首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Within two plant species, Chenopodium album L. generally susceptible to atrazine, and Poa annua L. always reported as susceptible, atrazine tolerant populations were observed.This resistance is due to lower atrazine susceptibility of chloroplastic electron transfert. Oxygen evolution in isolated chloroplasts was mesured to determine the concentrations required for 50 % inhibition. They are similar in the two species for the susceptible and the tolerant chloroplasts 2 × 10?7 M and 10?4 M respectively.Differential chlorophyll fluorescence observed on whole leaf was used as a simple mean for detection of chloroplastic resistance.  相似文献   

2.
Agricultural management affects the movement of atrazine in soil and leaching to groundwater. The objective of this study was to determine atrazine adsorption in a soil after 20 years of atrazine application under agronomic management practices differing in tillage practice (conventional and zero tillage), residue management (with and without residue retention) and crop rotation (wheat-maize rotation and maize monoculture). Atrazine sorption was determined using batch and column experiments. In the batch experiment, the highest distribution coefficient Kd (1.1 L kg?1) at 0–10 cm soil depth was observed under zero tillage, crop rotation and residue retention (conservation agriculture). The key factor in adsorption was soil organic matter content and type. This was confirmed in the column experiment, in which the highest Kd values were observed in treatments with residue retention, under either zero or conventional tillage (0.81 and 0.68 L kg?1, respectively). Under zero tillage, the fact that there was no soil movement helped to increase the Kd. The increased soil organic matter content with conservation agriculture may be more important than preferential flow due to higher pore connectivity in the same system. The soil's capacity to adsorb 2-hydroxyatrazine (HA), an important atrazine metabolite, was more important than its capacity to adsorb atrazine, and was similar under all four management practices (Kd ranged from 30 to 40 L kg?1). The HA adsorption was attributed to the type and amount of clay in the soil, which is unaffected by agronomic management. Soils under conservation agriculture had higher atrazine retention potential than soils under conventional tillage, the system that predominates in the study area.  相似文献   

3.
The objective of the present study was to examine a biological model under greenhouse conditions for the bioremediation of atrazine contaminated soils. The model consisted in a combination of phytoremediation (using Phaseolus vulgaris L.) and rhizopheric bio-augmentation using native Trichoderma sp., and Rhizobium sp. microorganisms that showed no inhibitory growth at 10,000 mg L?1 of herbicide concentration. 33.3 mg of atrazine 50 g?1 of soil of initial concentration was used and an initial inoculation of 1 × 109 UFC mL?1 of Rhizobium sp. and 1 × 105 conidia mL?1 of Trichoderma sp. were set. Four treatments were arranged: Bean + Trichoderma sp. (B+T); Bean + Rhizobium sp. (BR); Bean + Rhizobium sp. + Trichoderma sp. (B+R+T) and Bean (B). 25.51 mg of atrazine 50 g?1 of soil (76.63%) was removed by the B+T treatment in 40 days (a = 0.050, Tukey). This last indicate that the proposed biological model and methodology developed is useful for atrazine contaminated bioremediation agricultural soils, which can contribute to reduce the effects of agrochemical abuse.  相似文献   

4.
This research investigated the role of the pH buffer capacity of sediment on the dechlorination of atrazine using zero valent iron (ZVI). The buffer capacity of the sediment was quantified by batch experiments and estimated to be 5.0 cmol OH? · pH?1. The sediments were spiked with atrazine at 7.25-36.23 mg kg?1 (6.21 × 10?7–3.09 × 10?6 mol atrazine · g?1 sediment) for the batch experiments. The buffer capacity of the sediment maintained the sediment suspension at neutral pH, thereby enabling continuous dechlorination until the buffer capacity of the sediment was depleted. The pseudo-first order dechlorination constants were estimated to be in the range of 1.19 × 10?2?7.04 × 10?2 d?1 for the atrazine-spiked sediments.  相似文献   

5.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

6.
Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87?×?1018–3.6?×?1018 photons L?1 s?1 and [ATZ]0?=?5 and 20 mg L?1 were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.  相似文献   

