首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
A potential method for cleaning water from point-source pollution by organic compounds is using biological reactors. In this study, four reactors were tested for their ability to retain and degrade pesticides. The pesticides tested were the insecticide chlorpyrifos, the fungicide metalaxyl and the herbicide imazamox. The reactors were filled with differing mixtures of vine-branch, citrus peel, urban waste and public green compost. The reactor volume was 188 l. Forced circulation of the contaminated solution was programmed to decontaminate the solution. Both retention and degradation of the compounds by the reactors was studied. Chlorpyrifos was the best retained, due to its physico-chemical characteristics, while only one substrate effectively retained metalaxyl and imazamox (citrus peel+urban waste compost). Degradation of the pesticides in the reactors was faster than published values for degradation in soil. The half-life of all pesticides in the reactors was less than 14 days, compared to literature values of 60-70 days in soil. The combined retention and fast degradation make the biofilter a feasible technique to reduce spill-related and point environmental contamination by pesticides. The technique is most effective against persistent pesticides, while for mobile pesticides, the efficiency can be improved with several passages of the contaminated solution through biofilters.  相似文献   

2.
The persistence of fenamiphos (nematicide) in five soils collected from different geographical regions such as Australia, Ecuador and India under three temperature regimes (18, 25 and 37°C) simulating typical environmental conditions was studied. The effect of soil properties (soil pH, temperature and microbial biomass) on the degradation of fenamiphos was determined. The rate of degradation increased with increase in temperature. Fenamiphos degradation was higher at 37°C than at 25 and 18°C (except under alkaline pH). The degradation pathway differed in different soils. Fenamiphos sulfoxide (FSO) was identified as the major degradation product in all the soils. Fenamiphos sulfone (FSO2), and the corresponding phenols: fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO2P) were also detected. The degradation of fenamiphos was faster in the alkaline soils, followed by neutral and acidic soils. Under sterile conditions, the dissipation of the pesticide was slower than in the non-sterile soils suggesting microbial role in the pesticide degradation. The generation of new knowledge on fenamiphos degradation patterns under different environmental conditions is important to achieve better pesticide risk management.  相似文献   

3.
Abstract

A high‐intensity short‐wavelength UV light system was studied for its ability to degrade the pesticides carbofuran, fenamiphos sulfoxide (nemacur sulfoxide), and propazine in aqueous solutions. Half‐lives, rate constants, and breakdown products were determined for all chemicals. The presence of hydrogen peroxide, an oxidant and potential source of hydroxyl radicals, had no effect on the rate of breakdown of any of the chemicals investigated. Short‐wavelength UV light appears to be solely responsible for the observed pesticide breakdown. The breakdown of all three pesticides followed first order kinetics. Carbofuran, nemacur sulfoxide, and propazine had half lives of 3.9, 1.1, and 3.9 minutes, respectively. Breakdown product analysis was performed using capillary gas chromatography/mass spectrometry.  相似文献   

4.
The persistence of fenamiphos (nematicide) in five soils collected from different geographical regions such as Australia, Ecuador and India under three temperature regimes (18, 25 and 37 degrees C) simulating typical environmental conditions was studied. The effect of soil properties (soil pH, temperature and microbial biomass) on the degradation of fenamiphos was determined. The rate of degradation increased with increase in temperature. Fenamiphos degradation was higher at 37 degrees C than at 25 and 18 degrees C (except under alkaline pH). The degradation pathway differed in different soils. Fenamiphos sulfoxide (FSO) was identified as the major degradation product in all the soils. Fenamiphos sulfone (FSO2), and the corresponding phenols: fenamiphos phenol (FP), fenamiphos sulfoxide phenol (FSOP) and fenamiphos sulfone phenol (FSO2P) were also detected. The degradation of fenamiphos was faster in the alkaline soils, followed by neutral and acidic soils. Under sterile conditions, the dissipation of the pesticide was slower than in the non-sterile soils suggesting microbial role in the pesticide degradation. The generation of new knowledge on fenamiphos degradation patterns under different environmental conditions is important to achieve better pesticide risk management.  相似文献   

5.

