首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence of ammonia nitrogen in landfill leachates poses a significant problem for treatment plant operators. The nitrification-denitrification process mostly carries out the nitrogen conversion in biological treatment systems. However, recent research shows that other processes by anaerobic ammonia-oxidizing bacteria (Anammox) and ammonia-oxidizing archaea (AOA) were also responsible for the removal of nitrogen in biological systems. In this study, the nitrogen-converting microorganisms in the Bursa Hamitler Leachate Treatment Plant were identified and monitored by using molecular tools. Fluorescent in situ hybridization (FISH) and slot-blot hybridization results showed that the Nitrosomonas and Nitrospira species were the dominant ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB), respectively. Quantitative real-time PCR results indicated that AOB, NOB, AOA and Anammox bacteria exist in the leachate treatment plant. However, the removal of ammonia can be ascribed mainly to nitrification because AOB (1.5%) and NOB (11.3%) were predominant among all nitrogen-converting bacteria. The results of the phylogenetic analysis based on amoA and 16S rDNA gene revealed that the uncultured bacterium clone 4-24, Kuenenia stuttgartiensis genome fragment KUST_E and the uncultured Crenarchaeota clone NJYPZT-C1 belong to AOB, Anammox and AOA populations, respectively, and were the dominant species in their cluster.  相似文献   

2.
In pond and wetland systems for wastewater treatment, plants are often thought to enhance the removal of ammonium and nitrogen through the activities of root-associated bacteria. In this study, we examined the role of plant roots in an aerated pond system with floating plants designed to treat high-strength septage wastewater. We performed both laboratory and full-scale experiments to test the effect of different plant root to septage ratios on nitrification and denitrification, and measured the abundances of nitrifying bacteria associated with roots and septage particulates. Root-associated nitrifying bacteria did not play a significant role in ammonium and total nitrogen removal. Investigations of nitrifier populations showed that only 10% were associated with water hyacinth [Eichhornia crassipes (Mart.) Solms] roots (at standard facility plant densities equivalent to 2.2 wet g roots L(-1) septage); instead, nitrifiers were found almost entirely (90%) associated with suspended septage particulates. The role of root-associated nitrifiers in nitrification was examined in laboratory batch experiments where high plant root concentrations (7.4 wet g L(-1), representing a 38% net increase in total nitrifier populations over plant-free controls) yielded a corresponding increase (55%) in the non-substrate-limited nitrification rate (V(max)). However, within the full-scale septage-treating pond system, nitrification and denitrification rates remained unchanged when plant root concentrations were increased to 7.1 g roots L(-1) (achieved by increasing the surface area available for plants while maintaining the same tank volume). Under normal facility operating conditions, nitrification was limited by ammonium concentration, not nitrifier availability. Maximizing plant root concentrations was found to be an inefficient mechanism for increasing nitrification in organic particulate-rich wastewaters such as septage.  相似文献   

3.
A sequencing batch reactor (SBR) was inoculated with mixed nitrifying bacteria from an anoxic tank at the conventional activated sludge wastewater treatment plant in Nongkhaem, Bangkok, Thailand. This enriched nitrifying culture was maintained under anaerobic conditions using ammonium (NH(4)(+)) as an electron donor and nitrite (NO(2)(-)) as an electron acceptor. Autotrophic ammonium oxidizing bacteria survived under these conditions. The enrichment period for anammox culture was over 100 days. Both ammonium and nitrite conversion rates were proportional to the biomass of ammonium oxidizing bacteria; rates were 0.08 g N/gV SS/d and 0.05 g N/g VSS/d for ammonium and nitrite, respectively, in a culture maintained for 3 months at 42 mg N/L ammonium. The nitrogen transformation rate at a ratio of NH(4)(+)-N to NO(2)(-)-N of 1:1.38 was faster, and effluent nitrogen levels were lower, than at ratios of 1:0.671, 1:2.18, and 1:3.05. Fluorescent in situ hybridization (FISH) was used to identify specific autotrophic ammonium oxidizing bacteria (Nitrosomonas spp., Candidatus Brocadia anammoxidans, and Candidatus Kuenenia stuttgartiensis). The ammonium oxidizing culture maintained at 42 mg N/L ammonium was enriched for Nitrosomonas spp. (30%) over Candidati B. anammoxidans and K. stuttgartiensis (2.1%) while the culture maintained at 210 mg N/L ammonium was dominated by Candidati B. anammoxidans and K. stuttgartiensis (85.6%). The specific nitrogen removal rate of anammox bacteria (0.6 g N/g anammox VSS/d) was significantly higher than that of ammonium oxidizing bacteria (0.4 g N/g Nitrosomonas VSS/d). Anammox bacteria removed up to 979 mg N/L/d of total nitrogen (ammonium:nitrite concentrations, 397:582 mg N/L). These results suggest significant promise of this approach for application to wastewater with high nitrogen but low carbon content, such as that found in Bangkok.  相似文献   

