首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 812 毫秒
1.
In this paper, new correlations for predicting density and the solubility of carbon dioxide in pure water as well as the aqueous sodium chloride solutions are developed, where using the generated interaction parameters, the solubility model is applied to correlate the carbon dioxide solubilities in aqueous solutions for temperatures between 300 and 400 K and pressures from 50 to 700 bar. The correlation developed for predicting density of carbon dioxide accurately works for pressures between 25 and 700 bar and temperatures between 293 and 433 K. The results have been compared with the reported data and it was found that there is a good agreement between the prediction results and observed values.  相似文献   

2.
A column of silica gel was employed to contact water with flue gas (CO2/N2) mixture to assess if CO2 can be separated by hydrate crystallization. Three different silica gels were used. One with a pore size of 30 nm (particle size 40–75 μm) and two with a pore size of 100 nm and particle sizes of 40–75 and 75–200 μm respectively. The observed trends indicate that larger pores and particle size increase the gas consumption, CO2 recovery, separation factor and water conversion to hydrate. Thus, the gel (gel #3) with the larger particle size and larger pore size was chosen to carry out experiments with concentrated CO2 mixtures and for experiments in the presence of tetrahydrofuran (THF), which itself is a hydrate forming substance. Addition of THF reduces the operating pressure in the crystallizer but it also reduces the gas uptake. Gel #3 was also used in experiments with a fuel gas (CO2/H2) mixture in order to recover CO2 and H2. It was found that the gel column performs as well as a stirred reactor in separating the gas components from both flue gas and fuel gas mixtures. However, the crystallization rate and hydrate yield are considerably enhanced in the former. Finally the need for stirring is eliminated with the gel column which is enormously beneficial economically.  相似文献   

3.
In the present work, simple-to-use predictive tool, which is simpler than current available models and involves a fewer number of parameters, requiring less complicated and shorter computations, is formulated to arrive at an appropriate estimation of the transport properties (namely viscosity and thermal conductivity) of carbon dioxide (CO2) as a function of pressure and temperature. The correlation developed accurately works for temperatures between 260 and 450 K as well as pressures between 10 and 70 MPa which is the range of pressure that is widely considered in CO2 sequestration. Results have been compared with the reported data and excellent agreement has been obtained between the predicted results and observed values. The average absolute deviations were found to be 1.1 and 1.3% for viscosity and thermal conductivity of carbon dioxide respectively. Proposed simple predictive tool and can be of immense practical value for the engineers to have a quick check on the transport properties (namely viscosity and thermal conductivity) of carbon dioxide at various temperatures and pressures without performing any experimental measurements. In particular, personnel dealing with regulatory bodies of greenhouse gas control and process industries would find the proposed approach to be user friendly involving transparent calculations with no complex expressions.  相似文献   

4.
Concentrated, aqueous piperazine (PZ) is a novel solvent for carbon dioxide (CO2) capture by absorption/stripping. One of the major advantages of PZ is its resistance to thermal degradation and oxidation.At 135 and 150 °C, 8 m PZ is up to two orders of magnitude more resistant to thermal degradation than 7 m monoethanolamine (MEA). After 18 weeks at 150 °C, only 6.3% of the initial PZ was degraded, yielding an apparent first order rate constant for amine loss of 6.1 × 10?9 s?1. PZ was the most resistant amine tested, with the other screened amines shown in order of decreasing resistance: 7 m 2-amino-2-methyl-1-propanol, 7 m Diglycolamine®, 7 m N-(2-hydroxyethyl)piperazine, 7 m MEA, 8 m ethylenediamine, and 7 m diethylenetriamine. Thermal resistance allows the use of higher temperatures and pressures in the stripper, potentially leading to overall energy savings.Concentrated PZ solutions demonstrate resistance to oxidation compared to 7 m MEA solutions. Experiments investigating metal-catalyzed oxidation found that PZ solutions were 3–5 times more resistant to oxidation than MEA. Catalysts tested were 1.0 mM iron (II), 4.0–5.0 mM copper (II), and a combination of stainless steel metals (iron (II), nickel (II), and chromium (III)). Inhibitor A reduced PZ degradation catalyzed by iron (II) and copper (II).  相似文献   