7.
Octanol-air partition coefficients (KOA) and supercooled liquid vapor pressures (PL) of nine organochlorine pesticides (OCPs) including p,p′-DDE, p,p′-DDD, o,p′-DDT, o,p′-DDE, o,p′-DDD, α-HCH, β-HCH, γ-HCH, δ-HCH were determined as functions of temperature using a gas chromatographic retention time method. Among them, the KOA of o,p′-DDE and o,p′-DDD and the PL of o,p′-DDE, o,p′-DDD, β-HCH and δ-HCH were determined for the first time. The determined KOA and PL values of investigated compounds at 25°C ranged from 3.14 × 107 (α-HCH) to 3.76×109 (p,p′-DDD), and 8.95×10? 4 Pa (p,p′-DDD) to 1.08×10? 1 Pa (α-HCH), respectively. The KOA and PL data were compared with published data. The KOA values of o,p′-DDT at 25°C were 3.23×109, higher than o,p′-DDE (1.02×109) and o,p′-DDD (2.01×109), indicating o,p′-DDT were more preferred to partition in soil compared with the metabolites. The KOA values were lower and PL values were higher for o,p′-DDE and o,p′-DDD, compared with their p,p′-isomeric counterparts, leading to a potential difference in behavior and fate of these isomers. The discrepancies among chemicals are obvious, which reflected in the increasing KOA and decreasing PL values in order of α-HCH, γ-HCH, β-HCH, δ-HCH, o,p′-DDE, p,p′-DDE, o,p′-DDD, o,p′-DDT, p,p′-DDD. For each compound, the LogKOA decreased linearly with reciprocal absolute temperature, while LogPL had a significant positive correlation with the inverse absolute temperature. The present study suggested that the method of gas chromatographic retention time was appropriate to measure the KOA and PL of a number of OCPs.  相似文献   

8.
This investigation was undertaken to determine the atrazine degradation by fungal enzyme extracts (FEEs) in a clay-loam soil microcosm contaminated at field application rate (5 μg g?1) and to study the influence of different soil microcosm conditions, including the effect of soil sterilization, water holding capacity, soil pH and type of FEEs used in atrazine degradation through a 24 factorial experimental design. The Trametes maximaPaecilomyces carneus co-culture extract contained more laccase activity and hydrogen peroxide (H2O2) content (laccase = 18956.0 U mg protein?1, H2O2 = 6.2 mg L?1) than the T. maxima monoculture extract (laccase = 12866.7 U mg protein?1, H2O2 = 4.0 mg L?1). Both extracts were able to degrade atrazine at 100%; however, the T. maxima monoculture extract (0.32 h) achieved a lower half-degradation time than its co-culture with P. carneus (1.2 h). The FEE type (p = 0.03) and soil pH (p = 0.01) significantly affected atrazine degradation. The best degradation rate was achieved by the T. maxima monoculture extract in an acid soil (pH = 4.86). This study demonstrated that both the monoculture extracts of the native strain T. maxima and its co-culture with P. carneus can efficiently and quickly degrade atrazine in clay-loam soils.  相似文献   

9.

In addition to direct photolysis studies, in this work the second-order reaction rate constants of pesticides imidacloprid (IMD) and ametryn (AMT) with hydroxyl radicals (HO), singlet oxygen (1O2), and triplet excited states of chromophoric dissolved organic matter (3CDOM*) were determined by kinetic competition under sunlight. IMD and AMT exhibited low photolysis quantum yields: (1.23?±?0.07)?×?10–2 and (7.99?±?1.61)?×?10–3 mol Einstein?1, respectively. In contrast, reactions with HO radicals and 3CDOM* dominate their degradation, with 1O2 exhibiting rates three to five orders of magnitude lower. The values of kIMD,HO● and kAMT,HO● were (3.51?±?0.06)?×?109 and (4.97?±?0.37)?×?109 L mol?1 s?1, respectively, while different rate constants were obtained using anthraquinone-2-sulfonate (AQ2S) or 4-carboxybenzophenone (CBBP) as CDOM proxies. For IMD this difference was significant, with kIMD,3AQ2S*?=?(1.02?±?0.08)?×?109 L mol?1 s?1 and kIMD,3CBBP*?=?(3.17?±?0.14)?×?108 L mol?1 s?1; on the contrary, the values found for AMT are close, kAMT,3AQ2S*?=?(8.13?±?0.35)?×?108 L mol?1 s?1 and kAMT,3CBBP*?=?(7.75?±?0.80)?×?108 L mol?1 s?1. Based on these results, mathematical simulations performed with the APEX model for typical levels of water constituents (NO3?, NO2?, CO32?, TOC, pH) indicate that the half-lives of these pesticides should vary between 24.1 and 18.8 days in the waters of the Paranapanema River (São Paulo, Brazil), which can therefore be impacted by intensive agricultural activity in the region.