4.
Soil biotic and abiotic factors strongly influence nitrogen (N) availability and increases in nitrification rates associated with the application of manure. In this study, we examine the effects of edaphic properties and a dairy (Bos taurus) slurry amendment on N availability, nitrification rates and nitrifier communities. Soils of variable texture and clay mineralogy were collected from six USDA-ARS research sites and incubated for 28 d with and without dairy slurry applied at a rate of ~300 kg N ha(-1). Periodically, subsamples were removed for analyses of 2 M KCl extractable N and nitrification potential, as well as gene copy numbers of ammonia-oxidizing bacteria (AOB) and archaea (AOA). Spearman coefficients for nitrification potentials and AOB copy number were positively correlated with total soil C, total soil N, cation exchange capacity, and clay mineralogy in treatments with and without slurry application. Our data show that the quantity and type of clay minerals present in a soil affect nitrifier populations, nitrification rates, and the release of inorganic N. Nitrogen mineralization, nitrification potentials, and edaphic properties were positively correlated with AOB gene copy numbers. On average, AOA gene copy numbers were an order of magnitude lower than those of AOB across the six soils and did not increase with slurry application. Our research suggests that the two nitrifier communities overlap but have different optimum environmental conditions for growth and activity that are partly determined by the interaction of manure-derived ammonium with soil properties.  相似文献   

5.
To gain more insight into the interactions between anaerobic bacteria and reactor performances (chemical oxygen demand-COD, 2,4 dichlorophenol-2,4 DCP removals, volatile fatty acid-VFA, and methane gas productions) and how they depended on operational conditions the microbial variations in the anaerobic granular sludge from an upflow anaerobic sludge blanket (UASB) reactor treating 2,4 DCP was studied. The study was composed of two parts. In the first part, the numbers of methanogens and acedogens in the anaerobic granular sludge were counted at different COD removal efficiencies. The relationships between the numbers of methanogens, the methane gas production and VFA production were investigated. The COD removal efficiencies increased to 74% from 30% while the number of total acedogens decreased to 10 from 30 cfu ml(-1). The number of total methanogens and acedogens varied between 11 x 10(3) and 10 x 10(9)MPN g(-1) and 10 and 30 cfu ml(-1) as the 2,4 DCP removal efficiencies were obtained between 60% and 99%, respectively. It was seen that, as the number of total acedogens decreased, the COD removal efficiencies increased. However, the number of total methanogens increased as the COD removal efficiencies increased. Correlations between the bacterial number and with the removal efficiencies obtained in different operational conditions were investigated. From the results presented in this paper a high correlation between the number of bacteria, COD removals, methane gas percentage, 2,4 DCP removals and VFA was observed. In the second part, methanogen bacteria in the anaerobic granular sludge were identified. Microbial observations and biochemical tests were applied to identify the anaerobic microorganisms from the anaerobic granular sludge. In the reactor treating 2,4 DCP, Methanobacterium bryantii, Methanobacterium formicicum, Methanobrevibacter smithii, Methanococcus voltae, Methanosarcina mazei, Methanosarcina acetivorans, Methanogenium bourgense and Methanospirillum hungatei were identified.  相似文献   

