首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Granular activated carbon adsorption is one of the reliable and effective means of removing organochlorine pesticides from water. Continuous stirred tank and fix bed reactor systems were used for the screening of indigenous granular activated carbons in the removal of organochlorine pesticides from water at low microgram levels in simulated samples. The carbon dose reguired to treat raw water at initial concentrations of 5–10 ug/1 of Y‐HCH, p,p'‐DDT and p,p'‐DDE to <2 ug/1 potable level was computed. Data leads to the development of a tap attachable water treatment unit for pesticides removal for applications on domestic scale.  相似文献   

2.
Abstract

Sorption and desorption of lindane (y‐HCH) by wood charcoal (WC) and wood charcoal treated by 1N HNO3 (WCT) in fixed‐bed reactor (FBR) were investigated in this study. WCT revealed a better performance than WC, in removing lindane in FBR. The breakthrough of lindane was significantly affected by the size of WCT, flow rate to the FBR, and depth of WCT bed. The removal of lindane in the presence of mixture of other pesticides was considerably reduced. The design parameters for FBR were calculated based on the bed‐depth service time (BDST) approach. Many parameters Viz. depth of sorption zone, velocity of sorption, sorbent use rate, critical bed‐depth, bed efficiency, and service time, were determined for design of the fixed‐bed. Using the material balance principle, the characteristics of the wave‐front were evaluated and found that the wave‐front velocity is approximately equal to the sorption velocity determined from the BDST approach. Desorption studies were performed in dilute organic solvent media and they gave an excellent performance in regeneration process.  相似文献   

3.
ABSTRACT

Three novel calix[4]arene molecule-based 1,8 naphthalimide fluoroionophore for the selective determination of kesoxim-methyl were synthesized and used in pesticide binding studies. The possible interaction between pesticides and fluorescent calix[4]arene molecules was monitored by UV/Vis absorption and fluorescence spectroscopy. When compared the studied pesticides, kesoxim-methyl was strongly quenched the fluorescence intensity of upper rim-modified calix[4]arene. UV and fluorescence titration experiments were also studied to determine both the quenching mechanism and stoichiometric ratio consisted in complex formation. Furthermore, pesticide release experiments were also performed with a fertilizing agent as urea by using fluorescence spectroscopy technique.  相似文献   

4.
ABSTRACT

An evaluation of acute dietary exposure to pesticide residues, applying deterministic and stochastic methods, was performed for a selected group of pesticides in two representative age groups from Argentina. Thus, 28 active ingredients (a.i.) and 75 food items were evaluated for the group of 2–5-year-old children, while 9 a.i. and 59 food items were considered for the 10–49-year-old women group. A deterministic assessment was conducting following the Food and Agriculture Organization (FAO) and World Health Organization (WHO) procedure but using the national maximum residue limits (MRLs) as pesticide residue concentration data, while in the stochastic approach, a theoretical distribution modeled with the available information was used. Food consumption data were obtained from the 2004–2005 comprehensive national nutrition and health survey. The risk was estimated by comparing the short-term dietary exposure with the acute reference dose (ARfD) values for each pesticide-food combination evaluated. In the deterministic assessment, 173 (39.1%) and 40 (31.3%) combinations exceeded the ARfD thresholds for the 2–5-year-old children and 10–49-year-old women groups, respectively. This conservative study generated relevant information as a first stage of acute dietary risk assessment in Argentina.  相似文献   

5.
Abstract

Residues of five different pesticides applied to alfalfa seed crops were determined in the harvested seeds and in sprouts grown from these seeds. Although seeds are usually used for future production of alfalfa plants, some of these seeds may be sprouted for human food consumption. The pesticides studied — aldicarb (Temik®), chlorothalonil (Bravo®), chlorpyrifos (Lorsban®), methamidophos (Monitor®) and propargite (Comite®) — were applied at a normal usage rate and at two to three times that rate. Residues on the seeds and sprouts, if any, were insignificant at rates of application.  相似文献   

6.
The aim of this study was to assess the performance of a method of analyzing pesticides in rice by using pressurized liquid extraction (PLE) and to perform a preliminary monitoring by using that method. The instrumental quantification limit, instrumental detection limit, method quantification limit, and method detection limit were determined. PLE temperature was also optimized for 6 target pesticides. Mean recoveries of spiked rice with target pesticides (4 ng/g and 40 ng/g) were 83%–109% with the repeatability of the analysis, represented as relative standard deviations, ranged from 1.3% to 11% (n = 5) for PLE at 130°C. These results were satisfactory according to the method of positive list in Japan. In a preliminary analysis of 10 target pesticides in 54 commercial rice samples, ferimzone was detected in only one unpolished rice sample.  相似文献   

