首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

To examine pesticide mixture toxicity to aqueous organisms, we assessed the single and combined toxicities of thiamethoxam and other four pesticides (chlorpyrifos, beta-cypermethrin, tetraconazole, and azoxystrobin) to the rare minnow (Gobiocypris rarus). Data from 96-h semi-static toxicity assays of various developmental phases (embryonic, larval, juvenile, and adult phases) showed that beta-cypermethrin, chlorpyrifos, and azoxystrobin had the highest toxicities to G. rarus, and their LC50 values ranged from 0.0031 to 0.86 mg a.i. L?1, from 0.016 to 6.38 mg a.i. L?1, and from 0.39 to 1.08 mg a.i. L?1, respectively. Tetraconazole displayed a comparatively high toxicity, and its LC50 values ranged from 3.48 to 16.73 mg a.i. L?1. By contrast, thiamethoxam exhibited the lowest toxic effect with LC50 values ranging from 37.85 to 351.9 mg a.i. L?1. Rare minnow larvae were more sensitive than embryos to all the pesticides tested. Our data showed that a pesticide mixture of thiamethoxam–tetraconazole elicited synergetic toxicity to G. rarus. Moreover, pesticide mixtures containing beta-cypermethrin in combination with chlorpyrifos or tetraconazole also had synergetic toxicities to fish. The majority of pesticides are presumed to have additive toxicity, while our data emphasized that the concurrent existence of some chemicals in the aqueous circumstance could cause synergetic toxic effect, leading to severe loss to the aqueous environments in comparison with their single toxicities. Thence, the synergetic impacts of chemical mixtures should be considered when assessing the ecological risk of chemicals.

  相似文献   

2.
Abstract

Malathion is an organophosphorus pesticide widely used in agricultural crops, despite its toxicity. In addition, malaoxon occurs by oxidation of malathion being more toxic. The toxic effects of malathion and malaoxon in humans include hepatoxicity, breast cancer, genetic damage and endocrine disruption. The aim of this study involved assessing the effect of malathion commercial grade on Chroococcus sp., and its potential as an alternative to the removal of this pesticide and its transformation product such as malaoxon. We evaluated the effect of malathion at different concentrations (1, 25, 50, 75 and 100?ppm) on the biomass of the cyanobacteria Chroococcus sp. grown in medium BG-11; also, we analyse its ability to degrade both malathion and malaoxon into a temperature of 28?±?2?°C and at pH 6. The results showed that 50?ppm of malathion the cyanobacteria Chroococcus sp. reached the highest removal efficiency of malathion and malaoxon (69 and 65%, respectively); also, the growth rate of Chroococcus sp. increased without inhibiting the production of chlorophyll “a”, this can be explained by the hormesis phenomenon. Therefore, we consider that the cyanobacteria Chroococcus sp. may be a good candidate for bioremediation of aquatic systems contaminated with organophosphorus pesticides such as malathion and its transformation product such as malaoxon.  相似文献   

3.
This study aimed to determine the toxicity of three organophosphorous pesticides, chlorpyrifos, terbufos and methamidophos, to three indigenous algal species isolated from local rivers and algal mixtures. The diatom Nitzschia sp. (0.30–1.68 mg L?1 of EC50 -the estimated concentration related to a 50% growth reduction) and the cyanobacteria Oscillatoria sp. (EC50 of 0.33–7.99 mg L?1) were sensitive to single pesticide treatment and the chlorophyta Chlorella sp. was the most tolerant (EC50 of 1.29–41.16 mg L?1). In treatment with the mixture of three pesticides, Chlorella sp. became the most sensitive alga. The antagonistic joint toxic effects on three indigenous algae and algal mixtures were found for most of the two pesticide mixtures. The results suggested that mixture of pesticides might induce the detoxification mechanisms more easily than the single pesticide. The synergistic interactions between terbufos and methamidophos to algal mixtures and between methamidophos and chlorpyrifos to Nitzschia sp. indicated methamidophos might act as a potential synergist. Differential sensitivity of three families of algae to these pesticides might result in changes in the algal community structures after river water has been contaminated with different pesticides, posing great ecological risk on the structure and functioning of the aquatic ecosystem.  相似文献   

