首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
2.
Soil structure critically affects the hydrological behaviour of soils. In this paper, we examined the impact of areal heterogeneity of hydraulic properties of a structured soil on soil ensemble behaviour for various soil water flow processes with different top boundary conditions (redistribution and drainage plus evaporation and infiltration). Using a numerical solution of the Richards' equation in a stochastic framework, the ensemble characteristics and flow dynamics were studied for drying and wetting processes observed during a time interval of ten days when a series of relatively intense rainfall events occurred. The effects of using unimodal and bimodal interpretative models of hydraulic properties on the ensemble hydrological behaviour of the soil were illustrated by comparing predictions to mean water contents measured over time in several sites at field scale. Although the differences between unimodal and bimodal fitting are not significant in terms of goodness of fit, the differences in process predictions are considerable with the bimodal soil simulating water content measurements much better than unimodal soil. We also investigated the relative contribution of the soil variability of each parameter on the variance of the water contents obtained as the main output of the stochastic simulations. The variability of the structural parameter, weighting the two pore space fractions in the bimodal interpretative model, has the largest contribution to water content variance. The contribution of each parameter depends only partly on the coefficient of variation, much more on the sensitivity of the model to the parameters and on the flow process being observed. We observed that the contribution of the retention parameters to uncertainty increases during drainage processes; the opposite occurs with the hydraulic conductivity parameters.  相似文献   

3.
In this study, displacement experiments of isoproturon were conducted in disturbed and undisturbed columns of a silty clay loam soil under similar rainfall intensities. Solute transport occurred under saturated conditions in the undisturbed soil and under unsaturated conditions in the sieved soil because of a greater bulk density of the compacted undisturbed soil compared to the sieved soil. The objective of this work was to determine transport characteristics of isoproturon relative to bromide tracer. Triplicate column experiments were performed with sieved (structure partially destroyed to simulate conventional tillage) and undisturbed (structure preserved) soils. Bromide experimental breakthrough curves were analyzed using convective-dispersive and dual-permeability (DP) models (HYDRUS-1D). Isoproturon breakthrough curves (BTCs) were analyzed using the DP model that considered either chemical equilibrium or non-equilibrium transport. The DP model described the bromide elution curves of the sieved soil columns well, whereas it overestimated the tailing of the bromide BTCs of the undisturbed soil columns. A higher degree of physical non-equilibrium was found in the undisturbed soil, where 56% of total water was contained in the slow-flow matrix, compared to 26% in the sieved soil. Isoproturon BTCs were best described in both sieved and undisturbed soil columns using the DP model combined with the chemical non-equilibrium. Higher degradation rates were obtained in the transport experiments than in batch studies, for both soils. This was likely caused by hysteresis in sorption of isoproturon. However, it cannot be ruled out that higher degradation rates were due, at least in part, to the adopted first-order model. Results showed that for similar rainfall intensity, physical and chemical non-equilibrium were greater in the saturated undisturbed soil than in the unsaturated sieved soil. Results also suggested faster transport of isoproturon in the undisturbed soil due to higher preferential flow and lower fraction of equilibrium sorption sites.  相似文献   

4.
Three natural nonaggregated soil samples, with similar grain-size distributions, have been used to determine the dispersive behavior of porous media under steady, saturated and unsaturated flow conditions. Tritium was used as a tracer and was found to have no sorption on the solid matrix. Generated breakthrough curves (BTCs) for the unsaturated experiments were symmetrical with no evidence of tailing. The unsaturated experiments for two of the soils were adequately described by considering all the water in the pore volume as mobile. However, about 10% of the pore water, independent of the degree of saturation, was found to be immobile in the case of the third soil during unsaturated flow. For this soil, there was no mass transfer between the two water regions, indicating that the immobile water is essentially isolated from the flowing water fraction. For all three soils, dispersivity under unsaturated conditions was found to be higher, independent of the degree of water saturation, than the value determined for the saturated experiments. This is inconsistent with what would be expected from the simple bundle-of-capillary-tubes model and does not agree well with a more sophisticated conceptualization of the porous medium. The data, however, clearly indicate a wider range in pore-water velocities when these soils are desaturated.  相似文献   