5.
The kinetics of the reaction between carbon dioxide (CO2) and mixed solutions of methyldiethanolamine (MDEA) and piperazine (PZ) was investigated experimentally in a laminar jet apparatus. The experimental kinetic data were obtained under no interfacial turbulence and over a temperature range from 313 to 333 K, MDEA/PZ wt% concentration ratios of 27/3, 24/6 and 21/9, and CO2 loadings from 0.0095 to 0.33 mol CO2/mol amine. In addition, a new absorption-rate/kinetics model for the kinetics of the mixed of solvents was developed, which takes into account the coupling between chemical equilibrium, mass transfer, and all possible chemical reactions involved in the CO2 reaction with MDEA/PZ solvent. The partial differential equations of this model were solved by the finite element numerical method (FEM) based on COMSOL software. The obtained experimental kinetics data were used to obtain the kinetic parameters of CO2 absorption into MDEA/PZ solutions. The reaction-rate constant obtained for PZ blended with MDEA was kPZ = 2.572 × 1012 exp(?5211/T). The 2D model for the blended amines MDEA/PZ has revealed the concentration profiles of all the species in both the radial and axial directions of the laminar jet which has enabled a better understanding of the correct sequence in which the reaction steps involved in the reactive absorption of CO2 in aqueous mixed MDEA/PZ solution occur. It also revealed that PZ may be depleted by the time the solvent blend of MDEA/PZ with a loading greater than 0.015 mol/mol amine is exposed to CO2 from the top of the laminar jet absorber.  相似文献   

6.
The carbon dioxide capture potential of amine amino acid salts (AAAS), formed by mixing equinormal amounts of amino acids; e.g. glycine, β-alanine and sarcosine, with an organic base; 3-(methylamino)propylamine (MAPA), was assessed by comparison with monoethanolamine (MEA), and with amino acid salt (AAS) from amino acid neutralized with an inorganic base; potassium hydroxide (KOH). Carbon dioxide absorption and desorption experiments were carried out on the solvent systems at 40 °C and 80 °C respectively. Experimental results showed that amine amino acid salts have similar CO2 absorption properties to MEA of the same concentration. They also showed good signs of stability during the experiments. Amino acid salt from an inorganic base, KOH, showed lower performance in CO2 absorption than the amine amino acid salts (AAAS) mainly due to a lower equilibrium temperature sensitivity. AAAS showed better performance than MEA of same concentration. AAAS from neutralization of sarcosine with MAPA showed the best performance and the performance could be further enhanced when promoted with excess MAPA. The solvent comparison is semi-quantitative since the bubble structure, and thus gas–liquid interfacial area may not be the same for all experiments, however superficial gas velocities were kept constant.  相似文献   

7.
Concentrated, aqueous piperazine (PZ) has been investigated as a novel amine solvent for carbon dioxide (CO2) absorption. The CO2 absorption rate of aqueous PZ is more than double that of 7 m MEA and the amine volatility at 40 °C ranges from 11 to 21 ppm. Thermal degradation is negligible in concentrated, aqueous PZ up to a temperature of 150 °C, a significant advantage over MEA systems. Oxidation of concentrated, aqueous PZ is appreciable in the presence of copper (4 mM), but negligible in the presence of chromium (0.6 mM), nickel (0.25 mM), iron (0.25 mM), and vanadium (0.1 mM). Initial system modeling suggests that 8 m PZ will use 10–20% less energy than 7 m MEA. The fast mass transfer and low degradation rates suggest that concentrated, aqueous PZ has the potential to be a preferred solvent for CO2 capture.  相似文献   