7.
Abstract

Scientific and regulatory interest in ground water contamination by pesticides increased significantly in 1979. This was prompted by findings of the nematicide 1,2‐dibromo‐3‐chloropropane (DBCP) and the nematicide/insecticide aldicarb (Temik®) in ground water in several states. Since that time, at least 130 pesticides and pesticide metabolites have been detected in ground water in over 150 studies, but detection frequencies are 4–10% nationally. Detection frequencies of pesticides over Health Advisory Levels are generally lower. Screening‐level models and detailed computer simulation models are useful for risk assessments and regulatory decisions. Attenuation Factor, CMLS, PRZM2, GLEAMS, and LEACHM are all useful models.  相似文献   

8.
ABSTRACT

This study investigated spatio-temporal variations of selected pesticide residues in the Kurose River in Higashi-Hiroshima city (Hiroshima Prefecture), Japan. Water samples were collected from the river at seven sites every month for 1 year (March 2016 to February 2017). Pesticide residues were extracted from the samples by a solid phase extraction using Sep Pack C18 cartridges. Once extracted, the samples were analyzed for cyanazine, simetryn, fenarimol, isoprothiolane, and diazinon using a reversed-phase high-performance liquid chromatography ultraviolet visible (HPLC-UV Vis) system. The limits of detection were 3.60, 4.10, 2.80, 6.50, and 7.30 ng L-1 for cyanazine, simetryn, fenarimol, isoprothiolane, and diazinon, respectively. Good recovery rates (88%–102%), and mean percent relative standard deviation range (1.00%–5.70%) (n = 6) were obtained with a spiking at 0.20 µg L-1. The maximum concentrations of 282, 391, 60, 1086, and 1194 ng L-1 were obtained for cyanazine, simetryn, isoprothiolane, fenarimol, and diazinon, respectively. Cyanazine was the most frequently detected pesticide (64% of the samples, n = 84), followed by simetryn (58%), and then diazinon (57%). The highest and lowest pesticide concentrations were measured during the periods May–June, and January–February, respectively. Principal component analysis revealed three principal components in which the pesticides were linked to dissolved organic matter and total suspended solids. The major water quality parameters (electrical conductivity, pH, Na+, K+, Mg2+, Ca2+, NH4+, NO3?, Cl?, SO42?, NO2?, and temperature) showed no clear trends for these pesticides. The presence of simetryn and isoprothiolane was largely attributed to rice paddy farms, whereas diazinon was associated mostly with vegetable farms and orchards. The diazinon and isoprothiolane patterns were consistent with their use of controlling insects and fungi in the prefecture. The maximum diazinon concentration detected was higher than the human safe level specified by the European Union (100 ng L-1) in Council Directive 98/83/EC. This is of concern because of the bioconcentration potential of these residues in fish and other marine animals consumed by humans.  相似文献   

9.
Abstract

Potatoes were grown in Plainfield sand and muck treated, in furrow, with aldicarb (Temik 15G, 3.36 kg Al/ha). .Soils were contained in 2 mz field plots and had not been treated previously with pesticides. Soil, seed pieces, foliage and tubers were analyzed for the insecticide and its sulfoxide and sulfone metabolites during the 12 wk following planting. The disappearance of aldicarb from the soil was accompanied by partial conversion to the sulfoxide and sulfone. After increasing rapidly during the first 2 wk, the aldicarb concentration in the seed piece declined and a similar concentration of aldicarb sulfoxide accumulated which subsequently slowly disappeared. Aldicarb sulfoxide was the major insecticidal material in the new foliage. High initial concentrations, observed at 3–4 wk, declined by about 90% after 6 wk. Aldicarb sulfoxide residues of 2–4 ppm in the first new tubers at 6 wk declined by 90% by 12 wk. Potatoes were also grown under greenhouse conditions in Plainfield sand treated with Temik 10G at rates equivalent to 1.68, 3.36 and 6.72 kg Al/ha. Maximum aldicarb sulfoxide concentrations in soil, seed piece and foliage increased with application rate. The sulfoxide was much more persistent in the soil and foliage than in the field experiment indicating the importance of environmental factors to its behaviour in both soil and potato plants.  相似文献   