5.
Movement of metolachlor and terbuthylazine in core and packed soil columns   总被引:2,自引:0,他引:2  
Singh N  Kloeppel H  Klein W 《Chemosphere》2002,47(4):409-415
Movement of metolachlor and terbuthylazine including a bromide tracer was studied in core and packed soil columns in PVC pipes (80 mm diameter, 15 mm depth) with two German soil types viz: silt loam and loamy silt. The breakthrough curves (BTCs) for bromide indicated some preferential flow of water both under conventional tillage (CN) and no-till (NT) simulation with silt loam soil. The herbicides leached to a greater extent in NT columns than in CN columns. Leaching was higher in loamy silt soil than in silt loam soil under CN conditions. This result is in agreement with the higher sorption capacity of silt loam having higher organic carbon compared to loamy silt having low organic carbon. Adsorption strength of the herbicides did not affect their breakthrough time, but was reflected in the slope and maximum height of the BTCs. The BTCs showed the expected inverse relationship between leaching and adsorption with greater mobility of the weakly-sorbed metolachlor than the more strongly sorbed terbuthylazine. Maximum amounts of the applied herbicides were recovered from the top soil layer in intact columns. Metolachlor was more mobile in packed columns than in core columns.  相似文献   

6.
Deng J  Jiang X  Zhang X  Hu W  Crawford JW 《Chemosphere》2008,71(11):2150-2157
Contaminant transport in soils is complicated and involves some physical and chemical nonequilibrium processes. In this research, the soil column displacement experiments of Cl and atrazine under different flow velocities were carried out. The data sets of Cl transport in sandy loam fitted to the convection dispersion equation (CDE) and the two-region model (TRM) indicated that the effects of physical nonequilibrium process produced by immobile water on the breakthrough curves (BTCs) of Cl and atrazine transport through the repacking soil columns were negligible. The two-site model (TSM) and the continuous time random walk (CTRW) were also used to fit atrazine transport behavior at the flow rate of 19.86 cm h−1. The CTRW convincingly captured the full evolution of atrazine BTC in the soil column, especially for the part of long tailing. However, the TSM failed to characterize the tailing of atrazine BTC in the soil column. The calculated fraction of equilibrium sorption sites, F, ranging from 0.78 to 0.80 for all flow rates suggested the contribution of nonequilibrium sorption sites to the asymmetry of atrazine BTCs. Furthermore, the data sets for the flow rates of 6.68 cm h−1 and 32.81 cm h−1 were predicted by the TSM and the CTRW. As to the flow rate of 6.68 cm h−1, the CTRW predicted the entire BTC of atrazine transport better than the TSM did. For the flow rate of 32.81 cm h−1, the CTRW characterized the late part of the tail better, while the TSM failed to predict the tailings of atrazine BTC.  相似文献   

7.
Model predictions of pesticide transport in structured soils are complicated by multiple processes acting concurrently. In this study, the hydraulic, physical, and chemical nonequilibrium (HNE, PNE, and CNE, respectively) processes governing herbicide transport under variably saturated flow conditions were studied. Bromide (Br-), isoproturon (IPU, 3-(4-isoprpylphenyl)-1,1-dimethylurea) and terbuthylazine (TER, N2-tert-butyl-6-chloro-N4-ethyl-1,3,5-triazine-2,4-diamine) were applied to two soil columns. An aggregated Ap soil column and a macroporous, aggregated Ah soil column were irrigated at a rate of 1 cm h(-1) for 3 h. Two more irrigations at the same rate and duration followed in weekly intervals. Nonlinear (Freundlich) equilibrium and two-site kinetic sorption parameters were determined for IPU and TER using batch experiments. The observed water flow and Br- transport were inversely simulated using mobile-immobile (MIM), dual-permeability (DPM), and combined triple-porosity (DP-MIM) numerical models implemented in HYDRUS-1D, with improving correspondence between empirical data and model results. Using the estimated HNE and PNE parameters together with batch-test derived equilibrium sorption parameters, the preferential breakthrough of the weakly adsorbed IPU in the Ah soil could be reasonably well predicted with the DPM approach, whereas leaching of the strongly adsorbed TER was predicted less well. The transport of IPU and TER through the aggregated Ap soil could be described consistently only when HNE, PNE, and CNE were simultaneously accounted for using the DPM. Inverse parameter estimation suggested that two-site kinetic sorption in inter-aggregate flow paths was reduced as compared to within aggregates, and that large values for the first-order degradation rate were an artifact caused by irreversible sorption. Overall, our results should be helpful to enhance the understanding and modeling of multi-process pesticide transport through structured soils during variably saturated water flow.  相似文献   