Pesticides and other organic species are adsorbed by soil via different mechanisms, with bond strengths that depend on the properties of both the soil and the pesticide. Since the clay fraction in soil is a preferential sorbent for organic matter, reference kaolinite and montmorillonite are useful models for studying the mechanism and the strength of sorption. This paper presents the results of batch experiments to investigate the interactions of kaolinite KGa-1 and montmorillonite SWy-1 with the following pesticides and organic species resulting from the natural degradation of pesticides in the environment: atrazine (1-chloro-3-ethylamino-5-isopropylamino-2,4,6-triazine), simazine (1-chloro-3,5-bisethylamino-2,4,6-triazine), diuron [1,1-dimethyl-3-(3,4-dichlorophenyl)urea], aniline, 4-chlorophenol, 2,4-dichlorophenol, and 2,4,6-trichlorophenol. Each of these chemicals has different hydrophilicity. Systems containing 2.0 g of clay were put in contact with 100.0 mL of solutions of the pesticides at known concentration ranging from 1.0 to 5.0 mg/L, and the amount of solute adsorbed was evaluated through RP-HPLC analysis of the pesticide still present in the aqueous suspension. To test for electrostatic interactions between the clay surface and the pesticides, potentiometric titration was used to determine the permanent surface charge of clays. Experiments were performed at different pH values. The results indicate that, for the chemicals studied, neutral molecules are preferentially retained relative to ionized ones, and that montmorillonite is a more effective sorbent than kaolinite.  相似文献   

6.
ABSTRACT

Thirty-three soil samples were collected from the Luling, Liuer, and Zhangji coal mines in the Huaibei and Huainan areas of Anhui Province, China. The samples were analyzed for antimony (Sb) by inductively coupled plasma-optical emission spectrometry (ICP-OES) method. The average Sb content in the 33 samples was 4 mg kg?1, which is lower than in coals from this region (6.2 mg kg?1). More than 75% of the soils sampled showed a significant degree of Sb pollution (enrichment factors [EFs] 5–20). The soils collected near the gob pile and coal preparation plant were higher in Sb content than those collected from residential areas near the mines. The gob pile and tailings from the preparation plant were high in mineral matter content and high in Sb. They are the sources of Sb pollution in surface soils in the vicinity of coal mines. The spatial dispersion of Sb in surface soil in the mine region shows that Sb pollution could reach out as far as 350 m into the local environment conditions. Crops in rice paddies may adsorb some Sb and reduce the Sb content in soils from paddyfields. Vertical distribution of Sb in two soil profiles indicates that Sb is normally relatively immobile in soils.

IMPLICATIONS This work was carried out to analyze the pollution situation and environmental distribution of Sb in three important mines in Anhui Province of China. A detailed concentration analysis of Sb was used to indicate the anthropogenic source of human operation such as coal mining and depositing, coal cleaning, and electricity generation by coal power plants in the mine region. The investigation provides special useful information on the environmental behavior characteristics of Sb for environmental scientists and policy-makers.  相似文献   

7.
In this study, the physicochemical properties of the char of Indonesian SM coal following heat treatment at various temperatures were evaluated using X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and morphological and specific surface area analysis. Based on these analyses, heat treatment of coal was determined to be the most effective in increasing the coal rank. In the XPS analysis, the C–O and C–O–C groups and quaternary-N species were found to be of a lower grade coal when the pretreatment temperature decreased, meanwhile the C–C group and pyridinic species increased. In the FT-IR analysis, the collapse of the C–O and C–O–C group was observed due to the collapse of the ether group. In SEM and Brunauer–Emmett–Teller (BET) analysis, a decrease in the ether group was shown to be accompanied with the formation of micropores.

Implications Recently, XPS analyses have been reported as coal surface analysis. Usually, they have reported the analysis of the coals with different rank. This study investigated the coal surface characteristics of the coals pretreated at different temperature using various analyses (BET, SEM, XPS, FT-IR), and this study can be the basis for other research and applications.  相似文献   

