首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Persistence of triasulfuron [3-(6-methoxy-4methyl-1,3,5-triazin-2-yl)-1-{2-(2-chloroethoxy)-phenylsulfonyl}-urea] in soil was studied under wheat crop and laboratory conditions. Field experiment was conducted in the farms of Agronomy Division, Indian Agricultural Research Institute (IARI), New Delhi. Randomized block design (RBD) was followed with four replicates and two rates of treatments along with control and weedy check. Triasulfuron was applied as post-emergent application to wheat crop at two rates of application viz., 15 g and 20 g a.i. ha?1. Soil samples at 0 (3 h), 1, 3, 5, 7, 10, 15, 20, and 30-day intervals after application were drawn, extracted, cleaned up, and analyzed for herbicide residues by high performance liquid chromatography (HPLC) using C18 column and methanol: water (8:2) as mobile phase at 242 nm wave length. Effect of microbial activity and soil pH was studied under laboratory conditions. Dissipation of triasulfuron followed a first-order-rate kinetics. Residues dissipated from field soil with half-life of 5.8 and 5.9 days at two rates of application. The study indicated biphasic degradation with faster rate initially (t 1/2 = 3.7 days), followed by a slower dissipation rate at the end (t 1/2 = 9.4 days). Similar trend was observed with non-sterile soil in laboratory with a longer half-life. Acidic pH and microbial activity contributed toward the degradation of triasulfuron in soil.  相似文献   

2.
A series of 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l) was easily synthesized by two-step process involving O-alkylation of 2-nitrophenols with methyl 2-bromoalkanoates and next “green” catalytic reductive cyclization of the obtained 2-nitro ester intermediates (3a-l). Further, 6,7-dibromo (5a-c) and N-acetyl (6) derivatives were prepared by bromination and acetylation of unsubstituted 2-alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-c). The novel compounds (3a-l, 4d-l, 5a-c and 6) were fully characterized by spectroscopic methods (MS, 1H and 13C NMR). 2-Alkyl-2H-1,4-benzoxazin-3(4H)-ones (4a-l, 5a-c and 6) were screened for antifungal activity. Preliminary assays were performed using two methods: in vitro against seven phytopathogenic fungi—Botrytis cinerea, Phythophtora cactorum, Rhizoctonia solani, Phoma betae, Fusarium culmorum, Fusarium oxysporum and Alternaria alternata—and in vivo against barley powdery mildew Blumeria graminis. The tested compounds displayed moderate to good antifungal activity at high concentration (200 mg L?1). The most potent compounds were 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a), 2-ethyl-7-fluoro-2H-1,4-benzoxazin-3(4H)-one (4g) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6), which completely inhibited the mycelial growth of seven agricultural fungi at the concentration of 200 mg L?1 in the in vitro tests. Moreover, 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) and 4-acetyl-2-ethyl-2H-1,4-benzoxazin-3(4H)-one (6) were also screened for antifungal activity at concentrations of 100 mg L?1 and 20 mg L?1. In the concentration of 100 mg L?1, the N-acetyl derivative (6) completely inhibited the growth of three strains of fungi (F. culmorum, P. cactorum and R. solani), while 2-ethyl-2H-1,4-benzoxazin-3(4H)-one (4a) completely inhibited only R. solani strain. At the concentration of 20 mg L?1, compound 6 showed good activity only against P. cactorum strain (72%).  相似文献   

3.
Abstract

The biological effects of clofibrate (ethyl p‐chlorophenoxy‐isobutyric acid) on the growth and metabolism of the soil‐borne wheat pathogen Fusarium culmorum, were examined.

In mid log phase (16 hr) cultures both phenylalanine uptake and secondary spore production were stimulated at 0.1 μM concentration; the net sterol content was reduced 50% at 0.35 μM; oxygen uptake was stimulated at 0.1 mM; growth was inhibited 50% at 0.1 mM concentration. Both phenylalanine and oxygen uptake were inhibited at 1.0 mM and pyruvate dehydrogenase activity was reduced 50% at 50 mM concentration of clofibrate.