8.
This review presents a summary of the main interactions that occur during the carbon dioxide (CO2) adsorption at the surface of steel slags with basic (CaO, MgO), amphoteric (Al2O3, Cr2O3, TiO2, MnO, iron oxides) and acidic (SiO2) oxides. The high content of metal oxides in steel slags gives them a great potential to adsorb CO2, reaching a saturation value of about 0.25 kg of CO2/kg of slag. CO2 is physisorbed and chemisorbed on the most of metal oxide types. Generally, the CO2 physisorption on the basic and amphoteric metal oxides involves an electrostatic interaction between the CO2 and the cation from the oxides while the CO2 chemisorption rather implicates the basic sites that acts as the electron donor, and which are associated with O2? ions localized at surface defects. These interactions result in the formation of carbonates (monodentates or unidentates and bidentates). The affinity of oxides for the CO2 and the carbonate formation principally depend of the strength and number of basic sites at their surface and varies as following: basic oxides > amphoteric oxides > acidic oxides. The basic metal oxides generally represent the best electron donors and thus the best CO2 adsorbents due to the high basicity and their great number of reaction sites. Hence, it appears that the surface structure of basic and amphoteric metal oxides which may favour their interaction with the CO2, as well as their basicity is the determinant factor contributing to the formation of carbonate species. The molecular analysis of CO2 adsorption on steel slag metal oxides will provide useful data to identify rate-controlling mechanisms and should be considered for the development of new effective methods for the capture of atmospheric CO2 emissions released from industries.  相似文献   

9.
In order to evaluate the risk of hydrate formation in CO2 transport one has to be able to predict the water content in the fluid phase in equilibrium with the CO2-hydrate. A literature review has identified some knowledge gaps, for example, there are no results available at temperatures lower than 243.15 K (?30 °C); and none of the models found in literature predicts the water content with high accuracy. A model based on equality of water fugacity in fluid and hydrate phase is presented here and used for the predictions of water content in equilibrium with hydrates. Although this model gives better accuracy in the overall temperature and pressure ranges of measurements than the models found in the literature, it is not accurate enough to satisfy the requirements of CO2 transport. The simulation results also show that it is possible to form hydrate at low water content, such as xw = 50 vppm, if temperature is low enough. In order to verify the results and improve the model accuracy further, more experimental data in a larger temperature and pressure region are required.  相似文献   

10.
Experimental work is performed with a 5A zeolite on a small laboratory column with heating from the wall. Carbon dioxide adsorption occurs at atmospheric pressure and different CO2 concentrations in nitrogen. Comparisons of different methods of desorption by heating, purge and/or vacuum are studied. Desorption by heating only leads to almost pure CO2 (around 99% purity) and a recovery nearly linear to the heating temperature, ranging from 45% at 130 °C to 79% at 210 °C. Recovery can be subsequently increased with a nitrogen purge to more than 98% but the recovered carbon dioxide is diluted due to the dispersive character of the desorption wave and the operation time is long. Increasing the flow rate decreases the desorption time but has no effect on the purity because the total purge volume remains about the same. Substitution of the purge step with a vacuum step leads to pure CO2 and almost total recovery. Desorption under vacuum only without heating leads to pure CO2 (around 99% purity) but limited recovery (85% in the present work).Desorption under vacuum seems to be more simple for large-scale applications. When using a water liquid ring pump, the temperature of the ring must be kept as low as possible to provide a high operating capacity.  相似文献   

11.
The chilled ammonia process absorbs the CO2 at low temperature (2–10 °C). The heat of absorption of carbon dioxide by ammonia is significantly lower than for amines. In addition, degradation problems can be avoided and a high carbon dioxide capacity is achieved. Hence, this process shows good perspectives for decreasing the heat requirement. However, a scientific understanding of the processes is required. The thermodynamic properties of the NH3–CO2–H2O system were described using the extended UNIQUAC electrolyte model developed by Thomsen and Rasmussen in a temperature range from 0 to 110 °C and pressure up to 100 bars. The results show that solid phases consisting of ammonium carbonate and bicarbonate are formed in the absorber. The heat requirements in the absorber and in the desorber have been studied. The enthalpy calculations show that a heat requirement for the desorber lower than 2 GJ/ton CO2 can be reached.  相似文献   