4.
This paper reports the construction of the gold/mercaptobenzothiazole/polyaniline/acetylcholinesterase/polyvinylacetate (Au/ MBT/PANI/AChE/PVAc) thick-film biosensor for the determination of certain organophosphate pesticide solutions in selected aqueous organic solvent solutions. The Au/MBT/PANI/AChE/PVAc electrocatalytic biosensor device was constructed by encapsulating acetylcholinesterase (AChE) enzyme in the PANI polymer composite, followed by the coating of poly(vinyl acetate) (PVAc) on top to secure the biosensor film from disintegration in the organic solvents evaluated. The electroactive substrate called acetylthiocholine (ATCh) was employed to provide the movement of electrons in the amperometric biosensor. The voltammetric results have shown that the current shifts more anodically as the Au/MBT/PANI/AChE/PVAc biosensor responded to successive acetylthiocholine (ATCh) substrate addition under anaerobic conditions in 0.1 M phosphate buffer, KCl (pH 7.2) solution and aqueous organic solvent solutions. For the Au/MBT/PANI/AChE/PVAc biosensor, various performance and stability parameters were evaluated. These factors include the optimal enzyme loading, effect of pH, long-term stability of the biosensor, temperature stability of the biosensor, the effect of polar organic solvents, and the effect of non-polar organic solvents on the amperometric behavior of the biosensor. The biosensor was then applied to detect a series of 5 organophosphorous pesticides in aqueous organic solvents and the pesticides studied were parathion-methyl, malathion and chlorpyrifos. The results obtained have shown that the detection limit values for the individual pesticides were 1.332 nM (parathion-methyl), 0.189 nM (malathion), 0.018 nM (chlorpyrifos).  相似文献   

5.
Fenoll J  Ruiz E  Flores P  Hellín P  Navarro S 《Chemosphere》2011,85(8):1375-1382
Laboratory and field studies were conducted in order to determine the leaching potential of eight pesticides commonly used during pepper cultivation by use of disturbed soil columns and field lysimeters, respectively. Two soils with different organic matter content (soils A and B) were used. Additionally, soil B was amended with compost (sheep manure). The tested compounds were cypermethrin, chlorpyrifos-methyl, bifenthrin, chlorpyrifos, cyfluthrin, endosulfan, malathion and tolclofos-methyl. In soil B (lower organic matter content), only endosulfan sulphate, malathion and tolclofos-methyl were found in leachates. For the soil A (higher organic matter content) and amended soil B, pesticide residues were not found in the leachates. In addition, this paper reports on the use of common agronomic practices (solarization and biosolarization) to enhance degradation of these pesticides from polluted soil A. The results showed that both solarization and biosolarization enhanced the degradation rates of endosulfan, bifenthrin and tolclofos-methyl compared with the control. Most of the studied pesticides showed similar behavior under solarization and biosolarization conditions. However, chlorpyrifos was degraded to a greater extent in the solarization than in biosolarization treatment. The results obtained point to the interest in the use of organic amendment in reducing the pollution of groundwater by pesticide drainage and in the use of solarization and biosolarization in reducing the persistence of pesticides in soil.  相似文献   

6.
Abstract

Solid state fermentation (SSF) was investigated as a means to dispose of two commonly used pesticides, chlorpyrifos (O, O‐diethyl O‐(3,5,6‐trichloro‐2‐pyridyl) phosphorothioate) and atrazine (2‐chloro‐4‐ethylamino‐6‐isopropylamino‐1,3,5‐triazine). SSF experiments were carried out in bench‐scale bioreaetors (equipped with CO2 and volatile organic traps) containing a mixture of lignocellulosic materials and a radiolabeled pesticide. Ethyl acetate‐extractable, alkali soluble, and alkali insoluble fractions were evaluated for radioactivity following a 60‐d incubation period at 40°C. The majority of the [2, 6‐pyridyl‐14C]chlorpyrifos was associated with the ethyl acetate extract (about 74%), 17% was trapped as organic volatiles by polyurethane foam traps and < 0.5% of the chlorpyrifos was mineralized to CO2. Only small amounts of the radioactivity were associated with alkali soluble (0.0003%) and alkali insoluble (0.3%) fractions. In the [14C‐U‐ring] atrazine bioreactors, very little of the radioactivity volatilized (<0.5%) and less than 0.5% was mineralized to CO2. Approximately 57% of the applied radioactivity was associated with the ethyl acetate extract while 9% and 24% of the radioactivity was associated with the alkali soluble (humic and fulvic acids) and alkali insoluble fractions, respectively. Possible reaction mechanisms by which covalent bonds could be formed between atrazine (or metabolites) and humic substances were investigated. The issue of bound atrazine residue (alkali soluble fraction) was at least partially resolved. Oxidative coupling experiments revealed that formation of covalent bond linkages between amino substituent groups of atrazine residue and humic substances is highly unlikely.  相似文献   