The data indicate that clofibrate affects a number of biological and enzyme systems. The inhibitory effect on the growth of the pathogen suggest a potential use of hypolipidemic agents like clofibrate as an antifungal agent for seed protection.  相似文献   

4.
The aim of the present work was to evaluate the effect of mixtures of antifungal fractions extracted from Baccharis glutinosa and Jacquinia macrocarpa plants on the development of the filamentous fungi Aspergillus flavus and Fusarium verticillioides. The minimal inhibitory concentration that inhibited 50% of growth (MIC50) of each plant antifungal fraction was determined from the percentage radial growth inhibition of both fungi. Binomial mixtures made with both plant fractions were used at their MIC50 to determine the Fractional Inhibitory Concentration index (FIC index) for each fungus in order to evaluate their synergistic effect. Each synergistic mixture was analyzed in their effect on spore germination, spore size, spore viability, mitotic divisions, hyphal diameter and length, and number of septa per hypha. Some antifungal mixtures, even at low concentrations, showed higher antifungal effect than those of the individual antifungal fraction. The FIC indices of mixtures that showed the highest antifungal activity against A. flavus and F. verticillioides were 0.5272 and 0.4577, respectively, indicating a synergistic effect against both fungi. Only 12% and 8% of the spores of A. flavus and F. verticillioides, respectively, treated with the synergistic mixtures, were able to germinate, although their viability was not affected. An increase in the number of septa per hypha of both fungi was observed. The results indicated that the synergistic mixtures strongly affected the fungal growth even at lower concentrations than those of the individual plant fractions.  相似文献   

5.
Among the compounds discussed for anti-microbial and anti-fungal use allicin (allylthiosulfinate, diallyl disulfide-S-monoxide), an active ingredient of garlic, has attracted considerable attention. The objective of this study is to determine the antifungal activity of a local garlic ecotype (Voghiera) extracts against different pathogens. Primary screening was carried out by the agar plates technique using ethanol garlic extract at four final concentrations against the following organisms: Alternaria alternata, Aspergillus spp., Colletotrichum acutatum, Didymella bryoniae, Fusarium culmorum, Fusarium avenaceum, Fusarium gramineareum, Gliocladium roseum 47, Pythium splendens, Rhizoctonia solani, Sclerotium rolfsii, Stemphylium vesicarium, Trichoderma longibranchiatum, and Botrytis cinerea. Secondary screening was carried out using a lyophilized and a spray-dried preparation at different concentrations against the organisms selected for the high inhibition garlic effect in the primary screening and compared with the commercial fungicides mancozeb and iprodione. The best results were observed for the spray-dried garlic compound that showed a good fungicidal activity at the concentration of 1.5 g/10 mL while lyophilized garlic at the same concentration exhibithed less inhibition activity against the four fungi analyzed in the second screening.  相似文献   

6.
In the present study, the photocatalytic degradation of five sulfonylurea herbicides (chlorsulfuron, flazasulfuron, nicosulfuron, sulfosulfuron and triasulfuron) has been investigated in aqueous suspensions of zinc oxide (ZnO), tungsten (VI) oxide (WO3), tin (IV) oxide (SnO2) and zinc sulfide (ZnS) at pilot plant scale under natural sunlight. Photocatalytic experiments, especially those involving ZnO photocatalysis, showed that the addition of semiconductors in tandem with the oxidant (Na2S2O8) strongly enhances the degradation rate of the herbicides in comparisons carried out with photolytic tests. The degradation of the herbicides follows a first order kinetics according to the Langmuir-Hinshelwood model. In our conditions, the amount of time required for 50% of the initial pesticide concentration to dissipate (t½) ranged from 8 to 27 min (t30W = 0.3-1.2 min) for sulfosulfuron and chlorsulfuron, respectively in the ZnO/Na2S2O8 system. None of the studied herbicides was found after 120 min of illumination (except chlorsulfuron, 0.2 μg L−1).  相似文献   