8.
Evaluating non-equilibrium solute transport in small soil columns   总被引:11,自引:0,他引:11  
Displacement studies on leaching of bromide and two pesticides (atrazine and isoproturon) were conducted under unsaturated steady state flow conditions in 24 small undisturbed soil columns (5.7 cm in diameter and 10 cm long) each collected from two sites differing in soil structure and organic carbon content in North Germany. There were large and irregular variabilities in the characteristics of both soils, as well as in the shapes of breakthrough curves (BTCs) of different columns, including some with early breakthrough and increased tailing, qualitatively indicating the presence of preferential flow. It was estimated that one preferential flow column (PFC) at site A, and four at site B, contributed, respectively to 11% and 58% of the accumulated leached fraction and to more than 80% of the maximum observed standard deviation (SD) in the field-scale concentration and mass flux of pesticides at two sites. The bromide BTCs of two sites were analyzed with the equilibrium convection-dispersion equation (CDE) and a non-equilibrium two-region/mobile-immobile model. Transport parameters of these models for individual BTCs were determined using a curve fitting program, CXTFIT, and by the time moment method. For the CDE based equilibrium model, the mean values of retardation factor, R, considered separately for all columns, PFCs or non-preferential flow columns (NPFCs) were comparable for the two methods; significant differences were observed in the values of dispersion coefficients of two sites using the two estimation methods. It was inferred from the estimated parameters of non-equilibrium model that 5-12% of water at site A, and 12% at site B, was immobile during displacement in NPFCs. The corresponding values for PFCs of two sites were much larger, ranging from 25% to 51% by CXTFIT and from 24% to 72% by the moment method, suggesting the role of certain mechanisms other than immobile water in higher degrees of non-equilibrium in these columns. Peclet numbers in PFCs of both sites were consistently smaller than five, indicating the inadequacy of the non-equilibrium model to incorporate the effect of all forms of non-equilibrium in PFCs. Overall, the BTCs of individual NPFCs, PFCs and of field average concentration at the two sites were better reproduced with parameters obtained from CXTFIT than by the moment method. The moment method failed to capture the peak concentrations in PFCs, but tended to describe the desorption and tail branches of BTCs better than the curve fitting approach.  相似文献   

9.
When soil structure varies in different soil types and the horizons of these soil types, it has a significant impact on water flow and contaminant transport in soils. This paper focuses on the effect of soil structure variations on the transport of pesticides in the soil above the water table. Transport of a pesticide (chlorotoluron) initially applied on soil columns taken from various horizons of three different soil types (Haplic Luvisol, Greyic Phaeozem and Haplic Cambisol) was studied using two scenarios of ponding infiltration. The highest infiltration rate and pesticide mobility were observed for the Bt1 horizon of Haplic Luvisol that exhibited a well-developed prismatic structure. The lowest infiltration rate was measured for the Bw horizon of Haplic Cambisol, which had a poorly developed soil structure and a low fraction of large capillary pores and gravitational pores. Water infiltration rates were reduced during the experiments by a soil structure breakdown, swelling of clay and/or air entrapped in soil samples. The largest soil structure breakdown and infiltration decrease was observed for the Ap horizon of Haplic Luvisol due to the low aggregate stability of the initially well-aggregated soil. Single-porosity and dual-permeability (with matrix and macropore domains) flow models in HYDRUS-1D were used to estimate soil hydraulic parameters via numerical inversion using data from the first infiltration experiment. A fraction of the macropore domain in the dual-permeability model was estimated using the micro-morphological images. Final soil hydraulic parameters determined using the single-porosity and dual-permeability models were subsequently used to optimize solute transport parameters. To improve numerical inversion results, the two-site sorption model was also applied. Although structural changes observed during the experiment affected water flow and solute transport, the dual-permeability model together with the two-site sorption model proved to be able to approximate experimental data.  相似文献   