7.
The present study was undertaken with the objective of studying repeated batch and continuous degradation of chlorpyrifos (O,O-diethyl O-3,5,6-trichloropyridin-2-yl phosphorothioate) using Ca-alginate immobilized cells of Pseudomonas putida isolated from an agricultural soil, and to study the genes and enzymes involved in degradation. The study was carried out to reduce the toxicity of chlorpyrifos by degrading it to less toxic metabolites. Long-term stability of pesticide degradation was studied during repeated batch degradation of chlorpyrifos, which was carried out over a period of 50 days. Immobilized cells were able to show 65% degradation of chlorpyrifos at the end of the 50th cycle with a cell leakage of 112 × 103 cfu mL?1. During continuous treatment, 100% degradation was observed at 100 mL h?1 flow rate with 2% chlorpyrifos, and with 10% concentration of chlorpyrifos 98% and 80% degradation was recorded at 20 mL h?1 and 100 mL h?1 flow rate respectively. The products of degradation detected by liquid chromatography–mass spectrometry analysis were 3,5,6-trichloro-2-pyridinol and chlorpyrifos oxon. Plasmid curing experiments with ethidium bromide indicated that genes responsible for the degradation of chlorpyrifos are present on the chromosome and not on the plasmid. The results of Polymerase chain reaction indicate that a ~890-bp product expected for mpd gene was present in Ps. putida. Enzymatic degradation studies indicated that the enzymes involved in the degradation of chlorpyrifos are membrane-bound. The study indicates that immobilized cells of Ps. putida have the potential to be used in bioremediation of water contaminated with chlorpyrifos.  相似文献   

8.
Histopathological alterations in gill, liver and kidney of common carp, Cyprinus carpio, intoxicated with sub-lethal concentrations of chlorpyrifos (O,O,-diethyl-O-3,5,6-trichloro-2-pyridyl phosphorothioate) pesticide (1 and 100 μg/L) for a period of 14 days were analyzed under light microscope. Gill exhibited hyperplasia and hypertrophy of gill epithelium, blood congestion, dilation of marginal channel, epithelial lifting, lamellar fusion, lamellar disorganization, lamellar aneurysm, rupture of the lamellar epithelium, rupture of pillar cells and necrosis. Alterations in hepatocytes were more pronounced, including nuclear and cellular hypertrophy, cellular atrophy, irregular contour of cells and nucleus, cytoplasmic vacuolation, cytoplasmic and nuclear degeneration, cellular rupture, pyknotic nucleus, necrosis and melanomacrophages aggregations. Histopathological lesions in kidney were cellular and nuclear hypertrophy, narrowing of tubular lumen, cytoplasmic vacuolation, hyaline droplet degeneration, nuclear degeneration, occlusion of tubular lumen, tubular regeneration, dilation of glomerular capillaries, degeneration of glomerulus and hemorrhage in Bowman's space. The most significant conclusion drawn from this study was that with the increased concentration and duration the toxicosis of chlorpyrifos would be enhanced as shown through the analysis of mean assessment value (MAV) and degree of tissue changes (DTC) also.  相似文献   