12.
By analyzing how the largest CO2 emitting electricity-generating region in the United States, the East Central Area Reliability Coordination Agreement (ECAR), responds to hypothetical constraints on greenhouse gas emissions, the authors demonstrate that there is an enduring role for post-combustion CO2 capture technologies. The utilization of pulverized coal generation with carbon dioxide capture and storage (PC + CCS) technologies is particularly significant in a world where there is uncertainty about the future evolution of climate policy and in particular uncertainty about the rate at which the climate policy will become more stringent. The paper's analysis shows that within this one large, heavily coal-dominated electricity-generating region, as much as 20–40 GW of PC + CCS could be operating before the middle of this century. Depending upon the state of PC + CCS technology development and the evolution of future climate policy, the analysis shows that these CCS systems could be mated to either pre-existing PC units or PC units that are currently under construction, announced and planned units, as well as PC units that could continue to be built for a number of decades even in the face of a climate policy. In nearly all the cases analyzed here, these PC + CCS generation units are in addition to a much larger deployment of CCS-enabled coal-fueled integrated gasification combined cycle (IGCC) power plants. The analysis presented here shows that the combined deployment of PC + CCS and IGCC + CCS units within this one region of the U.S. could result in the potential capture and storage of between 3.2 and 4.9 Gt of CO2 before the middle of this century in the region's deep geologic storage formations.  相似文献   

13.
The purpose of this article is to study the energy and carbon dioxide intensities of Thailand's steel industry and to propose greenhouse gas emission trends from the year 2011 to 2050 under plausible scenarios. The amount of CO2 emission from iron and steel production was calculated using the 2006 Intergovernmental Panel on Climate Change (IPCC) guidelines in the boundary of production process (gate to gate). The results showed that energy intensity of semi-finished steel product was 2.84 GJ/t semi-finished steel and CO2 intensity was 0.37 tCO2eq/t semi-finished steel. Energy intensity of steel finishing process was 1.86 GJ/t finished steel and CO2 intensity was 0.16 tCO2eq/t finished steel. Using three plausible scenarios from Thailand's steel industry, S1: without integrated steel plant (baseline scenario), S2: with a traditional integrated BF–BOF route and S3: with an alternative integrated DR-EAF route; the Greenhouse Gas emissions from the year 2011 to 2050 were projected. In 2050, the CO2 emission from S1 (baseline scenario) was 4.84 million tonnes, S2 was 21.96 million tonnes increasing 4.54 times from baseline scenario. The CO2 emission from S3 was 7.12 million tonnes increasing 1.47 times from baseline scenario.  相似文献   

14.
Large-scale, dedicated commercial biomass energy systems are a potentially large contributor to meeting global climate policy targets by the end of the century. We use an integrated assessment model of energy and agriculture systems to show that, given a climate policy in which terrestrial carbon is appropriately valued equally with carbon emitted from the energy system, biomass energy has the potential to be a major component of achieving these low concentration targets. A key aspect of the research presented here is that the costs of processing and transporting biomass energy at much larger scales than current experience are explicitly incorporated into the modeling. From the scenario results, 120–160 EJ/year of biomass energy is produced globally by midcentury and 200–250 EJ/year by the end of this century. In the first half of the century, much of this biomass is from agricultural and forest residues, but after 2050 dedicated cellulosic biomass crops become the majority source, along with growing utilization of waste-to-energy. The ability to draw on a diverse set of biomass-based feedstocks helps to reduce the pressure for drastic large-scale changes in land use and the attendant environmental, ecological, and economic consequences those changes would unleash. In terms of the conversion of bioenergy feedstocks into value added energy, this paper demonstrates that biomass is and will continue to be used to generate electricity as well as liquid transportation fuels. A particular focus of this paper is to show how climate policies and technology assumptions – especially the availability of carbon dioxide capture and storage (CCS) technologies – affect the decisions made about where the biomass is used in the energy system. The potential for net-negative electric sector emissions through the use of CCS with biomass feedstocks provides an attractive part of the solution for meeting stringent emissions constraints; we find that at carbon prices above $150/tCO2, over 90% of biomass in the energy system is used in combination with CCS. Despite the higher technology costs of CCS, it is a very important tool in controlling the cost of meeting a target, offsetting the venting of CO2 from sectors of the energy system that may be more expensive to mitigate, such as oil use in transportation. CCS is also used heavily with other fuels such as coal and natural gas, and by 2095 a total of 1530 GtCO2 has been stored in deep geologic reservoirs. The paper also discusses the role of cellulosic ethanol and Fischer–Tropsch biomass derived transportation fuels as two representative conversion processes and shows that both technologies may be important contributors to liquid fuels production, with unique costs and emissions characteristics.  相似文献   