  相似文献   

10.
The bioaccumulation of atrazine and its toxicity were evaluated for the cyanobacterium Microcystis novacekii. Cyanobacterial cultures were grown in WC culture medium with atrazine at 50, 250 and 500 μg L?1. After 96 hours of exposure, 27.2% of the atrazine had been removed from the culture supernatant. Spontaneous degradation was found to be insignificant (< 9% at 500 μg L?1), indicating a high efficiency for the bioaccumulation of atrazine by M. novacekii. There were no atrazine metabolites detected in the culture medium at any of the doses studied. The acute toxicity (EC50) of atrazine to the cyanobacterium was 4.2 mg L?1 at 96 hours demonstrating the potential for M. novacekii to tolerate high concentrations of this herbicide in fresh water environments. The ability of M. novacekii to remove atrazine combined with its tolerance of the pesticide toxicity showed in this study makes it a potential biological resource for the restoration of contaminated surface waters. These findings support continued studies of the role of M. novacekii in the bioremediation of fresh water environments polluted by atrazine.  相似文献   

11.
In recent decades, biodegradation has been considered a promising and eco-friendly way to eliminate organophosphorus pesticides (OPs) from the environment. To enrich current biodegrading-enzyme resources, an alkaline phosphatase (AP3) from Bacillus amyloliquefaciens YP6 was characterized and utilized to test the potential for new applications in the biodegradation of five broad-spectrum OPs. Characterization of AP3 demonstrated that activity was optimal at 40?°C and pH 10.3. The activity of AP3 was enhanced by Mg2+, Ca2+, and Cu2+, and strongly inhibited by Mn2+, EDTA, and L-Cys. Compared to disodium phenyl phosphate, p-nitrophenyl phosphate (pNPP) was more suitable to AP3, and the Vm, Km, kcat, kcat/Km values of AP3 for pNPP were 4,033?U mg?1, 12.2?mmol L?1, 3.3?×?106 s?1, and 2.7?×?108 s?1mol?1L, respectively. Degradation of the five OPs, which included chlorpyrifos, dichlorvos, dipterex, phoxim, and triazophos, was 18.7%, 53.0%, 5.5%, 68.3%, and 96.3%, respectively, after treatment with AP3 for 1?h. After treatment of the OP for 8?h, AP3 activities remained more than 80%, with the exception of phoxim. It can be postulated that AP3 may have a broad OP-degradation ability and could possibly provide excellent potential for biodegradation and bioremediation in polluted ecosystems.  相似文献   

12.
This study evaluated the toxicity of herbicide atrazine, along with its bioaccumulation and biodegradation in the green microalga Chlamydomonas mexicana. At low concentration (10 μg L?1), atrazine had no profound effect on the microalga, while higher concentrations (25, 50, and 100 μg L?1) imposed toxicity, leading to inhibition of cell growth and chlorophyll a accumulation by 22 %, 33 %, and 36 %, and 13 %, 24 %, and 27 %, respectively. Atrazine 96-h EC50 for C. mexicana was estimated to be 33 μg L?1. Microalga showed a capability to accumulate atrazine in the cell and to biodegrade the cell-accumulated atrazine resulting in 14–36 % atrazine degradation at 10–100 μg L?1. Increasing atrazine concentration decreased the total fatty acids (from 102 to 75 mg g?1) and increased the unsaturated fatty acid content in the microalga. Carbohydrate content increased gradually with the increase in atrazine concentration up to 15 %. This study shows that C. mexicana has the capability to degrade atrazine and can be employed for the remediation of atrazine-contaminated streams.  相似文献   