6.
Nitrogen removal in laboratory model leachfields with organic-rich layers   总被引:1,自引:0,他引:1  
Septic system leachfields can release dissolved nitrogen in the form of nitrate into ground water, presenting a significant source of pollution. Low cost, passive modifications, which increase N removal in traditional leachfields, could substantially reduce the overall impact on ground water resources. Bench-scale laboratory models were constructed to evaluate the effect of placing an organic layer below the leachfield on total N removal. The organic layer provides a carbon source for denitrification. Column units representing septic leachfields were constructed with sawdust-native soil organic layers placed 0.45 m below the influent line and with thicknesses of 0.0, 0.3, 0.6, and 0.9 m. Using a synthetic septic tank effluent, NO(3)-N concentrations at 3.8 m below the influent line were consistently below 1 mg L(-1) during 10 months of operation compared with a NO(3)-N concentration of nearly 12 mg L(-1) in the control column. The average total N removal increased from 31% without the organic layer to 67% with the organic layer. Total N removal appeared limited by the extent of organic N oxidation and nitrification in the 0.45-m aerobic zone. Design modifications targeted at improving nitrification above the organic layer may further increase total N removal. Increased organic layer thicknesses from 0.3 m to 0.9 m did not significantly improve average total N removal, but caused a shift in residual nitrogen from organic N to ammonia N. Results indicate that addition of a layer of carbon source material at least 0.3 m thick below a standard leachfield substantially improves total N removal.  相似文献   

7.
CAST工艺脱氮的研究   总被引:5,自引:0,他引:5  
张效先  董晶  郝冀 《四川环境》2004,23(2):28-30,44
在CAST工艺中,通过控制活性污泥工艺的反应环境可以使氮的去除过程优化。将传统的处理方法和周期循环运行过程的处理效果做长时间的比较,通过检测比较硝化速率,同时硝化反硝化以及除磷效果,可知,当运行负荷相同时,周期循环运行过程是一种很有优势的污水处理方法。  相似文献   

8.
Acrylamide (AMD), a neurotoxin and suspected carcinogen, is present at concentrations of up to 0.05% in linear anionic polyacrylamide, which is under evaluation as a temporary sealant in unlined irrigation canal systems across the United States. We examined the microbially mediated degradation of AMD and diversity of AMD-degrading microbial physiotypes in the Rocky Ford Highline Canal, Colorado to better constrain the potential fate ofAMD in a canal environment. Microorganisms able to use AMD (500 mg L(-1)) as a sole nitrogen source were relatively abundant (2.3 x 10(3) to 9.4 x 10(3) cells mL(-1) in water and 4.2 x 10(3) to 2.3 x 10(5) cells g(-1) in sediment). Only sediment samples contained microorganisms able to use AMD as a sole carbon source. Acrylamide (up to 100 mg L(-1)) was efficiently removed from amended canal water and sediment slurries under aerobic conditions, but no AMD degradation was observed in abiotic controls. Anaerobic degradation of AMD by nitrate-, sulfate-, and iron-reducing microorganisms was also tested, with nitrate reducers affecting the highest amounts of AMD removal (70.3-85%) after 60 d. All representatives (n=15) from a collection of 256 AMD-degrading microbial isolates from Rocky Ford Highline Canal were closely related to well characterized environmental bacteria capable of facultative nitrate respiration. Our results demonstrate that natural microbial populations within this canal are capable of AMD degradation under aerobic and anaerobic conditions and that this degradation is performed by naturally abundant bacteria likely to be present in other freshwater irrigation canals or similar lotic habitats.  相似文献   

9.
A study was conducted to examine N and P removal by a laboratory-scale extended aeration treatment system employing oxidation-reduction potential (ORP) controlled aeration. The system was provided with a 90-L aeration tank. When ORP controlled aeration was applied, the aeration tank was divided into three zones, namely the ORP zone (45 L), the anaerobic zone (27 L) and the aerobic zone (18 L). An external anoxic selector of 3.8 L in volume was also added. An ORP set point of 70 mV was used for the ORP zone. The extended aeration treatment system operating without the ORP controlled aeration was used as the control.COD removal (97%) was not affected, but both N and P removal were enhanced significantly in the ORP reactor. Total N removal efficiency was increased from 49.1% (control) to 83.5%. Almost all P was captured (99%), leaving an average of 0.09 mg L−1 P in the effluent. The ORP reactor yielded a sludge P content of 3.1%, compared to only 1.8% for the control. This indicated luxury P uptake in ORP reactor. Very significant P release and denitrification were found in the anoxic selector. Fairly good simultaneous nitrification and denitrification had occurred in the ORP zone. However, P release was very limited in the anoxic zone. However, anoxic P uptake and nitrification were found in this zone.Low F/M bulking was observed in both the control and ORP operation before the installation of a selector. Bacterial Type 0041 was identified as the predominant bulking organism. For the Control, an aerobic selector cured the bulking problem in one sludge age while an anoxic selector fixed up the problem during the ORP operation.  相似文献   