9.
Fatima RA  Ahmad M 《Chemosphere》2006,62(4):527-537
Allium cepa root length inhibition test is a well recommended bioassay for the evaluation of the toxicity of various polluted waters. The utility of EROD (7-ethoxy resorufin O-deethylase) as a potential biomarker of pesticide pollution was investigated using the Allium cepa system. Onion bulbs exposed to model water samples containing any of the six pesticides viz. 2,4-D, HCB, malathion, carbaryl, DDT and endosulphan were analyzed for EROD activity. The pesticide treatment resulted in the enhanced activity of the enzyme, with carbaryl and HCB causing 63- and 53-fold induction respectively with respect to the control at a dose of 1.2 ppb. The industrial wastewater samples from Ghaziabad city of Northern India resulted in about a 68-fold rise in the EROD activity, whereas the Aligarh samples did not exhibit any change within the statistical limit. These results suggest the presence of the test pesticides in the Ghaziabad sample and their absence in the Aligarh sample. Pesticide analysis in the test water samples by HPLC supported this to a large extent. Presence of cycloheximide in the test system brought down the EROD activity, equal to that of control, suggesting the de novo synthesis of the enzyme following the exposure of Allium cepa to pesticides. These studies suggest that the Allium cepa derived EROD can act as a potential biomarker of certain pesticides since even 1ppb of total/individual pesticides brought about >10-fold induction of EROD. We recommend the assay of EROD in the Allium cepa system as a presumptive test for the detection of these pesticides before using analytical techniques like HPLC.  相似文献   

10.
The time required to destroy 3 concentrations (10, 100, and 1000 ppm) of 9 formulated herbicides (alachlor, atrazine, bentazon, butylate, cyanazine, 2, 4-D, metolachlor, metribuzin, and trifluralin) and two formulated insecticides (carbofuran and malathion) by ultraviolet (UV)-ozonation (O3) was measured in a 66 UV lamp unit. The time required for 90% destruction was dependent on the concentration and increased as the concentration of pesticide increased. UV irradiation in the presence of ozone rapidly photooxidized all pesticides at 10 and 100 ppm and averaged 22 and 61 min, respectively. Longer times were required for pesticides at 1000 ppm.  相似文献   

11.
Abstract

The acute toxicities (24, 48, 72 and 96 hr) of eight pesticides to Anguilla anguilla were determined. The organochlorine pesticide, endosulfan was the most toxic, with LC50 values in the range of 0.042 to 0.041 mg/L Endosulfan was followed in order of decreasing toxicity by diazinon, fenitrothion, chlorpyrifos, lmdane, methidathion, trichlorfon and methylparathion. When fishes were exposed to the pesticides tested they exhibited signs of restlessness, erratic swimming, convulsions and difficulty in respiration. This response was more persistent in fishes exposed to organophosphorus pesticides.  相似文献   

12.
A method for determining atmospheric concentrations of eight pesticides applied to corn and soybean crops in Mato Grosso state, Brazil is presented. The method involved a XAD-2 resin cartridge coupled to a low volume air pump at 2 L min?1 over 8 hours. Pesticides were recovered from the resin using sonication with n-hexane:ethyl acetate and determined by GC-MS. Good accuracy (76–128%) and precision (CV < 20%) were obtained for atrazine, chlorpyrifos, alpha- and beta-endosulfan, endosulfan sulfate, flutriafol, malathion, metolachlor and permethrin. Method detection ranged from 9.0 to 17.9 ng m?3. This method was applied to 61 gas phase samples collected between December 2008 and June 2009. Atrazine and endosulfan were detected both in urban and rural areas indicating the importance of atmospheric dispersion of pesticides in tropical areas. The simple and efficient extraction method and sampling system employed was considered suitable for identifying pesticides in areas of intense agricultural production.  相似文献   