10.
Sorption of dimethyl phthalate (DMP), diethyl phthalate (DEP) and dipropyl phthalate (DPP) to two soil materials that vary in organic matter content was investigated using miscible displacement experiments under saturated flow conditions. Generated breakthrough curves (BTCs) were inversely simulated using linear, equilibrium sorption (LE), nonlinear, equilibrium sorption (NL), linear, first-order nonequilibrium sorption (LFO), linear, radial diffusion (LRD), and nonlinear, first-order nonequilibrium sorption (NFO) models. The Akaike information criterion was utilized to determine the preferred model. The LE model could not adequately describe phthalate ester (PE) BTCs in higher organic matter soil or for more hydrophobic PEs. The LFO and LRD models adequately described the BTCs but a slight improvement in curve-fitting was gained in some cases when the NFO model was used. However, none of the models could properly describe the desorptive tail of DPP for the high organic matter soil. Transport of DPP through this soil was adequately predicted when degradation or sorption hysteresis was considered. Using the optimized parameter values along with values reported by others it was shown that the organic carbon distribution coefficient (K(oc)) of PEs correlates well with the octanol/water partition coefficient (K(ow)). Also, a strong relationship was found between the first-order sorption rate coefficient normalized to injection pulse size and compound residence time. A similar trend of timescale dependence was found for the rate parameter in the radial diffusion model. Results also revealed that the fraction of instantaneous sorption sites is dependent on K(ow) and appears to decrease with the increase in the sorption rate parameter.  相似文献   

11.
This study was conducted to determine the significance of bromacil transport as a function of water and carbon content in soils and to explore the implications of neglecting sorption when making assessments of travel time of bromacil through the vadose zone. Equilibrium batch sorption tests were performed for loamy sand and sandy soil added with four different levels of powdered activated carbon (PAC) content (0, 0.01, 0.05, and 0.1%). Column experiments were also conducted at various water and carbon contents under steady-state flow conditions. The first set of column experiments was conducted in loamy sand containing 1.5% organic carbon under three different water contents (0.23, 0.32, and 0.41) to measure breakthrough curves (BTCs) of bromide and bromacil injected as a square pulse. In the second set of column experiments, BTCs of bromide and bromacil injected as a front were measured in saturated sandy columns at the four different PAC levels given above. Column breakthrough data were analyzed with both equilibrium and nonequilibrium (two-site) convection-dispersion equation (CDE) models to determine transport and sorption parameters under various water and carbon contents. Analysis with batch data indicated that neglect of the partition-related term in the calculation of solute velocity may lead to erroneous estimation of travel time of bromacil, i.e. an overestimation of the solute velocity by a factor of R. The column experiments showed that arrival time of the bromacil peak was larger than that of the bromide peak in soils, indicating that transport of bromacil was retarded relative to bromide in the observed conditions. Extent of bromacil retardation (R) increased with decreasing water content and increasing PAC content, supporting the importance of retardation in the estimation of travel time of bromacil even at small amounts of organic carbon for soils with lower water content.  相似文献   

12.
流速和水深是影响浅水型海湾扩散器初始稀释能力的主要环境因素,其长时间序列的实测资料在现实中通常很难得到,而平面二维水动力模型的引入可为初始稀释度的计算提供必要和准确的水动力要素。通过建立二维水动力模型模拟受纳海域的流场,利用实测水文资料进行模型的率定和验证,模拟设计水文条件下附近水域的流场,然后提取排污口处的水深、流速和流向的时间序列,再利用近区模型计算任一时刻的初始稀释度,最后进行累积频率分析得到设计保证率下的初始稀释度。将该方法应用于杭州湾某排污扩散器初始稀释能力的评估,研究表明,利用远区模型为扩散器近区模拟提供环境水文要素,弥补了实际工程计算中缺乏实测水文资料的不足,并大大提高了近区模拟的计算精度。  相似文献   