7.
Petals of red, yellow and white roses (Rosa damascene Mill.) of the family Rosaceae were extracted with (1:1) methylene chloride/methanol and tested for their antimicrobial activities against four species of Gram-positive bacteria (Bacillus cereus, Bacillus subtilis, Micrococcus luteus and Staphylococcus aureus), five species of Gram-negative bacteria (Enterobacter aerogenes, Escherichia coli, Klebsiella pneumonia, Pseudomonas aeruginosa and Serratia marcescens) and five species of fungi (Penicillium notatum, Aspergillus niger, Rhizopus stolonifer, Saccharomyces cerevisiae and Fusarium oxysporum). All of the crude extracts showed a wide range of antimicrobial activities according to the tested organism and rose's type. Micrococcus luteus was found to be the most susceptible bacteria to all crude extracts. Red and yellow petal extracts showed much higher antibacterial activity than the white petals extract. Bacillus subtilis was found to be the least susceptible to all extracts. The fungus, Penicillium notatum was found to be the most susceptible with white petal extract being the most effective. Saccharomyces cerevisiae and Fusarium oxysporum were the least susceptible to all extracts. White roses extract showed much higher antifungal activities against Penicillium notatum than red or yellow roses, therefore, it was subjected to several bioassay guided chromatographic fractionations and purification to isolate the active chemical(s) responsible for the antifungal activity. Chemical structure of the isolated antifungal compounds were identified by spectroscopy techniques and found to be a γ-sitosterol and (Z,Z)-9,12-octadecadienoic acid. Antibacterial activity of the various types of rose extracts were due to complex mixtures of organic compounds which are still under chemical investigation and will be published later.  相似文献   

8.
The inhibitory activity of amphotericin B, clotrimazole, econazole, miconazole and nystatin was compared against Fusarium oxysporum f.sp. radiciscucumerinum. The most efficient antifungal agent against the growth of Fusarium oxysporum was econazole, followed by clotrimazole, miconazole, amphotericin and nystatin. The ED5 0 and ED9 0 values were 0.053 and 1.002 ppm for econazole, 0.088 and 1.100 ppm for clotrimazole, 0.173 and 3.210 ppm for miconazole, 0.713 and greater than 48 ppm for amphotericin and 3.860 and 16.702 ppm for nystatin. The ED5 0 values of nystatin and amphotericin against spore germination of Fusarium oxysporum were determined at 3.1427 ppm and 8.3990 ppm respectively, nystatin was 2.76 times more effective than amphotericin, while no effect was observed after the addition of econazole, clotrimazole and miconazole. The tested azoles were more effective than amphotericin and nystatin on growth inhibition of Fusarium oxysporum but amphotericin and nystatin acted significantly better on spore germination of Fusarium.  相似文献   

9.

The antifungal activity of Artemisia herba alba was found to be associated with two major volatile compounds isolated from the fresh leaves of the plant. Carvone and piperitone were isolated and identified by GC/MS, GC/IR, and NMR spectroscopy. Antifungal activity was measured against Penicillium citrinum (ATCC 10499) and Mucora rouxii (ATCC 24905). The antifungal activity (IC50) of the purified compounds was estimated to be 5 μ g/ml, 2 μ g/ml against Penicillium citrinum and 7 μ g/ml, 1.5 μ g/ml against Mucora rouxii carvone and piperitone, respectively.  相似文献   

10.
Controlled release nanoformulations of carbendazim (Methyl 1H-benzimidazol-2-ylcarbamate), a systemic fungicide, have been prepared using laboratory synthesized poly(ethylene glycols) (PEGs)-based functionalized amphiphilic copolymers. The release kinetics of carbendazim from developed controlled release (CR) formulations was studied and compared with that of the commercially available 50% Wettable Powder (WP). Further, the bioefficacy evaluation of developed formulations was done against plant pathogenic fungi Rhizoctonia solani by the poison food technique method. The release of maximum amount of carbendazim from developed formulations was dependent on the molecular weight of PEGs and was found to increase with increasing molecular weights. The range of carbendazim release was found to be between 10th to 35th day as compared to commercial formulation which was up to 7th day. The diffusion exponent (n value) of carbendazim in water ranged from 0.37 to 0.52 in the tested formulations. The half-release (t1/2) values ranged between 9.47 and 24.20 days, and the period of optimum availability (POA) of carbendazim ranged from 9.15 to 26.63 days. Also, ED50 values of the developed formulations vary from 0.40 to 0.74 mg L?1. These formulations can be used to optimize the release of carbendazim to achieve disease control for the desired period depending on the matrix of the polymer used.  相似文献   