10.
Thiocyanate (SCN) compounds in photo-processing wastewater (PPWW) could be treated by an SBR system without any release of thiocyanate to the atmosphere during the aeration step. An SCN loading greater than 84 g m(-3)d(-1) showed negative effects on the growth of bio-sludge and removal efficiencies of the system. The acclimatization period of the system was increased with an increase in SCN concentration or loading. The COD, BOD(5), TKN, and SCN removal efficiencies were 96.0 +/- 1.6%, 72 +/- 2%, 49 +/- 5%, and 82 +/- 3%, respectively, under an SCN loading of up to 84 g m(-3)d(-1). The removal efficiency of the system was repressed by SCN due to the repressed growth rate of nitrification bacteria. However, the removal efficiency could be increased with an increase in HRT or a decrease in SCN loading. Also, increases in HRT or decreases in SCN loading led to increased sludge age or solid retention time (SRT) and decreased the sludge volume index (SVI) value. The SRT and SVI of the system with synthetic wastewater containing 840 mg l(-1) SCN under an HRT of 3 days (SCN loading of 280 g m(-3)d(-1)) were 3.9 +/- 0.7 days and 65 +/- 4 ml g(-1), respectively, while they were 11.2+/-0.8 days and 55 +/- 6 ml g(-1), respectively under an HRT of 10 days (SCN loading of 84 g m(-3)d(-1)).  相似文献   

11.
采用SBR系统处理城市垃圾渗滤液,研究了不同C/N、130和MLSS对同时硝化反硝化脱氮效率的影响。结果表明:总氮去除率随着C/N、MLSS升高而上升;DO越低,总氮去除率越高;当进水CODCr与NH3-N浓度分别为420mg/L和112mg/L,DO和MLSS分别为1.5mg/L和5016mg/L时,CODCr、NH3-N及TN去除率分别为81.54%、96.57%和46.66%。根据试验结果,对同时硝化反硝化一个代表周期作了分析。  相似文献   

12.
Constructed wetlands (CW) usually require large land areas for treating wastewater. This study evaluated the feasibility of applying CW with less land requirement by operating a group of microcosm wetlands at a hydraulic retention time (HRT) of less than 4 d in southern Taiwan. An artificial wastewater, simulating municipal wastewater containing 200 mg L(-1) of chemical oxygen demand (COD), 20 mg L(-1) of NH4+-N (AN), and 20 mg L(-1) of PO4(3-)-P (OP), was the inflow source. Three emergent plants [reed, Phragmites australis (Cav.) Trin. ex Steud.; water primrose, Ludwigia octovalvis (Jacq.) P.H. Raven; and dayflower, Commelina communis L.] and two floating plants [water spinach, Ipomoea aquatica Forssk.; and water lettuce, Pistia stratiotes L.] plants were tested. The planted systems showed more nutrient removal than unplanted systems; however, the type of macrophytes in CW did not make a major difference in treatment. At the HRTs of 2 to 4 d, the planted system maintained greater than 72,80, and 46% removal for COD, AN, and OP, respectively. For AN and OP removal, the highest efficiencies occurred at the HRT of 3 d, whereas maximum removal rates for AN and OP occurred at the HRT of 2 d. Both removal rates and efficiencies were reduced drastically at the HRT of 1 d. Removals of COD, OP, and AN followed first-order reactions within the HRTs of 1 to 4 d. The efficient removals of these constituents obtained with HRT between 2 and 4 d indicated the possibility of using a CW system for wastewater treatment with less land requirement.  相似文献   

13.
The microbial fuel cell (MFC) was employed to convert reductive potential in sulfate-laden wastewaters to electricity via reducing sulfate to sulfide by sulfate-reducing bacteria and then oxidizing sulfide to sulfur by exoelectrogens. The excess sulfide presented in the anodic solution inhibited the activities of functional strains in MFC. This study proposed the use of a two-anode system, with a sulfate-reducing bacteria anode and an exoelectrogen (C27) anode in the anodic cell, to efficiently convert reductive potential of sulfate into electricity. The microbial community of sulfate-reducing bacteria anode and the electrochemical characteristics of the studied MFCs were reported.  相似文献   