15.
In this study the biosorption of Yellow RL, a metal-complex anionic dye, by dried Rhizopus arrhizus, a filamentous fungus, was investigated as a function of initial solution pH, initial dye concentration and initial salt (sodium chloride) concentration. The fungus exhibited the maximal dye uptake at pH 2 in the absence and in the presence of salt. Dye uptake increased with the dye concentration up to 1000 mg l?1 and diminished considerably in the presence of increasing concentrations of salt up to 50 g l?1. The fungus biosorbed 85.4 mg dye g?1of dried biomass at 100 mg l?1 initial dye concentration in the absence of salt. When 50 g l?1 salt was added to the biosorption medium, this value dropped to 60.8 mg g?1 resulting in 28.8% reduction in biosorption capacity. The Redlich–Peterson and Langmuir–Freundlich were the most suitable adsorption models for describing the biosorption equilibrium data of the dye both individually and in salt containing medium. The pseudo-second-order and saturation type kinetic models depicted the biosorption kinetics accurately for all cases studied. Equilibrium and kinetic constants varied with the level of salt were expressed as a function of salt concentration.  相似文献   

16.
Post-combustion carbonate looping processes are based on the capture of carbon dioxide from the flue gases of an existing power plant in a circulating fluidized bed reactor (CFB) of calcium oxide (the carbonator) particles. The calcination of calcium carbonate in a new oxy-fired CFBC power plant regenerates the sorbent (calcium oxide particles) and obtains high purity carbon dioxide. This communication presents experimental results from a small test facility (30 kWt) operated in continuous mode using two interconnected CFB reactors as carbonator and calciner. Capture efficiencies between 70 and 97% have been obtained under realistic flue gas conditions in the carbonator reactor (temperatures around 650 °C). The similarity between process conditions and those existing in CFBC power plants should allow a rapid scaling up of this technology. The next steps for this process development are also outlined.  相似文献   

17.
This paper summarizes the results of a first-of-its-kind holistic, integrated economic analysis of the potential role of carbon dioxide (CO2) capture and storage (CCS) technologies across the regional segments of the United States (U.S.) electric power sector, over the time frame 2005–2045, in response to two hypothetical emissions control policies analyzed against two potential energy supply futures that include updated and substantially higher projected prices for natural gas. This paper's detailed analysis is made possible by combining two specialized models developed at Battelle: the Battelle CO2-GIS to determine the regional capacity and cost of CO2 transport and geologic storage; and the Battelle Carbon Management Electricity Model, an electric system optimal capacity expansion and dispatch model, to examine the investment and operation of electric power technologies with CCS against the background of other options. A key feature of this paper's analysis is an attempt to explicitly model the inherent heterogeneities that exist in both the nation's current and future electricity generation infrastructure and in its candidate deep geologic CO2 storage formations. Overall, between 180 and 580 gigawatts (GW) of coal-fired integrated gasification combined cycle with CCS (IGCC + CCS) capacity is built by 2045 in these four scenarios, requiring between 12 and 41 gigatonnes of CO2 (GtCO2) storage in regional deep geologic reservoirs across the U.S. Nearly all of this CO2 is from new IGCC + CCS systems, which start to deploy after 2025. Relatively little IGCC + CCS capacity is built before that time, primarily under unique niche opportunities. For the most part, CO2 emissions prices will likely need to be sustained at over $20/tonne CO2 before CCS begins to deploy on a large scale within the electric power sector. Within these broad national trends, a highly nuanced picture of CCS deployment across the U.S. emerges. Across the four scenarios studied here, power plant builders and operators within some North American Electric Reliability Council (NERC) regions do not employ any CCS while other regions build more than 100 GW of CCS-enabled generation capacity. One region sees as much as 50% of its geologic CO2 storage reservoirs’ total theoretical capacity consumed by 2045, while most of the regions still have more than 90% of their potential storage capacity available to meet storage needs in the second half of the century and beyond. A detailed presentation of the results for power plant builds and operation in two key regions: ECAR in the Midwest and ERCOT in Texas, provides further insight into the diverse set of economic decisions that generate the national and aggregate regional results.  相似文献   