11.
Abstract

Pesticides are biological or chemical substances used to manage pests and diseases. Encapsulation of pesticides in biodegradable carriers creates a slow-release system that can improve water dispersibility and prolong residual activity. We prepared two kinds of poly (lactic-co-glycolic acid)(PLGA) nanoparticles (NPs) with polyvinyl alcohol (PVA) and sodium dodecyl sulfate (SDS) surfactants. These were used to encapsulate the fungicide fluazinam (Flu) against Rhizoctonia solani using the Shirasu Porous Glass (SPG) membrane emulsification method. Both nanoparticles had uniform spherical shapes with average diameters of 314.13?nm (SDS) and 612.80?nm (PVA). The slow-release microspheres had excellent sustained-release properties, resistance to UV degradation, storage stability, leaf surface coverage and antifungal efficacy compared to the commercial formulation.  相似文献   

12.
The aim of this study was to investigate the in vitro effect of an antifungal fraction obtained from Jacquinia macrocarpa plant (JmAF) in the generation of reactive oxygen species (ROS) and the activity of the catalase (CAT) and superoxide dismutase (SOD) enzymes from Fusarium verticillioides, as well as their influence in the viability of the fungus spores. The compounds present in the JmAF were determined by gas chromatography/quadrupole time-of-flight mass spectrometry (GC/QTOF-MS). The effect of the exposition to JmAF on the generation of ROS, as well as in the CAT and SOD activities in F. verticillioides, was determined. The main compounds detected were γ-sitosterol, stephamiersine, betulinol and oleic acid. JmAF showed very high ability in inhibiting the spore viability of F. verticillioides, and their capacity to cause oxidative stress by induction of ROS production. JmAF induced the highest ROS concentration and also inhibited CAT and SOD activities. The results obtained in this study indicate that JmAF is worthy of being considered for the fight against phytopathogenic fungi.  相似文献   

13.
In this study, tebuconazole (TEB)-loaded poly-3-hydroxybutyrate (P3HB)-based microparticles were developed and comprehensively characterized. TEB-loaded microparticles with the initial loading amounts of the fungicide of 10, 25, and 50% of the polymer mass (TEB 10, TEB 25, and TEB 50%) were prepared using emulsion technique. Encapsulation efficiency of TEB varied from 59 to 86%. As the loading amount was increased, the average diameter of microparticles increased too, from 41.3 to 71.7?µm, while zeta potential was not influenced by TEB loading, varying between –32.6 and –35.7?mV. TEB was gradually released from the microparticles to the model medium, and after 60?d, from 25 to 43% of TEB was released depending on the content of the encapsulated fungicide. The data obtained from in vitro TEB release were fitted to different mathematical models. It was shown that the release profiles of TEB could be best explained by the Zero-order, Higuchi, and Hixson–Crowell models. The antifungal activity of the P3HB/TEB microparticles against phytopathogenic fungi Fusarium moniliforme and Fusarium solani was demonstrated by in vitro tests conducted in Petri dishes. Thus, hydrophobic agrochemicals (TEB) can be effectively encapsulated into P3HB microparticles to construct slow-release formulations.  相似文献   

