan Plateau, the soil erosion intensity decreased from south to north, and the most serious soil erosion was mainly distributed in the southern Tibetan Plateau (Xigaze and Changdu regions, Lhasa, and north of the Shannan region). The soil erosion intensity was higher in shrub, alpine meadow, and sparse vegetation ecosystems. The highest soil erosion was found in alpine meadow (2.17 × 1010 t), followed by alpine grassland (1.59 × 1010 t) and sparse vegetation (1.30 × 1010 t) ecosystems. Meanwhile, although the most serious soil erosion intensity was found in the regions of 3 000-4 000 m altitude, the soil erosion was mainly observed in the regions of 4 000-5 000 m altitude. In the three most recent decades, annual soil erosion decreased at a rate of-1.78 × 108 t/a. Additionally, soil erosion mainly increased in south of the Qiangtang Plateau and in the periphery of the Qaidam basin. Decreased soil erosion was mainly found along the Hengduan Mountains, central Himalayas. Although the increased annual normalized difference vegetation index (NDVI) had positive effects for soil protection, changes in soil erosion was mainly controlled by the change of annual precipitation. Thus, the fragility of ecological systems and increased rainfall erosivity accounted for the obviously increased soil erosion in the alpine grassland ecosystem (1.19 × 10 t/a). However, increased ecosystem stability and decreased rainfall erosivity contributed to the decreased soil erosion in forest and shrub ecosystems, by-0.77 × 10 t/a and-1.65 × 10 t/a, respectively. The slightly decreased rainfall erosivity accounted for a decrease of soil erosion in the sparse vegetation ecosystem (-0.44 × 10 t/a). Meanwhile, soil erosion has decreased in the alpine meadow ecosystem over the past 30 years, which may owing to the relatively higher NDVI that neutralized the increase of rainfall erosivity to some extent. This study revealed serious soil erosion regions and ecosystems in the Tibetan Plateau and explored possible reasons for variations in soil erosion in different ecosystems, which may provide a scientific reference for soil erosion conservation and control in the near future. © 2018 Science Press. All rights reserved.  相似文献   

3.
Riparian zone vegetation is an important part of the riparian ecosystem and plays an important role in the riparian zone functioning. Herbs, which are one of the main types of riparian vegetation, are extremely sensitive to environmental changes and human activities and have become a hot spot of riparian vegetation research. In this study, the herbaceous communities of four representative rivers (Xiaoyi, Baohe, Fuhe, and Baigouyin River) entering Baiyangdian Lake in China were researched. The herbaceous species in their riparian zones were systematically investigated using the sample plot method. The Shannon-Wiener diversity (H’), Pielou evenness (J), and Patrick richness (R) indices were estimated to examine the species composition and diversity of the herb communities, following which redundancy analysis (RDA) was conducted. The relationship between species diversity, distribution patterns of herbaceous plant communities, and soil environmental factors in the riparian zone of the four rivers is discussed. (1) Eighty-three species of herbaceous plants belonging to 66 genera and 27 families in the riparian zone entering Baiyangdian Lake. Most herbaceous plants, including Poaceae, Compositae, and Chenopodiaceae, were weeds or associated plants. Riparian vegetation was greatly affected by human disturbance. (2) All the three estimated indices of the Xiaoyi, Baigouyin, and Fuhe rivers were better than those of the Baohe River. (3) The vegetation coverage and species diversity of riparian herbaceous communities were positively correlated with soil organic matter and water content but negatively correlated with pH, total nitrogen, and total phosphorus. Therefore, these communities are conducive to the restoration of vegetation and the stability of biodiversity in the riparian core area to reduce the disturbance of human activities and increase humidity. © 2022 Science Press. All rights reserved.  相似文献   