13.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

14.
Zero-valent iron nanoparticles (nZVI, diameter < 90 nm, specific surface area = 25 m2 g?1) have been used under anoxic conditions for the remediation of pesticides alachlor and atrazine in water. While alachlor (10, 20, 40 mg L?1) was reduced by 92–96% within 72 h, no degradation of atrazine was observed. The alachlor degradation reaction was found to obey first-order kinetics very closely. The reaction rate (35.5 × 10?3–43.0 × 10?3 h?1) increased with increasing alachlor concentration. The results are in conformity with other researchers who worked on these pesticides but mostly with micro ZVI and iron filings. This is for the first time that alachlor has been degraded under reductive environment using nZVI. The authors contend that nZVI may prove to be a simple method for on-site treatment of high concentration pesticide rinse water (100 mg L?1) and for use in flooring materials in pesticide filling and storage stations.  相似文献   

15.
Abstract

The effect of methomyl and cypermethrin insecticides on the B6‐dependent kynurenine hydrolase(KH) and kynurenine aminotransferase (KATE) was studied. These insecticides induced pronounced inhibition on the (KH) and (KATE) enzymes after single dose treatment. Repeated doses of methomyl induced inhibition on the (KH) and (KATE) activities, whereas repeated treatment with cypermethrin had no effect on the activities of these enzymes. In vitro methomyl inhibited (KH) and (KATE) enzymes at 10 M up to 10‐3 M, through a competitive mechanism. Methomyl and cypermethrin are capable of causing alterations in the kynurenine metabolizing enzymes of mouse liver.  相似文献   

16.
Soil avoidance by earthworms has been generally considered a relevant and sensitive endpoint for assessing soil contamination by xenobiotics. However, when pesticide ecotoxicological assessment is concerned, the sensitivity of the recently standardized avoidance assay has been questioned. We hypothesized that this controversy may be due to the specific pesticide mode of action of the chemicals used rather than reveal inconsistencies in the test feasibility, i.e. provided that no pesticides interfering with neuronal pathways are tested, this bioassay should keep expected high levels of sensitivity. In this study, the avoidance behaviour of the earthworm Eisenia andrei under exposure to the carbamate insecticide methomyl [S-methyl N-(methylcarbamoyloxy)thioacetimidate] was linked to the corresponding acetylcholinesterase (AChE) inhibition. Significant AChE inhibition occurred at lower concentrations (from 0.86 mg Kg?1 onwards) than significant avoidance of spiked soil (from 5.62 mg Kg?1 onwards). This indicates that assessments regarding pesticides that have neurotoxic activity may be biased if behavioral endpoints are selected. Despite theoretical hypothesis that have been raised, this should be the first study providing preliminary experimental evidence on such a link between avoidance behavior and neuronal impairment levels in earthworms. Further studies are ongoing that should refine conclusions of this study.  相似文献   

17.

The ubiquitous β-Proteobacterium Gallionella ferruginea is known as stalk-forming, microaerophilic iron(II) oxidizer, which rapidly produces iron oxyhydroxide precipitates. Uranium and neptunium sorption on the resulting intermixes of G. ferruginea cells, stalks, extracellular exudates, and precipitated iron oxyhydroxides (BIOS) was compared to sorption to abiotically formed iron oxides and oxyhydroxides. The results show a high sorption capacity of BIOS towards radionuclides at circumneutral pH values with an apparent bulk distribution coefficient (Kd) of 1.23 × 104 L kg?1 for uranium and 3.07 × 105 L kg?1 for neptunium. The spectroscopic approach by X-ray absorption spectroscopy (XAS) and ATR FT-IR spectroscopy, which was applied on BIOS samples, showed the formation of inner-sphere complexes. The structural data obtained at the uranium LIII-edge and the neptunium LIII-edge indicate the formation of bidentate edge-sharing surface complexes, which are known as the main sorption species on abiotic ferrihydrite. Since the rate of iron precipitation in G. ferruginea-dominated systems is 60 times faster than in abiotic systems, more ferrihydrite will be available for immobilization processes of heavy metals and radionuclides in contaminated environments and even in the far-field of high-level nuclear waste repositories.