10.
Abstract

In this study, the potential of spent activated carbon from water purifier (Aqua Guard, India) for the removal of atrazine (2 chloro-4 ethylamino-6-isopropylamino-1, 3, 5 triazine) from wastewaters was evaluated. Different grades of spent activated carbon were prepared by various pretreatments. Based on kinetic and equilibrium study results, spent activated carbon with a grain size of 0.3–0.5 mm and washed with distilled water (designated as WAC) was selected for fixed column studies. Batch adsorption equilibrium data followed both Freundlich and Langmuir isotherm. Fixed bed adsorption column with spent activated carbon as adsorbent was used as a polishing unit for the removal of atrazine from the effluent of an upflow anaerobic sludge blanket (UASB) reactor treating atrazine bearing domestic wastewater. Growth of bacteria on the surface of WAC was observed during column study and bacterial activity enhanced the effectiveness of adsorbent on atrazine removal from wastewater.  相似文献   

11.
Abstract

This research is a case study on detection of pesticides in river water, sediment as well as fish samples from Tapi River, among the major rivers of Gujarat, India. To investigate the misuse, concentration level and occurrence patterns of persistent pesticides, samples were collected from the river. Chlorpyrifos, methyl parathion, hexachlorocyclohexane (HCH), dichloro diphenyl trichloroethane (DDT) and endosulfan were analyzed by gas chromatography technique with flame ionization detector (FID). Scanty reports are available, but after 1999, no such data are reported as some of these pesticides have been banned. Although these pesticides are still in use which we observed from the obtained results. In this river, the amount of endosulfan, chlorpyrifos, and methyl parathion was observed in surface water with concentrations of 37.56?µg/L, 0.86?µg/L and 0.43?µg/L, respectively. Endosulfan, DDT and methyl parathion detected in sediment were 38.38?ng/g, 0.65?ng/g and 0.77?ng/g, respectively. In fish samples, levels of endosulfan, chlorpyrifos, and methyl parathion detected were 101.28, 0.392, and 3.49?ng/g correspondingly. Results showed that highly toxic pesticides are still being used in the surrounding area, and there is an urgent need for enforcement of rules to control the production and application of such pesticides.  相似文献   

12.
Abstract

Due to the toxicity and high environmental persistence of organochlorine pesticides in aquatic organisms, turtles have been studied as environment biomonitors. These animals are important sources of protein for the riverside and indigenous peoples of the Brazilian amazon. In the present study, organochlorine pesticide contamination was investigated in Podocnemis unifilis. Liver, muscle and fatty tissue samples were removed from 50 specimens collected from five sampling points located in the Xingu River basin. Fourteen organochlorine pesticides were analysed via gas chromatography with an electron capture detector (CG-ECD). Eight organochlorine pesticides were detected with average concentrations of ∑DDT, ∑Endossulfan and ∑HCH which were 26.17?±?26.35, 14.38?±?23.77 and 1.39?±?8.46?ng g?1 in moisture content, respectively. DDT compounds were the most predominant, with a greater concentration of pp′-DDT in the liver and pp′-DDD in the muscle. Significant differences were noted between the types of tissues studied, and the concentration of OCPs varied between sampling sites.  相似文献   

13.
Abstract

Rapid, inexpensive, sensitive, and selective enzyme‐linked immunosorbent assays (ELISAs) now are utilized in environmental science. In this laboratory, many ELISAs have been developed for pesticides and other toxic substances and also for their metabolites. Compounds for which ELISAs have recently been devised include insecticides (organophosphates, carbaryl, pyrethroids, and fenoxycarb), herbicides (s‐triazines, arylureas, triclopyr, and bromacil), fungicides (myclobutanil), TCDD, and metabolites of naphthalene and toluene. New rapid assays have been developed for mercury.  相似文献   

14.
Abstract

The wide‐spread use of pesticides in modern agriculture has created a need to investigate the chemical transformation of pesticides in plants and animals. This paper reviews the chemical and biochemical fate of various pesticides and other xenobiotics. Photochemical mechanisms appear to be the most common pathways for the abiotic transformation of these chemicals. Biotic transformation includes a large group of biochemical reactions which may result in either deactivation (detoxication) or activation (toxication) of bioactive compounds. The need for quality control in the production of pesticides is also discussed.  相似文献   