4.
Polygonum viviparum, which reproduces sexually and asexually, is widely distributed in the Qinghai-Tibet Plateau, and its reproduction strategies are very sensitive to changes in the environment. This study aimed to elucidate the effect of altitude on the photosynthetic characteristics and reproductive strategies of P. viviparum. This study was conducted to investigate the responses of photosynthetic, vegetative, and reproductive traits of P. viviparum populations along six altitudinal gradients in the eastern part of the Qilian Mountains in China. Our results indicated that, with increasing altitude, the net photosynthetic rate of P. viviparum showed an increasing trend, reaching its maximum value (14.39 μmol m–2 s–1) at 3 700 m above sea level. The transpiration rate showed an increasing trend, followed by a decreasing trend, and the intercellular CO2 concentration did not differ significantly between altitudes. With increasing altitude, the plant height and leaf area of P. viviparum showed a downward trend, the aboveground and underground biomass decreased, and the specific leaf area initially decreased and then increased. However, the leaf greenness index showed an upward trend, and the number of stomata in the upper and lower epidermis of leaves initially increased and then decreased. With increasing altitude, the proportion of inflorescence length per plant (the ratio of inflorescence length to plant height), the proportion of bulbil length per inflorescence (the ratio of bulbil length to inflorescence height), and the proportion of the number of bulbils per inflorescence (the ratio of the number of bulbils to the total number of flowers and bulbils) showed an increasing trend. Air temperature and light intensity are the major environmental factors affecting the photosynthetic characteristics and functional traits of P. viviparum. Thus, P. viviparum is exposed to more environmental stresses and obtains less energy when altitude increases, but it adapts to the harsh alpine environment by increasing the photosynthetic capability per unit area. With increasing altitude, P. viviparum populations may be sustained by investing less energy in vegetation and more in reproduction, especially asexual reproduction. © 2022 Science Press. All rights reserved.  相似文献   

5.
Based on observation data of daily sunshine duration from 1961 to 2020 at 175 meteorological observation stations over Qinghai-Tibet Plateau and its surrounding areas, spatial transformation analysis, climate trend analysis and M-K mutation test were used to analyze the temporal and spatial variation characteristics of the seasonal and annual sunshine duration in the region in the last 60 years. The results show that (1) annual average sunshine duration was 2 323 h, the maximum was 3 487 h in Gaer, Tibet, and the minimum was 771 h in Ya'an, Sichuan. The high-value areas were mostly located in western Tibet, northern Qinghai, western Gansu, and Xinjiang, and the low-value areas were mostly located in Nyingchi in Tibet, the mountainous area on the western edge of the Sichuan Basin, and northwestern Yunnan. The highest sunshine duration was recorded in winter (631 h), and the lowest was recorded in autumn (555 h) among the four seasons. (2) The average decrease in annual sunshine duration was 10.27 h/10 a. The largest rates of decrease were mainly in Gannan of Gansu and Ganzi of Sichuan, with the largest rate of decrease of 130 h/10 a. The areas with large rates of increase were mainly in Hotan area of Xinjiang, Liangshan of Sichuan and Lhasa of Tibet, with the largest increase of 61 h/10 a. Among the four seasons, spring exhibited an upward trend, and the remainder exhibited a downward trend. (3) Before 2017, the annual sunshine duration increased but declined after 2017. Spring sunshine duration had the largest number of mutation years, and the earliest mutation time was 1963. Winter had the fewest number of mutation years and the latest mutation time occurred in 2015. In summary, the annual and seasonal sunshine duration of Qinghai-Tibet Plateau vary greatly in space, but with the general characteristics of more sunshine in the northwest and less in the southeast, and sunshine hours were mainly decreasing, with 2017 as a mutation point of annual sunshine duration. Most areas of Qinghai-Tibet Plateau have great potential for photosynthetic production and are suitable for the development of light-loving plants and high-density planting. Shade-loving or shade-tolerant plants, including tea, are suitable for development in remote mountainous areas with low sunshine values in the western part of the basin, including Ya’an, Sichuan, and other areas, such as Medog, Tibet. © 2022 Science Press. All rights reserved.  相似文献   