14.
人工湿地-氧化塘工艺组合对氮和磷去除效果研究   总被引:4,自引:1,他引:4  
本文在小试规模上,研究了下行流湿地、推流床湿地、氧化塘和兼性塘四种处理单元的四种工艺组合对氮、磷的去除效果,研究结果表明:下行流湿地 氧化塘工艺组合具有较好的充氧效果,推流床湿地后置也可以提高出水的溶解氧。四种工艺组合对离子和TP、IP的去除无显著差异。人工湿地中硝化作用的发生有利于NH^ 4f-N的去除,增加氧化塘可以提高系统的硝化能力,但同时也会增加出水中的N0^-3-N浓度。  相似文献   

15.
Nitrous oxide (N?O) is a long-lived and potent greenhouse gas produced during microbial nitrification and denitrification. In developed countries, centralized water reclamation plants often use these processes for N removal before effluent is used for irrigation or discharged to surface water, thus making this treatment a potentially large source of N?O in urban areas. In the arid but densely populated southwestern United States, water reclamation for irrigation is an important alternative to long-distance water importation. We measured N?O concentrations and fluxes from several wastewater treatment processes in urban southern California. We found that N removal during water reclamation may lead to in situ N?O emission rates that are three or more times greater than traditional treatment processes (C oxidation only). In the water reclamation plants tested, N?O production was a greater percentage of total N removed (1.2%) than traditional treatment processes (C oxidation only) (0.4%). We also measured stable isotope ratios (δN and δO) of emitted N?O and found distinct δN signatures of N?O from denitrification (0.0 ± 4.0 ‰) and nitrification reactors (-24.5 ± 2.2 ‰), respectively. These isotope data confirm that both nitrification and denitrification contribute to N?O emissions within the same treatment plant. Our estimates indicate that N?O emissions from biological N removal for water reclamation may be several orders of magnitude greater than N?O emissions from agricultural activities in highly urbanized southern California. Our results suggest that wastewater treatment that includes biological nitrogen removal can significantly increase urban N?O emissions.  相似文献   

16.
Floating, organic crusts on liquid manure, stored as a result of animal production, reduce emission of ammonia (NH3) and other volatile compounds during storage. The occurrence of NO2- and NO3- in the crusts indicate the presence of actively metabolizing NH3-oxidizing bacteria (AOB) which may be partly responsible for this mitigation effect. Six manure tanks with organic covers (straw and natural) were surveyed to investigate the prevalence and potential activity ofAOB and its dependence on the O2 availability in the crust matrix as studied by electrochemical profiling. Oxygen penetration varied from <1 mm in young, poorly developed natural crusts and old straw crusts, to several centimeters in the old natural crusts. The AOB were ubiquitously present in all crusts investigated, but nitrifying activity could only be detected in old natural crusts and young straw crust with high O2 availability. In old natural crusts, total potential NH3 oxidation rates were similar to reported fluxes of NH3 from slurry without surface crust. These results indicate that old, natural surface crusts may develop into a porous matrix with high O2 availability that harbors an active population of aerobic microorganisms, including AOB. The microbial activity may thus contribute to a considerable reduction of ammonia emissions from slurry tanks with well-developed crusts.  相似文献   

17.
Nutrient removal from domestic strength synthetic wastewater by an alternating pumped flow sequencing batch biofilm reactor (APFSBBR) was investigated in this laboratory study. The APFSBBR comprised two reactor tanks (Reactors 1 and 2) with two identical biofilm modules of vertical tubular plastic media with a high specific surface area, one in each tank. The APFSBBR was operated in cycles of four phases: fill, anaerobic, aerobic, and draw. During the fill phase, Reactor 1 was half-filled with domestic strength synthetic wastewater. During the subsequent anaerobic phase, most of the phosphorus release took place from the submerged biofilm in this reactor. In the aerobic phase, the wastewater was circulated by pumps between Reactors 1 and 2, resulting in denitrification at the start of the aerobic phase due to low oxygen concentrations, followed by nitrification and luxury uptake of phosphorus when oxygen concentrations increased. During the draw phase, Reactor 2 was half-emptied of the treated water. At the chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) loading rates on the total biofilm area of 3.20 g COD, 0.33 g TN, and 0.06 g TP m(-2) d(-1), the removal efficiencies were 97, 85, and 92% for COD, TN, and TP, respectively.  相似文献   