8.
Cáceres T  Megharaj M  Naidu R 《Chemosphere》2007,66(7):1264-1269
The acute toxicity of an organophosphorous pesticide, fenamiphos and its metabolites, fenamiphos sulfoxide, fenamiphos sulfone, fenamiphos phenol, fenamiphos sulfoxide phenol and fenamiphos sulfone phenol, to a cladoceran, Daphnia carinata was studied in both cladoceran culture medium and natural water collected from a local river. The toxicity followed the order: fenamiphos>fenamiphos sulfone>fenamiphos sulfoxide. The hydrolysis products of fenamiphos, F. sulfoxide (FSO) and F. sulfone (FSO(2)) (F. phenol, FSO phenol and FSO(2) phenol) were not toxic to D. carinata up to 500microgl(-1) water, suggesting hydrolysis reaction leads to detoxification. Also the toxicity was reduced in natural water compared to the cladoceran culture medium due to microbial mediated degradation of toxicants in the natural water. Fenamiphos and its metabolites were stable in both cladoceran water and filter-sterilised natural water while these compounds showed degradation in unfiltered natural water implicating the microbial role in degradation of these compounds. To our knowledge this is the first study on acute toxicity of fenamiphos metabolites to cladoceran and this study suggests that the organophosphate pesticides are highly toxic to fresh water invertebrates and therefore pollution with these compounds may adversely affect the natural ecosystems.  相似文献   

9.
On the basis of a recent epidemiological study it is hypothesized that pyrite content in coal is an important factor in coal workers’ pneumoconiosis (CWP) pathogenesis. While the role of pyrite in pathogenesis remains to be resolved, the ability of the mineral to generate reactive oxygen species (ROS) through various mechanisms is likely a contributing factor. The aim of this study was to elucidate the importance of the pyrite content of coal in generating an inflammatory stress response (ISR), which is defined as the upregulation of ROS normalized by cell viability. The ISR of A549 human lung epithelial cells in the presence of natural coal samples with variable pyrite contents was measured. Normalized to surface area, five particle loadings for each coal reference standard were analyzed systematically for a total of 24 h. The ISR generated by coals containing 0.00, 0.01, and 0.49 wt.% pyritic sulfur is comparable to,though less than, the ISR generated by inert glass beads (299% of the control). The coals containing 0.52 and 1.15 wt.% pyritic sulfur generated the greatest ISR (798% and 1426% of the control, respectively).  相似文献   

10.
BACKGROUND, AIM AND SCOPE: Pesticides are often found in soil as a result of their application to control pests. They can be transported on soil particles to surface waters or they can lixiviate and reach other environmental compartments. Soil modification with amendments, such as sewage sludge, and with surfactants, h been proposed to reduce pesticide environmental fate. METHODS: The sorption of atrazine, methidathion and diazinon using the batch technique has been studied on non-modified soil and soil modified with sewage sludge and cationic surfactants, as well as the effect of their addition on soil properties such as organic carbon (OC) content and exchange cations. RESULTS AND DISCUSSION: The OC content of the surfactant modified soils was the highest with the surfactant with the longest hydrocarbon chain (hexadecyltrimethyl ammonium bromide, HDTMA). The results of the OC content run in parallel with the increase in pesticide retention. When the sorption was n malized to soil OC content, the retention induced by addition of HDTMA was still the highest, which is an indication that the organic matter derived from the organic cations is a more effective medium to retain dissolved contaminants, than organic matter from native soil. The addition of sewage sludge to the soil did only result in a slight increase of the soil CEC and, hence, moderately affected the ability of the cationic surfactant to retain the pesticides. CONCLUSIONS: The addition of cationic surfactants to soil would possibly reduce the movement to groundwater of atrazine, methidathion and diazinon. In the case of HDTMA, the decrease in sorption at high surfactant loadings was very slow, being that the surfactant was able to retain the pesticides at concentration values which clearly exceeded the monolayer coverage. RECOMMENDATIONS AND PERSPECTIVES: Contamination by pesticides, which are present in the soil due to their direct input in this medium or to spills or illegal tipping, may be hindered from migration to groundwater by application of a cationic surfactant.  相似文献   

11.
In this study, preliminary tests were conducted aiming to validate the use of ceramic porous cup for collecting soil water samples and monitoring pesticides contents, as usually made for nitrates. Interactions between porous cup and pesticides were examined under different experimental conditions for three herbicides (atrazine, isoproturon, 2,4-D) and one insecticide (carbofuran).

The results showed that ceramic was not inert for pesticides : as much as 80% of the applied pesticide could be retained during the flowing of the first tenth milliliters of solution. Interactions were attributed to sorption and “screening” of molecules by the porous walls and were related to the ionic character of pesticides. However, retention was not irreversible, since pesticides were quickly released by rinsing with distilled water.