6.
Based on community data (2012, 2020) of the Tianlong Mountain evergreen and deciduous broadleaved mixed forest plot in central Guizhou, China, the species composition, importance value index, diversity, and dynamic changes were estimated to explore the renewal and change characteristics of karst secondary forests. The results showed that: (1) the number of individual species in the investigated two hm2 plot encompassing 33 families and 55 genera, totaling 69 species decreased from 10 276 to 7837. Five families, 10 genera, and 18 species were newly added, while seven families, nine genera, and 11 species disappeared. The difference between the importance value indices of the species was obvious; that of Lithocarpus confinis (20.97–23.26) was much higher than that of other species. Except for some species, the overall inter-annual differences were not large, and the status of mesophytic and shaded species has increased. Life forms were dominated by small trees and shrubs or small trees, and the plant number density of different life forms is reduced. (2) The Margalef and Shannon-Wiener indices of shrubs were the largest, and the Pielou indices of shrubs or small trees were the largest. The composition of most life forms has increased; the diversity became richer; and the uniform distribution of individual species has increased, but the change was small. (3) With respect to the spatial distribution pattern, the species were generally clustered, and only a few were randomly distributed. The Cx, I, m*, CA, and G indices of the species were reduced, and those of some species were quite different. A tendency for aggregated distribution was observed over random distribution, but the aggregation degree of Lithocarpus sphaerocephala was still high. The PAI index of most species increased but was not obvious, whereas the K value changed irregularly. Overall, the species composition, importance value index, diversity, and spatial distribution pattern of the main species in this community have changed to some extent but without any significant fluctuations. L. sphaerocephala was still the dominant species in succession, and the species composition of the flora was stable. The restoration of vegetation and the development of the entire community are slow. © 2022 Science Press. All rights reserved.  相似文献   

7.
To explore the current situation and distribution of fish in the eight major estuaries of the Pearl River Estuary in China, acoustic detection and water quality monitoring were conducted in 2018. The results showed that almost living in eight major estuaries were juvenile, the proportion of strong echo was higher in winter, and Jiaomen and Modaomen Estuary were relatively rich in adult fish. In winter, the Humen, Jiaomen, and Yamen Estuary had a high density relatively, for 46.05 (± 50.30), 33.12 (± 93), and 32 (± 78) ind/103 m3, respectively. However, the fish densities of the Hengmen, Modaomen, and Hutiaomen estuaries were higher in summer at 55.72 (± 83.23), 37.52 (± 55) and 36 (± 99) ind/103 m3, respectively. Thus, fish are mainly concentrated in the flood tidal estuary in winter and in the ebb tidal estuary in summer. In addition, fish density was higher in flood tide than in ebb tide, and the strong echo proportion was lower. In winter, the key water quality factors affecting the biodiversity of estuary fish Shannon were chlorophyll a (P < 0.05), while what affected the fish density were turbidity and salinity (P < 0.05). This study showed that the Pearl River estuary was still the main habitat for juvenile fish. However, habitat variability is obvious; hence, it is important to flexibly carry out the delimitation of estuarine fish reserves and ecological restoration. © 2022 Authors. All rights reserved.  相似文献   

8.
To evaluate bacterial community variation in the mushroom shiro of Suillus granulatus during fruiting, we collected soil samples from the mushroom shiro in the pine (Pinus tabuliformis) forest of mountainous area in Beijing from May to November and evaluated the bacterial community using polymerase chain reaction - denaturing gradient gel electrophoresis (PCR-DGGE). Total soil DNA was extracted using a commercial soil DNA isolation kit. PCR amplification and DGGE were performed using bacterial universal primers 338F and 518R. The specific bands were excised from the gel and sequenced. The results revealed that soil bacterial community maintained considerably high level and changed seasonally with the mushroom fruiting. In total, 53 bands of DGGE profiles were sequenced and divided into 5 phyla (Acidobacteria, Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria and 22 genera (Acidobacterium, Aminobacter, et al). Species from Proteobacteria and Acidobacteria were the dominant bacterial groups sharing considerably high relative abundance, while class a-Proteobacteria was the most abundant group. The variation of the relative abundance of γ-Proteobacteria species was consistent with the mushroom fruiting season. The relative abundance of Acidobacteria species obviously increased before mushroom flush (in July). The fruiting of S. granulatus and the relative abundance of γ-Proteobacteria were correlated with each other. The present study provided a basis for conservation and domestication of mushroom S. granulatus.  相似文献   