13.
Sorption of three pesticides (chlorpyrifos, metalaxyl and penconazole) has been measured on a commercial clay montmorillonite and on the same mineral modified with either of two cationic-surfactant micelles. Both micelle–clay complexes, commercial names Cloisite 20A and Cloisite 30B, showed a good capacity to sorb all three pesticides from water, whereas their sorption on the natural montmorillonite was not described by an isotherm. Modelling sorption on both micelle–clay complexes showed that the Freundlich sorption constant (K F) was higher for chlorpyrifos on Cloisite 20A (K F = 7.76) than on Cloisite 30B (K F = 5.91), whereas the sorption of metalaxyl was stronger on Cloisite 30B (K F = 1.07) than on Cloisite 20A (K F = 0.57). Moreover the micelle–clay complex Cloisite 20A also showed a good affinity for penconazole, the maximum quantity adsorbed (q m) of 6.33 mg g?1 being 45% more than that on Cloisite 30B. Single-batch adsorption of each pesticide onto both micelle–clay complexes was studied using the Freundlich isotherm for chlorpyrifos and metalaxyl and the Langmuir isotherm for penconazole. The Cloisite 20A micelle–clay complex was predicted to require 23% less adsorbent to treat certain volumes of wastewater containing 30 mg L?1 chlorpyrifos, 43% more to treat metalaxyl similarly and 57% less to treat penconazole compared with Cloisite 30B.  相似文献   

14.

Potential synergistic toxicity of pesticide mixtures has increasingly become a concern to the health of crop pollinators. The toxicities of individual and mixture of chlorpyrifos (CHL), acephate (ACE), or tetraconazole (TET) with nine pyrethroid insecticides to honey bees (Apis mellifera L.) were evaluated to reveal any aggregated interaction between pesticides. Results from feeding toxicity tests of individual pesticides indicated that organophosphate insecticides CHL and ACE had higher toxicities to honey bees compared to nine pyrethroids. Moreover, different pyrethroids exhibited considerable variation in toxicity with LC50 values ranging from 10.05 (8.60–11.69) to 1125 (922.4–1442) mg a.i. L?1 after exposure for 7 days. Among the 12 examined pesticides, a relatively low toxicity to A. mellifera was detected from the fungicide TET. All the binary mixtures of ACE or TET in combination with pyrethroids exhibited synergistic effects. However, TET in combination with pyrethroids showed greater synergistic toxicity to A. mellifera than ACE in combination with pyrethroids. Approximately 50% binary mixtures of CHL in combination with pyrethroids also showed synergistic responses in honey bees. In particular, CHL, ACE, or TET in combination with either lambda-cyhalothrin (LCY) or bifenthrin (BIF) showed the strongest synergy in A. mellifera, followed by CHL, ACE, or TET in combination with either zeta-cypermethrin (ZCY) or cypermethrin (CYP). The findings indicated that the co-exposure of various pesticides in natural settings might lead to severe injury to crop pollinators. Therefore, pesticide mixtures should be applied carefully in order to minimize negative effects on honey bees while maintaining effective management against crop pests.

  相似文献   

15.
Organophosphorus pesticides (OPs) are ubiquitous in the environment and are highly toxic to amphibians. They deactivate cholinesterase, resulting in neurological dysfunction. Most chemicals in this group require oxidative desulfuration to achieve their greatest cholinesterase-inhibiting potencies. Oxon derivatives are formed within liver cells but also by bacterial decay of parental pesticides. This study examines the toxicity of chlorpyrifos, malathion and diazinon and their oxons on the foothill yellow-legged frog (Rana boylii). R. boylii is exposed to agricultural pesticides in the California Central Valley. Median lethal concentrations of the parental forms during a 96 h exposure were 3.00 mg/L (24h) for chlorpyrifos, 2.14 mg/L for malathion and 7.49 mg/L for diazinon. Corresponding oxons were 10 to 100 times more toxic than their parental forms. We conclude that environmental concentrations of these pesticides can be harmful to R. boylii populations.  相似文献   