After these tests, porous ceramic cups could be considered as suitable samplers for pesticide determinations in soil solution, contingent on gaining further informations about soil - porous cup - pesticide interactions.  相似文献   


12.
Abstract

The effects of washing treatments on removal rates of some pesticides residues (acetamiprid, chlorpyrifos and formetanate hydrochloride) on pepper were investigated. Method verification was conducted through spiking pepper samples at 0.1, 1.0 and 10.0 × MRL. QuEChERS method produced average recovery of 104.91% with relative standard deviation (RSD) of 13.41%. LOQ values of acetamiprid, chlorpyrifos and formetanate hydrochloride were estimated as 2, 10 and 5?µg/kg, respectively. Capia peppers grown in open fields were sprayed three times with pesticides. Peppers were harvested after 1st, 2nd and 3rd day of the treatments. Then the peppers were subjected to tap water, acetic acid and citric acid washing and ultrasonic cleaning treatments (for 2 and 5?min). Based on three different harvest times and two different washing durations, processing factors (PFs) and reduction rates were calculated for each washing treatment. The residues gradually decreased during washing treatments with increasing process duration. Similarly, a gradual reduction was noted with the progress of harvest times. This in turn corresponded to an increase in PF. Ultrasonic cleaning and citric acid (9%) washing were more effective than the others. Non-systemic pesticides (chlorpyrifos) were more readily removed than the systemic ones (acetamiprid). Similarly, highly soluble pesticides exhibited higher reduction.  相似文献   

13.

The impact of coal mine dump contaminated soil on the elemental uptake by two edible plants, namely, Amaranthus dubius (red herbs) and Amaranthus hybridus (green herbs), was studied by investigating their response and ability to tolerate and accumulate varying levels of elements in their roots and shoots. The vegetation was grown on varying amounts of contaminated soil, viz. 0%, 5%, 15%, 25% w/w using coal mine dump soil. The soil was analyzed for soil pH, cation exchange capacity (CEC), soil organic matter (SOM), moisture content, and selected heavy metals. The distribution of six metals, namely, Pb, Cd, Hg, Ni, Mn, and Fe, in roots, stem, and leaves of the plants was determined in two stages of growth after 5 weeks and 10 weeks. All soil and plant samples were microwave digested and subjected to heavy metal analysis using the ICP-OES, GFAAS, and CVAAS. The pH of the coal mine dump contaminated soil decreased with an increase in contamination. Both the SOM and CEC values decreased, which increases the availability of elements, by providing more binding sites in the soil. Relatively, the red herbs had higher elemental concentrations than the green herbs. Both plants recorded high manganese accumulation. No mercury was detected in the soils or plants.  相似文献   

14.
The efficiency of biopurification systems to treat pesticide-contaminated water was previously studied in microcosms. To validate the obtained results, macrocosm systems were set-up. Four pesticides (linuron, isoproturon, bentazone, and metalaxyl) were continuously applied to ten different organic substrate mixes. Retention of the pesticides was similar and in some cases slightly lower in the macrocosms compared to the microcosms. Differences in retention between the different mixes were however minimal. Moreover, the classification of the retention strength of the pesticides was identical to that observed in microcosms: linuron > isoproturon > metalaxyl > bentazone. Monod kinetics were used to describe delayed degradation, which occurred for isoproturon, metalaxyl and bentazone. No breakthrough of linuron was observed, thus, this pesticide was appointed as the most retained and/or degraded pesticide, followed by isoproturon, metalaxyl and bentazone. Finally, most of the matrix mixes efficient in degrading or retaining pesticides were mixes containing dried cow manure.  相似文献   

15.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15–92%, whereas with the Kota fly ash an increase in sorption by 13–38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to Kf/Kd values, KFA values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   

16.
The efficiency of a biopurification system, developed to treat pesticide contaminated water, is to a large extent determined by the chemical and hydraulic load. Insight into the behaviour of pesticides under different fluxes is necessary. The behaviour of metalaxyl, bentazone, linuron, isoproturon and metamitron was studied under three different fluxes with or without the presence of pesticide-primed soil in column experiments. Due to the time-dependent sorption process, retention of the pesticides with intermediate mobility was significantly influenced by the flux. The higher the flux, the slower pesticides will be sorbed, which resulted in a lower retention. Degradation of the intermediate mobile pesticides was also submissive to variations in flux. An increase in flux, led to a decrease in retention, which in turn decreased the opportunity time for biodegradation. Finally, the presence of pesticide-primed soil was only beneficial for the degradation of metalaxyl.  相似文献   