9.
In this study, micronucleus (MCN) and chromosome aberration (CA) tests in Vicia faba root tip cells were carried out in order to assess the water quality and the comprehensive genotoxic potential of surface waters located in the urban area of Xi'an City, China. For these evaluations, water samples from different surface waters (four rivers, two lakes, two biological treatment plant effluents) were collected, the ultra-pure water and methyl methanesulfonate solution was used as the negative and positive control, respectively. In our results, highly significant differences in MCN perrnillage (average number of micronuclei per 1000 cells), CA frequencies and PI (pollution index) values were found among three rivers and two WWTP effluents, the tested samples from two rivers caused the decrease of mitotic index over 22% compared with the negative control. No significant changes were observed in micronuclei and chromosome aberrations frequencies at one river and two lakes during the period of test (wet season). These results point out a poor state of the water quality and genotoxic activity of the main surface waters in Xi'an City. It is recommended to establish a monitoring program for the presence of genotoxic agents in these surface waters.  相似文献   

10.
It is of great significance for in-situ bioremediation to clarify the migration behavior and biodegradation laws of chlorinated hydrocarbon solvents (CHS) in the vadose zone. We systematically summarized the phase distribution of CHS, the interaction between different phases, and the migration characteristics and clarified the evolution rules of CHS under different phases in the polluted vadose zone. CHS exists in the vadose zone as the NAPL, dissolved phase, adsorbed phase, gas phase, and other phases, where there are three decay evolution stages: early, middle, and late stages. Phase change and diffusion matrix size are important indicators at different stages; at the same time, gas, solid, liquid and NAPL phase CHS have a variety of interactive relationships in the vadose zone. Subsequently, the characteristics of the three main biological metabolic pathways of CHS in the vadose zone–aerobic co-metabolism, direct oxidation and anaerobic reduction, and dechlorination–and their influencing factors were summarized. Generally speaking, the anaerobic dechlorination capacity decreases with a decrease in the number of chlorine atoms, whereas the aerobic degradation capacity increases with a decrease in the number of chlorine atoms. The current status of in-situ remediation of CHS in the vadose zone was summarized using biostimulation and bioaugmentation methods, indicating that adding nutrient substances and injecting anaerobic dechlorination strains of Dehalococcoides are effective means of remediation. Simultaneously, the factors influencing the biodegradation of CHS in the vadose zone were elaborated to acquire a systematic insight into the significance of redox characteristics (oxygen) on the degradation of CHS. Finally, research on the biodegradation of CHS in the vadose zone is prospected, and it is necessary to carry out research on the interactive relationship between different phases of CHS, the data monitoring of CHS, the structure of the functional bacterial community, and research and development of active strains to provide theoretical guidance for the in-situ remediation of CHS in the vadose zone. © 2022 Science Press. All rights reserved.  相似文献   