14.
Abstract

In the present study, ethanolic extract from Heliopsis longipes roots and affinin/spilanthol against Aspergillus parasiticus growth and aflatoxins production were studied in relation to the expression of aflD and aflR, two key genes of aflatoxins biosynthetic pathway. Phytochemical analysis of the ethanolic extract by GC-EIMS identified affinin/spilanthol (7.84?±?0.27?mg g?1) as the most abundant compounds in H. longipes roots. The antifungal and anti-aflatoxigenic assays showed that affinin/spilanthol at 300?µg mL?1 produced the higher inhibition of radial growth (95%), as well as, the higher aflatoxins production inhibition (61%) in comparison to H. longipes roots (87% and 48%, respectively). qRT-PCR revealed that the expression of aflD and aflR genes showed a higher downregulation in affinin/spilanthol at 300?µg mL?1. The expression ratio of alfD was suppressed by affinin/spilanthol in 79% and aflR in 84%, while, a lower expression ratio suppressed by H. longipes was obtained, alfD (55%) and aflR (59%). Affinin/spilanthol possesses higher antifungal and anti-aflatoxigenic activity against A. parasiticus rather than H. longipes roots, and this anti-aflaxotigenic activity occurring via downregulation of the aflD and aflR genes. Thus, H. longipes roots and affinin/spilanthol can be considered potent antifungal agents against aflatoxigenic fungus, especially, affinin/spilanthol.  相似文献   

15.
Twenty microfungal isolates were collected from diseased fruiting bodies of Agaricus bisporus sampled from Serbian mushroom farms during 2003–2007. Based on morphological characteristics and pathogenicity tests, the isolates were identified as Cladobotryum dendroides. The isolates of C. dendroides and A. bisporusF56 and U3 were tested for sensitivity to several selected fungicides in vitro. C. dendroides isolates were found to be more sensitive to prochloraz manganese and flusilazole + carbendazim than to the other fungicides tested (EC50 values were 0.09 and 0.11 mg L? 1, respectively) and weakly resistant to thiophanate-methyl (EC50 values ranged between 6.53 and 12.09 mg L? 1). Selectivity indexes of the tested fungicides on both C. dendroidesand A. bisporusindicated that thiophanate-methyl, cyproconazole + carbendazim and flusilazole + carbendazim had much less selective fungitoxicity than benomyl, carbendazim and prochloraz manganese.  相似文献   

16.
Microwave irradiation (MWI) of acetophenones and substituted benzaldehydes in water resulted in a “green-chemistry” procedure for the preparation of chalcones (1-14), through base catalyzed Claisen-Schmidt condensation reaction, in good yields. Further 3,5-diaryl-6-carbethoxy-2-cyclohexen-1-ones (1a-14a) were prepared through base catalyzed cyclocondensation of above chalcones with ethylacetoacetate using MWI as the energy source and silica as support. Out of fourteen cyclohexenones, ten (1a, 4a, 5a, 6a, 7a, 9a, 10a, 11a, 12a and 13a) are reported for the first time in literature. The synthesized compounds were characterized using various spectroscopic techniques, viz. (1H NMR and IR) and screened for their antifungal activity in vitro against Sclerotium rolfsii and Rhizoctonia solani by poisoned food technique. The compounds tested were found to be active against R. solani whereas against S. rolfsii, moderate activity was observed, as evident from LC50 values. The most potent compounds against R. solani were 1-(4-Fluoro-phenyl)-3-phenyl-propenone (13) and 1,3-Diphenyl-propenone (14) having LC50 values of 2.36 and 2.49 mgL? 1 respectively (LC50 of Hexaconazole = 1.12 mgL? 1) and against S. rolfsii 3-(4-Fluoro-phenyl)-5-(3-nitro-phenyl)-6-carbethoxy-2-cyclohexen-1-one (12a) was most active having LC50 value of 285 mgL? 1compared to Hexaconazole (LC50 = 1.27 mgL? 1).  相似文献   