18.
Improved understanding of the importance of different surfaces in supporting attached nitrifying and denitrifying bacteria is essential if we are to optimize the N removal capacity of treatment wetlands. The aim of this study was therefore to examine the nitrifying and denitrifying capacity of different surfaces in a constructed treatment wetland and to assess the relative importance of these surfaces for overall N removal in the wetland. Intact sediment cores, old pine and spruce twigs, shoots of Eurasian watermilfoil (Myriophyllum spicatum L.), and filamentous macro-algae were collected in July and November 1999 in two basins of the wetland system. One of the basins had been constructed on land that contained lots of wood debris, particularly twigs of coniferous trees. Potential nitrification was measured using the isotope-dilution technique, and potential denitrification was determined using the acetylene-inhibition technique in laboratory microcosm incubations. Nitrification rates were highest on the twigs. These rates were three and 100 times higher than in the sediment and on Eurasian watermilfoil, respectively. Potential denitrification rates were highest in the sediment. These rates were three times higher than on the twigs and 40 times higher than on Eurasian watermilfoil. The distribution of denitrifying bacteria was most likely due to the availability of organic material, with higher denitrification rates in the sediment than on surfaces in the water column. Our results indicate that denitrification, and particularly nitrification, in treatment wetlands could be significantly increased by addition of surfaces such as twigs.  相似文献   

19.
A promising alternative to conventional single phase processing, the use of sequential anaerobic-aerobic digestion, was extensively investigated on municipal sewage sludge from a full scale wastewater treatment plant. The objective of the work was to evaluate sequential digestion performance by testing the characteristics of the digested sludge in terms of volatile solids (VS), Chemical Oxygen Demand (COD) and nitrogen reduction, biogas production, dewaterability and the content of proteins and polysaccharides. VS removal efficiencies of 32% in the anaerobic phase and 17% in the aerobic one were obtained, and similar COD removal efficiencies (29% anaerobic and 21% aerobic) were also observed. The aerobic stage was also efficient in nitrogen removal providing a decrease of the nitrogen content in the supernatant attributable to nitrification and simultaneous denitrification. Moreover, in the aerobic phase an additional marked removal of proteins and polysaccharides produced in the anaerobic phase was achieved. The sludge dewaterability was evaluated by determining the Optimal Polymer Dose (OPD) and the Capillary Suction Time (CST) and a significant positive effect due to the aerobic stage was observed. Biogas production was close to the upper limit of the range of values reported in the literature in spite of the low anaerobic sludge retention time of 15 days. From a preliminary analysis it was found that the energy demand of the aerobic phase was significantly lower than the recovered energy in the anaerobic phase and the associated additional cost was negligible in comparison to the saving derived from the reduced amount of sludge to be disposed.  相似文献   

20.
Little information is available on the effect of phosphorus (P) enrichment on nitrogen (N) biogeochemical cycling in wetland soil. Of particular importance are the coupled nitrification-denitrification reactions that regulate the microbially mediated loss of N from wetland systems. Soils from the northern Florida Everglades have been affected by P loading from surface waters over the past 40 years. Elevated P levels have been show to have an effect on the size and activity of the microbial pool and a decrease in the N to P ratio of the microbial biomass. The objective of the study was to determine if P enrichment in soils affected microbial activities related to nitrification and denitrification in these flooded, peat soils. Potential nitrification rates of soil and detritus were determined using constantly stirred reactors under aerobic conditions while denitrification rates were determined from anaerobic incubations of slurry. Nitrification rates showed two distinct linear phases, a slower initial rate, signifying activity of nitrifiers present, followed by a sharp increase in the NH4+ conversion rate indicative of maximum potential rates. Initial rates of nitrification were highest in the surficial detrital layer decreasing with soil depth and did not correlate to soil total P. The potential rates of nitrification were 13 times greater than the initial rates. Potential denitrification rates were highest in the detritus and 0- to 10-cm soil interval with significantly lower values in the 10- to 30-cm soil interval, significantly correlated to total P of the soil. A significant (P < 0.01) relationship was seen between potential denitrification rates and soil total P suggesting an increased rate of N removal from P-enriched regions of the northern Everglades.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号