11.
12.
Nitrogen (N) loss in irrigated croplands from coupled nitrification and denitrification shows considerable differences due to differences in soil properties and agricultural management practices. Previous research has demonstrated that soil physicochemical properties strongly affect nitrification and denitrification capacities of cropland soils. However, existing research on soil nitrification and denitrification following the conversion of native desert soils to irrigated croplands lacks long-term tracking and monitoring capabilities. Therefore, six types of reclamation years of irrigated croplands and uncultivated sandy land in the Hexi Corridor marginal oasis in northwestern China were selected for study, and the differences in soil nitrification and denitrification rates and physicochemical properties were studied over 42 sites in the desert-oasis ecotone derived from seven reclamation sequences, including the years of 0, 15, 30, 50, 80, 100, and 150. The results showed that the nitrification and denitrification rates of soil first increased and then decreased with the increase in reclamation years. The highest soil nitrification rate and denitrification rate were observed at 80 years of cultivation (101.4 μg g-1 d-1) and 100 years of cultivation (0.93 μg g-1 d-1), respectively. In addition, the soil nitrification and denitrification rates in the natural sandy land were significantly lower than those in the cultivated croplands (P < 0.05). There were significant correlations among soil nutrients, soil moisture, and soil particle size composition between the nitrification and denitrification rates (P < 0.05). Regression analysis showed that environmental variables accounted for 69.7% and 75.7% of the variation in nitrification and denitrification rates, respectively. Among them, organic matter content, pH, soil moisture, and NH4+-N content were the key factors affecting the change in soil denitrification rate, while organic matter content, NO3--N, pH, and clay content were the key factors affecting the change in soil denitrification rate. © 2022 Science Press. All rights reserved.  相似文献   

13.
To protect the ecosystem of barren mountains, massive Cupressus funebris plantations were allowed in hilly areas of the central Sichuan Basin in the late 1980s. In recent years, Cupressus funebris plantations have faced problems such as biodiversity decline and soil erosion. To study the effects of different forest densities on understory species diversity and soil anti-scourability of Cupressus funebris plantations in Yunding Mountain, a typical sampling method was used to investigate the five different forest densities (1 100, 950, 800, 650, and 500 trees/hm2) and to analyze the correlation between the species diversity index, soil anti-scourability, and root index. In total, 176 species from 128 genera and 69 families were recorded in this area. The number of species in the herb layer was higher than that in the shrub layer. The species diversity index of the shrub layer first increased and then decreased with the decrease in stand density; and the species richness index D and Shannon–Wiener diversity index H showed peak values at a density of 650 trees/hm2. The species richness index D, Shannon–Wiener diversity index H, and Simpson dominance index H’ in the herb layer showed a bimodal trend of increasing, then decreasing, increasing again, and finally decreasing with the decrease in stand density; and the peak values were found at the densities of 650 and 950 trees/hm2. When soil anti-scourability decreased with stand density, it showed a trend of increasing and then decreasing, reaching a peak at a density of 650 trees/hm2. The positive correlation between the species richness index and soil anti-scourability was evident. Thus, 650 trees/hm2 is relatively more conducive to the stability of species diversity and soil anti-scourability in cypress plantations. © 2022 Authors. All rights reserved.  相似文献   

14.
Studies were conducted on nutrient cycling in two coastal embayments; Strangford Lough and Belfast Lough, in order to classify these coastal waters in compliance with the European Union Urban Waste Water Treatment and Nitrates Directives. Analysis of the data suggests that Strangford Lough is nitrogen-limited throughout much of the growing season with chlorophyll-a levels comparable to the open Irish Sea. In contrast, much of Belfast Lough is never nitrogen-limited and, with chlorophyll-a levels at times exceeding 50 μg/l, is exhibiting symptoms of eutrophication.  相似文献   