17.
Abstract

The sorption of imidacloprid (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐N‐nitro‐2‐imidazolid‐inimine) (IMI) and its metabolites imidacloprid‐urea (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐2‐imidazol‐idinone) (IU), imidacloprid‐guanidine (l‐[(6‐chloro‐3‐pyridinyl)‐methyl]‐4,5‐dihydro‐lH‐imidazol‐2‐amine) (IG), and imida‐cloprid‐guanidine‐olefin ( 1 ‐[(6‐chloro‐3‐pyridinyl)methyl]‐lH‐imidazol‐2‐amine) (IGO) was determined on six typical Brazilian soils. Sorption of the chemicals on the soil was characterized using the batch equilibration method. The range and order of sorption (Kd) on the six soils was IG (4.75–134) > IGO (2.87–72.3) > IMI (0.55 ‐16.9) > IU (0.31–9.50). For IMI and IU, Kd was correlated with soil organic carbon (OC) content and CEC, the latter due to the high correlation between OC and cation exchange capacity (CEC) (R2=0.98). For IG and IGO, there was no correlation of sorption to clay, pH, OC or CEC due to the high sorption on all soils. Average Koc values were IU = 170, IMI = 362, IGO = 2433, and IG = 3500. Although Kd and Koc values found were consistently lower than those found in soils developed in non‐tropical climates, imidacloprid and its metabolites were still considered to be slightly mobile to immobile in Brazilian soils.  相似文献   

18.
The purpose of the study was to examine the antiradical activity of 11 natural honeys and to evaluate the antifungal properties of honey. Honey samples (10) were collected from different locations of Slovak Republic. Honeys were native to different plant species of Robinia pseudoacaccia, Brassica napus subs. napus, Castanea sativa Mill. Thymus serpyllum vulgaris and the other samples had multifloral origin. The low antiradical activitity in honey samples was determined. The best results were found in thyme honey from Rhodos (11.84 %) and Castanea honey from Nitra (10.61 %). The lowest antiradical activity was found in Acacia honey and determined to be 7.62 %. Statistically significant differences (P< 0.001) were found among thyme/Rhodos and Castanea/Nitra. The antifungal activities of honey samples were tested by 10 %, 25 % and 50 % (by mass per volume) concentration against fungi Penicillium crustosum, P. expansum, P. griseofulvum, P. raistrickii and P. verrucosum and by the agar well diffusion method. The solutions containing 10 % (by mass per volume) of honey did not have any effect on the growth of fungi. The strongest antifungal effect was shown by 50 % honey concentration against P. raistrickii.  相似文献   

19.
Zeolites are often used as adsorbents materials and their loaded cations can be exchanged with metal ions in order to add antimicrobial properties. The aim of this study was to use the 4A zeolite and its derived ion-exchanged forms with Zn2+, Li+, Cu2+ and Co2+ in order to evaluate their antifungal properties against Fusarium graminearum, including their capacity in terms of metal ions release, conidia germination and the deoxynivalenol (DON) adsorption. The zeolites ion-exchanged with Li+, Cu2+, and Co2+ showed an excellent antifungal activity against F. graminearum, using an agar diffusion method, with a zone of inhibition observed around the samples of 45.3 ± 0.6 mm, 25.7 ± 1.5 mm, and 24.7 ± 0.6 mm, respectively. Similar results using agar dilution method were found showing significant growth inhibition of F. graminearum for ion-exchanged zeolites with Zn2+, Li+, Cu2+, and Co2+. The fungi growth inhibition decreased as zeolite-Cu2+>zeolite-Li+>zeolite-Co2+>zeolite-Zn2+. In addition, the conidia germination was strongly affected by ion-exchanged zeolites. With regard to adsorption capacity, results indicate that only zeolite-Li+ were capable of DON adsorption significantly (P < 0.001) with 37% at 2 mg mL?1 concentration. The antifungal effects of the ion-exchanged zeolites can be ascribed to the interactions of the metal ions released from the zeolite structure, especially for zeolite-Li+, which showed to be a promising agent against F. graminearum and its toxin.  相似文献   

20.
Abstract

Biodegradation of the fatty acylamino acids by Fusarium culmorum, measured in terms of the release of radioactive aspartate and lysine, occurred maximally at pH 6.5 and pH 7.0, respectively in 10 day cultures. Thirty‐six percent and twenty‐four percent of the total radioactivity recovered were in released aspartate and lysine, respectivley at 30°C. Twenty degrees (C) was the minimum temperature for biodegradation of these compounds by F. culmorum. Greater degradation was observed at 15°C and 30°C. The data suggest the activity of hydrolytic isoenzymes, with optima at different pH's and temperatures, operating in the biodegradation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号