13.
14.
Hyun S  Kim J  Kim DY  Moon DH 《Chemosphere》2012,87(6):602-607
The effect of seepage velocity on the As leaching/adsorption by soils collected from abandoned mine sites was evaluated under batch equilibrium and different seepage settings. The breakthrough curves (BTCs) of As leaching from the mine soil column initially displayed the peak export and gradually leveled off over the leaching experiment. A similar As peak was observed after a flow interruption period. Adsorption by downgradient soils was clearly nonlinear, as Freundlich N was <1. In the BTCs of the layered columns, where downgradient soils were overloaded above the mine soil, the extended lag period of As appearance and lower steady-state As concentration observed for slow seepage velocity supported the idea of kinetically limited As attenuation driven by soil adsorption. The perturbation of As concentration was insignificant when the intra-column As concentration gradient was higher. The As concentration drop and time to recovery were greater for less adsorptive soil and fast seepage velocity. Desorption of As from soils retrieved from both batch adsorption and column experiment demonstrate hysteric behavior. The results of this work demonstrated that the risk of As leaching from an abandoned mine site can be greatly attenuated by intermediate downgradient soils via chemical adsorption, which tends to be kinetically limited and energetically hysteric (i.e., non-identical energy pathway).  相似文献   

15.
Leachate from ash landfills is frequently enriched with As and Se but their off-site movement is not well understood. The attenuation potential of As and Se by soils surrounding selected landfills during leachate seepage was investigated in laboratory column studies using simulated ash leachate. As(III, V) and Se(IV, VI) concentrations as well as pH, flow rate, and a tracer were monitored in influent and effluent for up to 800 pore volumes followed by sequential desorption, extraction, and digestion of column segments. Column breakthrough curves (BTCs) were compared to predictions based on previously measured sorption isotherms. Early As(V) breakthrough and retarded As(III) breakthrough relative to predicted BTCs are indicative of oxidative transformation during seepage. For Se(VI), which exhibits linear sorption and the lowest sorption propensity, measured BTCs were predicted fairly well by equilibrium sorption isotherms, except for the early arrival of Se(IV) in one site soil, which in part, may be due to higher column pH values compared to batch isotherms. Most of the As and Se retained by soils during leaching was found to be strongly sorbed (60–90%) or irreversibly bound (10–40%) with <5% readily desorbable. Redox potential favoring transformation to the more sorptive valence states of As(V) and Se(IV) will invoke additional attenuation beyond equilibrium sorption-based predictions. With the exception of Se(IV) on one site soil, results indicate that attenuation by down-gradient soils of As and Se in ash landfill seepage will often be no less than what is predicted by equilibrium sorption capacity with further attenuation expected due to favorable redox transformation processes, thus mitigating contaminant plumes and associated risks.  相似文献   

16.
Options for wetland creation or restoration might be limited because of the presence of contaminants in the soil. The influence of hydrological management on the pore water concentrations of Cd, Cr, Cu, Fe, Mn, Ni and Zn in the upper soil layer of a contaminated overbank sedimentation zone was investigated in a greenhouse experiment. Flooding conditions led to increased Fe, Mn, Ni and Cr concentrations and decreased Cd, Cu and Zn concentrations in the pore water of the upper soil layer. Keeping the soil at field capacity resulted in a low pore water concentration of Fe, Mn and Ni while the Cd, Cu, Cr and Zn concentrations increased. Alternating hydrological conditions caused metal concentrations in the pore water to fluctuate. Formation and re-oxidation of small amounts of sulphides appeared dominant in determining the mobility of Cd, Cu, and to a lesser extent Zn, while Ni behaviour was consistent with Fe/Mn oxidation and reduction. These effects were strongly dependent on the duration of the flooded periods. The shorter the flooded periods, the better the metal concentrations could be linked to the mobility of Ca in the pore water, which is attributed to a fluctuating CO(2) pressure.  相似文献   