15.
Split-plot field experiments, with variety as the main plot, were designed to analyze the microclimate and character of R498 (curved panicle) and R499 (erect panicle) varieties of rice during the full heading day and on the 20th day after full heading. The planting densities assigned to the subplots were 0.23 m (line spacing) × 0.12 m (hole spacing), 0.27 m × 0.14 m, 0.33 m × 0.17 m, 0.38 m × 0.20 m, and 0.40 m × 0.21 m. The results showed that for all the planting densities, the maximum temperature of R499 increased by 1.52 ℃ on an average during the full heading stage, but decreased by 0.66 ℃ on the 20th day after full heading, in comparison to those of R498. The mean daily light intensities of R498 and R499 in sparse planting (0.38 m × 0.20 m, 0.40 m × 0.21 m) were higher than those of other planting density treatments during the full heading stage, being 43.56% and 16.22% higher, respectively, than that of the lowest daily light intensity. The daily light intensity of R498 was hindered by close planting (0.23 m × 0.12 m, 0.27 m × 0.14 m) while that of R499 was inhibited by sparse planting on the 20th day after the full heading stage. The rates of decrease of vertical light intensity of R498 and R499 in sparse planting were the highest among all the planting density treatments, their rates of decrease being 97.96% and 92.56%, respectively, during the full heading stage, and 94.81% and 91.10%, respectively, on the 20th day after the full heading stage. When the planting density was decreased, the variability of plant height, tiller number, and panicle curvature were greater for R499 than those of R498. The rates of incidence of sheath blight for R498 and R499 in the planting specification of 0.38 m × 0.20 m were 66.67% and 68.89%, respectively, which was the most serious among all the planting density treatments. On increasing the effective spike number and panicle weight, both R498 and R499 produced the highest yields with the planting specification of 0.27 m × 0.14 m, among all the planting density treatments. Even when the density was excessively reduced, the value of yield components did not increase any further. Thus, it is better to plant rice with curved panicles (R498) in a reasonable planting density (neither too close nor too sparse), and to plant rice with erect panicles in a reasonably close planting density. © 2018 Science Press. All rights reserved.  相似文献   

16.
Screening plants that are hypertolerant to and excluders of certain heavy metals plays a fundamental role in a remediation strategy for metalliferous mine tailings. A field survey of terrestrial higher plants growing on Mn mine tailings at Huayuan, Hunan Province, China was conducted to identify candidate species for application in phytostabilization of the tailings in this region. In total, 51 species belonging to 21 families were recorded and the 12 dominant plants were investigated for their potential in phytostabilization of heavy metals. Eight plant species, Alternanthera philoxeroides, Artemisia princeps, Bidens frondosa, Bidens pilosa, Cynodon dactylon, Digitaria sanguinalis, Erigeron canadensis, and Setaria plicata accumulated much lower concentrations of heavy metals in shoots and roots than the associated soils and bioconcen- tration factors (BFs) for Cd, Mn, Pb and Zn were all 〈 1, demonstrating a high tolerance to heavy metals and poor metals translocation ability. The field investigation also found that these species grew fast, accumulated biomass rapidly and developed a vegetation cover in a relatively short time. Therefore, they are good candidates for phytostabilization purposes and could be used as pioneer species in phytoremediation of Mn mine tailings in this region of South China.  相似文献   

17.
China's remarkable economic growth and transformation in recent years has been a model for the world, but like all other expanding economies there have been accompanying environmental problems. For more than 5,000 years, however, China has proven that it can cope with problems and remain a vibrant society. China is now turning its attention to the environment through efforts to conserve endangered species, create protected areas, use renewable energy, reforest the margins of deserts, control air pollution, rehabilitate ecosystems, develop ecological agriculture, promote ecotourism, and safeguard its supplies of fresh water. Some of these efforts have had more success than others. The restoration and protection of urban wetlands offers a unique opportunity to meet many of these environmental challenges simultaneously, including the enhancement of the awareness and appreciation of nature and natural processes among urban populations, especially children, upon whom the future of China's environmental movement depends. The United States is facing similar challenges in its urban areas, and some of its recent approaches to dealing with nature in cities may provide useful guidelines.  相似文献   