16.
Liu C  Yang B  Gan J  Zhang Y  Liang M  Shu X  Shu J 《Chemosphere》2012,87(5):470-476
Organophosphorus pesticides (OPPs) emit into the atmosphere in both gas and particulate phases via spray drift from treatments and post-application emission, but most of their degradations in the atmosphere are not well known. In this study, the heterogeneous reactions of nitrate (NO3) radicals with three typical OPPs (parathion, malathion, and fenthion) absorbed on azelaic acid particles are investigated using an online vacuum ultraviolet photoionization aerosol time-of-flight mass spectrometer (VUV-ATOFMS). The reaction products observed with the VUV-ATOFMS are identified on the basis of GC/MS analysis of the products in the reaction between NO3 radicals and the coating of the pesticide. Paraoxon is identified as the only product of parathion; malaoxon and bis(1,2-bis-ethoxycarbonylethyl)disulfide as the products of malathion; fenoxon, fenoxon sulfoxide, fenthion sulfoxide, fenoxon sulfone, and fenthion sulfone as the products of fenthion. The degradation rates of parathion, malathion, and fenthion under the experimental conditions are 5.5 × 10−3, 5.6 × 10−2, and 3.3 × 10−2 s−1, respectively. The pathways of the heterogeneous reactions between the three OPPs and NO3 radicals are proposed. The experimental results reveal the possible transformations of these OPPs through the oxidation of NO3 radicals in the atmosphere.  相似文献   

17.
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and β-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of β-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.  相似文献   

18.
Effects of sub-lethal doses of carbaryl (1-Naphthyl-methylcarbamate), chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridinyl-phosphorothioate) and endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide), respectively a carbamate, an organophosphate and an organochlorine insecticide on growth, reproduction and respiration of the tropical earthworm, Perionyx excavatus (Perrier) were investigated under laboratory conditions. The results showed significant reduction in biomass, production and hatching of cocoon and production of juveniles of the worms exposed to 0.75 to 3.03 mg/kg soil of carbaryl, 0.91 to 3.65 mg/kg soil of chlorpyrifos and 3.75 to 15.0 μg/kg soil of endosulfan corresponding to 12.5 to 50 % of LC50 value of the respective insecticide for P. excavatus. Endosulfan was found most dangerous among the three insecticides followed by carbaryl and chlorpyrifos. There was no hatching of the worms at endosulfan treatment 5.0 μg/kg soil (25 % LC50) or above while the highest dose of carbaryl and chlorpyrifos (50 % of LC50) rendered respectively 87.13 and 24.84 % reductions in hatching as compared to control. Chlorpyrifos produced no change in respiration of the worms except at the highest dose, while the worms showed an increase in evolution of CO2 at all doses of carbaryl and endosulfan. Based on the recommended agricultural dose of each insecticide, it was concluded that application of endosulfan and carbaryl was potentially dangerous to earthworms.  相似文献   

19.
This study was undertaken to determine the effect of environmentally realistic concentrations of two commonly used pesticides viz., malathion and cypermethrin, using a fully 3 × 3 factorial experiments on the survivability and time of metamorphosis in a common rice paddy field frog (cricket frog) Fejervarya limnocharis under laboratory conditions. The results suggest that cypermethrin is more toxic than malathion and combinations of higher concentrations of cypermethrin (50 μg/L) with malathion (250 and 500 μg/L) are more deleterious to the survivability of tadpoles. With increasing cypermethrin concentration, the survivability of tadpole decreased (r = ?0.986, P = 0.108). But cypermethrin alone induced early metamorphosis among the surviving tadpoles. However, there was a delay in the time required for metamorphosis induced by malathion and its combination with cypermethrin. The delay in metamorphosis may indicate the altered physiological fitness of the individual. The emergent froglets will be subjected to environmental stressors like high temperature and less humidity of post-monsoon tropical climate that could enhance negative influence triggered by pesticides.  相似文献   

20.
J. B.  M. J.   《Chemosphere》2001,44(8)
Acetylcholinesterase activity was determined for midge larvae (Chironomus tentans) exposed to either organophosphorus insecticides (OPs) alone or OP insecticides in binary combination with atrazine (200 μg/l). Although atrazine by itself did not reduce the level of acetylcholinesterase activity, atrazine in combination with chlorpyrifos significantly decreased acetylcholinesterase activity as compared to chlorpyrifos only treatments. Although similar trends existed for malathion and methyl parathion, differences were not statistically significant. These results match previously published toxicity data where atrazine, although not acutely toxic even at much higher levels, decreased EC50 values for chlorpyrifos by a magnitude of 4, decreased methyl parathion values by a magnitude of 2, and did not decrease values for malathion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号