15.
Abstract

Solid state fermentation (SSF) was investigated as a means to dispose of two commonly used pesticides, chlorpyrifos (O, O‐diethyl O‐(3,5,6‐trichloro‐2‐pyridyl) phosphorothioate) and atrazine (2‐chloro‐4‐ethylamino‐6‐isopropylamino‐1,3,5‐triazine). SSF experiments were carried out in bench‐scale bioreaetors (equipped with CO2 and volatile organic traps) containing a mixture of lignocellulosic materials and a radiolabeled pesticide. Ethyl acetate‐extractable, alkali soluble, and alkali insoluble fractions were evaluated for radioactivity following a 60‐d incubation period at 40°C. The majority of the [2, 6‐pyridyl‐14C]chlorpyrifos was associated with the ethyl acetate extract (about 74%), 17% was trapped as organic volatiles by polyurethane foam traps and < 0.5% of the chlorpyrifos was mineralized to CO2. Only small amounts of the radioactivity were associated with alkali soluble (0.0003%) and alkali insoluble (0.3%) fractions. In the [14C‐U‐ring] atrazine bioreactors, very little of the radioactivity volatilized (<0.5%) and less than 0.5% was mineralized to CO2. Approximately 57% of the applied radioactivity was associated with the ethyl acetate extract while 9% and 24% of the radioactivity was associated with the alkali soluble (humic and fulvic acids) and alkali insoluble fractions, respectively. Possible reaction mechanisms by which covalent bonds could be formed between atrazine (or metabolites) and humic substances were investigated. The issue of bound atrazine residue (alkali soluble fraction) was at least partially resolved. Oxidative coupling experiments revealed that formation of covalent bond linkages between amino substituent groups of atrazine residue and humic substances is highly unlikely.  相似文献   

16.
The aim of this study was to determine the potential of seven clarifying agents to remove pesticides in red wine. The presence of pesticides in wine consists a great problem for winemakers and therefore, results on pesticide removal by clarification are very useful for taking a decision on the appropriate adsorbent. The selection of an efficient adsorbent can be based on data correlating pesticide removal in red wine to pesticides' properties, given the great number and variety of pesticides used. So, this experimental work is focused on the collection of results with regard to pesticide removal by clarification using a great number of pesticides and fining agents. A Greek red wine, fortified with single solutions and mixtures of 23 or 9 pesticides was studied. The seven fining agents, used at two concentrations, were activated carbon, bentonite, polyvinylpolypyrrolidone (PVPP), gelatin, egg albumin, isinglass-fish glue, and casein. Pesticides were selected with a wide range of properties (octanol–water partition coefficient (log Kow) 2.7–6.3 and water solubility 0.0002–142) and belong to 11 chemical groups. Solid phase extraction (SPE) followed by gas chromatography (GC) with electron capture detector (ECD) were performed to analyze pesticide residues of the clarified fortified wine. The correlation of the clarifying agents' effectiveness to pesticide's chemical structure and properties (log Kow, water solubility) was investigated. The antagonistic and/or synergistic effects, occurring among the pesticides in the mixtures, were calculated by indices. Pesticide removal effectiveness results of the red wine were compared to those obtained from a white wine under the same experimental conditions and discussed. The order of decreasing adsorbent effectiveness (mixture of 23 pesticides) was: activated carbon 40% > gelatin 23% > egg albumin 21% > PVPP 18% > casein 12% > bentonite 7%. Isinglass showed 12% removal at the highest permitted concentration. In the case of 9 pesticides mixture, the effectiveness was quite higher but the order remained the same compared to 23 pesticides mixture. The removal of each pesticide from its single solution was generally the highest (particularly for hydrophobic pesticides). Adsorption on fining agents is increased by increasing hydrophobicity and decreasing hydrophilicity of organic pesticide molecules.  相似文献   