18.
The effect of impregnation of activated carbon with Cr2O and Fe2O3 and promotion by Zn2+ on its adsorptive properties of carbon dioxide was studied using a volumetric adsorption apparatus at ambient temperature and low pressures. Slurry and solution impregnation methods were used to compare CO2 capture capacity of the impregnated activated carbon promoted by Zinc. The obtained adsorption isotherms showed that amount of CO2 adsorbed on the samples impregnated by Cr2O was increased about 20% in compare to raw activated carbon. The results also showed that Fe2O3 was not an effective impregnating species for activated carbon modification. Moreover slurry impregnation method showed higher CO2 adsorption capacity in comparison with solution impregnation method. Samples prepared by co-impregnation of two metal species showed more adsorption capacity than samples impregnated by just one metal species individually. Washing the impregnated samples by metal oxide resulted in 15% increase in CO2 adsorption capacities of activated carbons which can be attributed to the metal oxides removal covering the adsorption surface. Decreasing impregnation temperature from 95 to 25 °C in solution method showed a significant increase in CO2 adsorption capacity. Sips equation was found a suitable model fitting to the adsorption data in the range studied.  相似文献   

19.
This study quantified carbon storage and sequestration by urban forests and carbon emissions from energy consumption by several industrial sources in Hangzhou, China. Carbon (C) storage and sequestration were quantified using urban forest inventory data and by applying volume-derived biomass equations and other models relating net primary productivity (NPP) and mean annual biomass increments. Industrial energy use C emissions were estimated by accounting for fossil fuel use and assigning C emission factors. Total C storage by Hangzhou's urban forests was estimated at 11.74 Tg C, and C storage per hectare was 30.25 t C. Carbon sequestration by urban forests was 1,328, 166.55 t C/year, and C sequestration per ha was 1.66 t C/ha/year. Carbon emissions from industrial energy use in Hangzhou were 7 Tg C/year. Urban forests, through sequestration, annually offset 18.57% of the amount of carbon emitted by industrial enterprises, and store an amount of C equivalent to 1.75 times the amount of annual C emitted by industrial energy uses within the city. Management practices for improving Hangzhou's urban forests function of offsetting C emissions from energy consumption are explored. These results can be used to evaluate the urban forests' role in reducing atmospheric carbon dioxide.  相似文献   

20.
The pulp and paper industry is placed in a unique position as biomass used as feedstock is now in increasingly high demand from the energy sector. Increased demand for biomass increases pressure on the availability of this resource, which might strengthen the need for recycling of paper. In this study, we calculate the energy use and carbon dioxide emissions for paper production from three pulp types. Increased recycling enables an increase in biomass availability and reduces life-cycle energy use and carbon dioxide emissions. Recovered paper as feedstock leads to lowest energy use (22 GJ/t) and CO2 emissions (−1100 kg CO2/t) when biomass not used for paper production is assumed to be converted into bio-energy. Large differences exist between paper grades in e.g. electricity and heat use during production, fibre furnish, filler content and recyclability. We found large variation in energy use over the life-cycle of different grades. However, in all paper grades, life-cycle energy use decreases with increased recycling rates and increased use of recovered fibres. The average life-cycle energy use of the paper mix produced in The Netherlands, where the recycling rate is approximately 75%, is about 14 GJ/t. This equals CO2 savings of about 1 t CO2/t paper if no recycled fibres would be used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号