17.
18.
Biopurification systems treating pesticide contaminated water are very efficient, however they operate as a black box. Processes inside the system are not yet characterized. To optimize the performance, knowledge of degradation and retention processes needs to be generated. Therefore, displacement experiments were carried out for four pesticides (isoproturon, bentazone, metalaxyl, linuron) in columns containing different organic mixtures. Bromide, isoproturon and bentazone breakthrough curves (BTCs) were well described using the convection-dispersion equation (CDE) and a first-order degradation kinetic approach. Metalaxyl and linuron BTCs were well described using the CDE model expanded with Monod-type kinetics. Freundlich sorption, first-order degradation and Monod kinetics coefficients were fitted to the BTCs. Fitted values of the distribution coefficient Kf,column were much lower than those determined from batch experiments. Based on mobility, pesticides were ranked as: bentazone > metalaxyl - isoproturon > linuron. Based on degradability, pesticides were ranked as: linuron > metalaxyl - isoproturon > bentazone.  相似文献   

19.
A new reactive transport modelling approach and examples of its application are presented, dealing with the impact of sorption/desorption kinetics on the spreading of solutes, e.g. organic contaminants, in groundwater. Slow sorption/desorption is known from the literature to be strongly responsible for the retardation of organic contaminants. The modelling concept applied in this paper quantifies sorption/desorption kinetics by an intra-particle diffusion approach. According to this idea, solute uptake by or release from the aquifer material is modelled at small scale by a "slow" diffusion process where the diffusion coefficient is reduced as compared to the aqueous diffusion coefficient due to (i) the size and shape of intra-particle pores and (ii) retarded transport of solutes within intra-particle pores governed by a nonlinear sorption isotherm. This process-based concept has the advantage of requiring only measurable model parameters, thus avoiding fitting parameters like first-order rate coefficients.In addition, the approach presented here allows for modelling of slow sorption/desorption in lithologically nonuniform media. Therefore, it accounts for well-known experimental findings indicating that sorptive properties depend on (i) the grain size distribution of the aquifer material and (ii) the lithological composition (e.g. percentage of quartz, sandstone, limestone, etc.) of each grain size fraction. The small-scale physico-chemical model describing sorption/desorption is coupled to a large-scale model of groundwater flow and solute transport. Consequently, hydraulic heterogeneities may also be considered by the overall model. This coupling is regarded as an essential prerequisite for simulating field-scale scenarios which will be addressed by a forthcoming publication.This paper focuses on mathematical model formulation, implementation of the numerical code and lab-scale model applications highlighting the sorption and desorption behavior of an organic contaminant (Phenanthrene) with regard to three lithocomponents exhibiting different sorptive properties. In particular, it is shown that breakthrough curves (BTCs) for lithologically nonuniform media cannot be obtained via simple arithmetic averaging of breakthrough curves for lithologically uniform media. In addition, as no analytical solutions are available for model validation purposes, simulation results are compared to measurements from lab-scale column experiments. The model results indicate that the new code can be regarded as a valuable tool for predicting long-term contaminant uptake or release, which may last for several hundreds of years for some lithocomponents. In particular, breakthrough curves simulated by pure forward modelling reproduce experimental data much better than a calibrated standard first-order kinetics reactive transport model, thus indicating that the new approach is of high quality and may be advantageously used for supporting the design of remediation strategies at contaminated sites where some lithocomponents and/or grain size classes may provide a long-term pollutant source.  相似文献   

20.
Storm runoff in afforested catchments at Llyn Brianne is acidic and Al-bearing. At baseflows, stream water is well-buffered with low Al levels. This paper presents the results of a study into how hydrological pathways account for these variations in stream-water chemistry. The investigation was carried out in the LI1 catchment; a 0.4-ha subcatchment covered by stagnohumic gley soils was monitored between October 1988 and September 1989. An instrumented hill-slope was established to identify the hydrological pathways that control the hydrochemistry of storm runoff draining from the subcatchment. Perched watertables developed in the surface horizons of the soil during storm episodes and produced lateral flow above the impeding subsoil. This near-surface flow path was responsible for generating acid, Al-rich storm runoff. Some water drained vertically through the soil profile into the underlying slope drift; seepage from groundwater in the drift sustained baseflows. Buffering reactions in the groundwater zone reduced the acidity and Al levels of baseflows. These hydrochemical characteristics are likely to be representative of other areas of stagnohumic gley soils, which cover 19% of the LI1 catchment: these soils may therefore provide a substantial source of acid, Al-bearing storm runoff in LI1 and similar afforested catchments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号