18.
As a special ecosystem, an urban forest park, which is different from a regular “forest park”, is one of the key elements involved in improving the urban ecological environment and promoting the sustainable development of a city. The “urban forest park” can also significantly improve living conditions by acting as a greenbelt. The Chengdu Longquan Mountain Urban Forest Park is a rare mountain urban forest park located in the center of the city. This “urban forest park” not only provides more ecological products and maintains ecological security but also meets the growing needs of people for food, environmental quality, and spirituality. To comprehensively assess the ecological value of the Chengdu Longquan Mountain Urban Forest Park, this study used the literature analogy and questionnaire survey methods to establish a targeted ecosystem service assessment system in this study area. In addition, combined with the hierarchical analysis method, the indicator system was tested, and the specific evaluation index was determined. In the Longquan Mountain Urban Forest Park Ecosystem Service Value Index System, three first-level indicators, such as ecological material products (with a weight of 0.412 6), ecological regulation (0.327 5), and dwelling culture (0.259 9); eight secondary indicators, such as product production (0.206 3), resource supply (0.206 3), and biodiversity (0.194 4); and twenty-three tertiary indicators, such as air negative oxygen ion (0.154 7), habitat quality (0.095 9), and ecological health benefit (0.075 5), were identified. From the weights of the first and second indicators, it was clear that the supply of ecological material products is the main service function in the Longquan Mountain Urban Forest Park ecosystem. Moreover, from the weights of the third indicator, the public’s cognition and concept of the ecosystem service value of the “urban forest park” gradually shifted from the supply service of products and resources to cultural services. In summary, the ecosystem service value assessment system designed for the Longquan Mountain Urban Forest Park in this study has certain feasibility and extensibility that lays a theoretical foundation for the scientific assessment of ecological value and ecological value realization mechanism for other “forest parks” worldwide. © 2022 Authors. All rights reserved.  相似文献   

19.
Water consumption in agricultural activities is the main water use in inland oases in Northwest China. Research on water conservation in agriculture is of great significance to alleviate the conflict between the use of agricultural and ecological water and is of great importance to local farmers’ livelihoods. This study, based on traditional irrigation practices (flood irrigation and fixed irrigation frequency) of Minqin County in Shiyang River Basion, was designed to reveal the impacts of five irrigation quotas (1 800, 1 440, 1 080, 720, and 360 m3/hm2) on crop yield, biomass, irrigation water use efficiency (IWUE), and economic water productivity (EWP) to determine the optimal irrigation for five crops and guide local irrigation practices. The results showed that: (1) Under the five irrigation quotas, IWUE of corn, with the highest of 12.27 kg/m3, was higher than the other four crops; (2) The average EWP of cotton with a 2-year-average of 8.0 yuan/m3 was higher than the other four crops. Thus, the economic output of cotton is the best under the same irrigation quota; (3) Considering the yield, IWUE, EWP, and biomass, corn was better than the other four typical crops; and (4) 1 080 m3/hm2 was the optimal irrigation quota for sunflower in local planting practices. In addition, 720 m3/hm2 was suitable for corn, pepper, wheat, and cotton as their irrigation quota. This study shows that reducing the amount of irrigation quota in the Shiyang River Basin can effectively improve local IWUE and EWP. © 2022 Authors. All rights reserved.  相似文献   

20.
Combustion-generated hydrogen chloride (HCl) is considered to be a very hazardous acid gaseous pollutant. This paper presents a laboratory study on the dry adsorption of HCl. The experiments were conducted in a dual-layer granular bed filter, at gas temperatures of 500℃-700℃ and n(Ca)/n(Cl)molar ratios of 1.0-5.0 using the silver nitrate titration method by dry adsorbent powders Ca(OH)2. Mainly, the adsorption efficiency of HCI and utilization efficiency of Calcium were studied, by varying relevant factors including n(Ca)/n(Cl), tempera- ture, feeding method, water vapor and CO2. With a relatively higher HCl concentration of 1000ppm, the experimental results revealed that 600℃ may be the optimum temperature for HCl adsorption when optimum n (Ca)/n(Cl) was 2.5 in our tests. The results also demonstrated that the feeding at a constant pressure was more effective, and the HCl adsorption efficiency could rapidly reach over 90% with n(Ca)/n(Cl) = 2.5 at 600℃. Furthermore, the HCl adsorption efficiency was found to be slightly promoted by water vapor, while could be impeded by CO2, and the utilization efficiency of calcium could be up to 74.4% without CO2, while was only 36.8% with CO2 when n(Ca)/n(Cl) was 2.5 at 600℃.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号