  相似文献   

18.
Regular exercise improves physiological processes and yields positive health outcomes. However, it is relatively less known that particulate matter (PM) exposure during outdoor exercises may increase several respiratory health problems depending on PM levels. In this study, the respiratory deposition doses (RDDs) in head airway (HD), tracheobronchial (TB), and alveolar (AL) regions of various PM size fractions (<10, <2.5, and <1 μm; PM10, PM2.5, and PM1) were estimated in healthy male and female exercisers in urban outdoors and within house premises. The highest RDDs were found for PM during morning hours in winter compared with remaining periods. RDDs in AL region for males and females, respectively, were 34.7 × 10?2 and 28.8 × 10?2 µg min?1 for PM10, 65.7 × 10?2 and 56.9 × 10?2 µg min?1 for PM2.5, and 76.5 × 10?2 and 66.3 × 10?2 µg min?1 for PM1. The RDD values in AL region were significantly higher in PM1 (27%) compared with PM2.5 (13%) and PM10 (2%) during exercise in all periods. This result showed that the morning peak hours in winter are more harmful to urban outdoor exercisers compared with other periods. This study also showed that the AL region would have been the main affected zone through fine particle (PM1) to all the exercisers.

Implications: Size-segregated particle concentrations in urban outdoors and within house premises were measured. The highest respiratory deposition doses (RDDs) were found for PM during morning hours in winter compared with remaining periods. During light exercise, the RDD values in alveolar (AL) region for PM10, PM2.5, and PM1 for male exercisers were significantly higher, 20.4%, 15.5%, and 15.4%, respectively, compared with female exercisers during morning peak hours in winter.  相似文献   

19.
This study reported the use of UV–visible and fluorescence spectroscopy and partial-least-square (PLS) multivariate regression for accurate and simultaneous quantifications of two widely used herbicides, propanil, 3′,4′-dichloropropionanilide (PPL) and bromoxynil, 3,5-dibromo-4-hydroxybenzonitrile (BXL) in human serum albumin (HSA) at physiological conditions. The binding affinity and thermodynamic properties of PPL-HSA and BXL-HSA complexes were also investigated. Partial-least-square (PLS) regression was used to collate the variability in the absorption or emission spectra of PPL-HSA and BXL-HSA complexes with PPL and/or BXL concentrations in HSA samples. The binding constants of 7.66× 108 M?1 for PPL-HSA and 4.88× 106 M?1 for BXL-HSA complexes were calculated at physiological conditions (temperature, 310 K; pH 7.4). Thermodynamic parameter values: enthalpy (ΔH) (13.99 kJ mol?1), entropy (ΔS) (0.078 kJ mol?1 K?1), and Gibbs free energy (ΔG) (?10.19 kJ mol?1) were determined for PPL-HSA complexation at physiological conditions. However, differences in thermodynamic property values of: ΔH (?214.3 kJ mol?1), ΔS (?0.563 kJ mol?1 K?1), and ΔG (?39.70 kJ mol?1) were observed for BXL–HSA complexes. The binding constants and negative ΔG values indicated strong binding affinity and thermodynamically favorability of PPL–HSA and BXL–HSA complex formation. Results of the PLS regression calibration showed good linearity (R2 ≥ 0.998289), high sensitivity, and impressive low limit-of-detections (LODs) of 1.38× 10?8 M for PPL and 1.68× 10?8 M for BXL that are comparable and/or lower than many previously reported LODs for herbicide and pesticide analyses. Most importantly, PLS regression is capable of simultaneous quantifications of PPL and BXL concentrations in HSA samples with good accuracy and low errors of 3.66%. UV–visible spectrophotometers and spectrofluorometers are fairly inexpensive, easy to use, and are readily available in almost every laboratory, making this protocol excellent and affordable for routine analysis of weed/pest control chemical residues in humans. The results of this study are significant and remarkable that will provide critical insight into the binding mechanism of herbicide toxicity in humans and non-target organisms, which are of special interest in the area of biomedical study, environmental risk assessment, and ecotoxicology.  相似文献   

20.
Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8?±?0.5?×?10?6 mol plant?1 (Mn), 1.4?±?0.1?×?10?3 mol plant?1 (Fe), and 1.0?±?0.1?×?10?4 mol plant?1 (Al) in spiked soil without CA to 22.2?±?0.5?×?10?6 mol plant?1 (Mn), 3.5?±?0.06?×?10?3 mol plant?1 (Fe), and 5.0?±?0.2?×?10?4 mol plant?1 (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号