17.
This study aimed to determine the toxicity of three organophosphorous pesticides, chlorpyrifos, terbufos and methamidophos, to three indigenous algal species isolated from local rivers and algal mixtures. The diatom Nitzschia sp. (0.30–1.68 mg L?1 of EC50 -the estimated concentration related to a 50% growth reduction) and the cyanobacteria Oscillatoria sp. (EC50 of 0.33–7.99 mg L?1) were sensitive to single pesticide treatment and the chlorophyta Chlorella sp. was the most tolerant (EC50 of 1.29–41.16 mg L?1). In treatment with the mixture of three pesticides, Chlorella sp. became the most sensitive alga. The antagonistic joint toxic effects on three indigenous algae and algal mixtures were found for most of the two pesticide mixtures. The results suggested that mixture of pesticides might induce the detoxification mechanisms more easily than the single pesticide. The synergistic interactions between terbufos and methamidophos to algal mixtures and between methamidophos and chlorpyrifos to Nitzschia sp. indicated methamidophos might act as a potential synergist. Differential sensitivity of three families of algae to these pesticides might result in changes in the algal community structures after river water has been contaminated with different pesticides, posing great ecological risk on the structure and functioning of the aquatic ecosystem.  相似文献   

18.
An analytical method was developed for determining organophosphate pesticides (OPP) and pyrethroid pesticides (PYR) in duplicate-diet solid food. The method consisted of pressurized liquid extraction (PLE) with dichloromethane followed by cleanup with gel permeation and solid phase extraction columns and gas chromatography/mass spectrometry (GC/MS) analysis. Quantitative recoveries (73–117 %) of the target pesticides were obtained for spiked duplicate-diet food samples. The percent standard deviation (% RSD) of replicate food samples was within ± 20 %. Another method was developed for determining a common OPP metabolite, 3, 5, 6-trichloro-2-pyridinol (TCP) in duplicate-diet food. The method consisted of a PLE with methanol followed by liquid-liquid partitioning, derivatization, and GC/MS analysis. Recoveries of TCP ranged from 83 to 101 % for spiked duplicate-diet food samples. The % RSD of replicate food samples was within ± 15 %. The results confirmed that these methods are reliable and robust, and that they can be used in routine analysis. In addition, a storage stability study for a common OPP, chlorpyrifos (CPF), in solid food samples was performed. The fortified 15N-13C-labeled CPF was stable over 16 mo storage at ?20° C in the dark. The developed analytical methods were successfully applied to 278 duplicate-diet food samples from preschool children, demonstrating that these methods are robust and suitable for routine analysis in future exposure monitoring studies.  相似文献   

19.
In the present work, the promising bioinformatic tools, based on structure–affinity analysis, allowed to screen several pesticides supposed to bind to the insect immune Phenoloxidases (PO). First, the binding of aminoparathion, a reference compound, to the PO was structurally (3D) validated in accordance with previous reports. Second, using the same docking conditions, a range of pesticides was checked for their binding ability to the crystal 3D structure (PDB 3HSS) of the insect Manduca sexta (Lepidoptera) PO. The obtained data showed that many of the tested pesticides were able to bind, in silico, to M. sexta PO. The combination of in vitro (chemical and biochemical) and in silico (automated docking) approaches was found advantageous to elucidate the behavior of phenolic pesticides as substrate-analogues when binding to the active site of insect POs. Our findings emphasize new ecotoxicological aspects of pesticide residues in the agro-chemical and environmental circles.  相似文献   

20.
Abstract

Superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) activities were determined in rat tissues after dermal exposure to pesticides. Two experiments were conducted in male SD rats, 190–210 g body weight. Acephate (ACP), methamidophos (MAP) and nicotine (NIC) were dissolved either individually or together in 0.25 mL of 50% ethanol, which contained: AP=12.6 or MAP 1.3 or NIC= 9.6 mg; EXP 1 ‐ individual pesticide exposure; 64 rats, 16/group; EXP 2 ‐ mixture of AP+MAP+NIC at levels of IX, 2X, 3X; 48 rats, 12/group; 0.25 mL of solution or ethanol (Controls) was applied to 25 mm2 area of shaved skin 3 times a week. Half the rats were terminated after 4 weeks and the rest after 4 weeks of stopping exposure. Single pesticides decreased erythrocyte (RBC) SOD by 17 % after exposure and in the NIC group after post exposure (P#0.05). Increasing concentrations of AP+MAP+NIC mixture elevated RBC SOD by 22 % in the 2X and 3X groups and CAT by 13 % in the 3X group (P#0.05); post exposure increased RBC SOD by 2–3 fold and CAT activity by 13 % in all 3 groups. Liver GPX increased by 30–40 % and CAT decreased by 12 % in all exposed and post exposed groups (P#0.05). The results suggest that dermal exposure to mixtures of pesticides can selectively induce SOD, CAT and GPX activities in RBC and liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号