17.
The ban of commonly used soil fumigants, DBCP and EDB, for control of nematodes in pineapple fields has prompted investigations into a non-fumigant nematicide, fenamiphos (Nemacur®). The transformation and adsorption in soil of fenamiphos and its transformation products, f. sulfoxide and f. sulfone were studied in the laboratory. Fenamiphos adsorption on soil exceeded that of f. sulfoxide and f. sulfone. F. sulfoxide, however, was the most persistent. A one-dimensional simulation model was used to assess the impact of transformation and adsorption on the mobility and distribution of fenamiphos and f. sulfoxide in soil. Simulated results showed that fenamiphos stayed in the topsoil and transformed rapidly to f. sulfoxide. Because of the persistence and mobility of f. sulfoxide, this metabolite leached rapidly and significant amounts remained in the soil. This suggests that for times exceeding three weeks, f. sulfoxide may be the dominant compound providing nematode control in drip-irrigated pineapple.  相似文献   

18.
Abstract

A study was conducted to investigate the effect of selective catalytic reduction (SCR) catalyst on mercury (Hg) speciation in bituminous and subbituminous coal combustion flue gases. Three different Illinois Basin bituminous coals (from high to low sulfur [S] and chlorine [Cl]) and one Powder River Basin (PRB) subbituminous coal with very low S and very low Cl were tested in a pilot-scale combustor equipped with an SCR reactor for controlling nitrogen oxides (NOx) emissions. The SCR catalyst induced high oxidation of elemental Hg (Hg0), decreasing the percentage of Hg0 at the outlet of the SCR to values <12% for the three Illinois coal tests. The PRB coal test indicated a low oxidation of Hg0 by the SCR catalyst, with the percentage of Hg0 decreasing from ~96% at the inlet of the reactor to ~80% at the outlet. The low Cl content of the PRB coal and corresponding low level of available flue gas Cl species were believed to be responsible for low SCR Hg oxidation for this coal type. The test results indicated a strong effect of coal type on the extent of Hg oxidation.  相似文献   

19.
This investigation was undertaken to determine the effect of two different fly ashes [Kota and Inderprastha (IP)] amendment on the sorption behavior of metribuzin in three Indian soil types. The IP fly ash was very effective in increasing the metribuzin sorption in the soils. The sorption with IP amendment was increased by 15-92%, whereas with the Kota fly ash an increase in sorption by 13-38% was noted. The adsorption isotherms fitted very well to the Freundlich adsorption equation and, in general, slope (1/n) values less then unity were observed. Although both the fly ashes significantly decreased metribuzin desorption, the IP fly ash was comparatively more effective in retaining metribuzin in the soils. Metribuzin sorption in the IP fly ash-amended soils showed strong correlation with the fly ash content and compared to K(f)/K(d) values, K(FA) values (sorption normalized to fly ash content) showed less variation. Metribuzin sorption-desorption did not correlate to the organic carbon content of the soil-fly ash mixture. The study demonstrates that all coal fly ashes may not be effective in enhancing the sorption of metribuzin in soils to the same extent. However, among the fly ashes used in this study, the IP fly ash was observed to be significantly effective in enhancing the sorption of metribuzin in soils. This may play an important role in reducing the run off and leaching losses of the herbicide by retaining it in the soil.  相似文献   

20.
Mean annual (1994-1996) budgets for Cd, Cu, Ni, Pb and Zn at two background, forested catchments, VK and HJ, in Finland are presented. Budgets for plots (VK3, HJ1 and HJ4) included throughfall (TF), litterfall (LF) and soil leaching fluxes, and for catchments terrestrial retention and leaching and lake sedimentation fluxes. Total deposition (TD) loads were relatively low (Cd < 0.1, Cu < 2, Ni < 1, Pb < 3 and Zn < 5 mg m-2 year-1) and that even in these areas almost half of the TD was in the form of dry deposition. Retention of TD within catchments was > or = 77% for all metals, except for Ni at VK (54%). For Cu and Pb, the retention was 94-97%. Most of the retention (74-97%) took place in the terrestrial part of the catchment, lake sedimentation accounting for the remainder. Plot-scale soil leaching fluxes at 40 cm of Cd, Cu (VK3) and Ni (VK3) were greater (> or = 100%) than TD inputs. Most of the catchment retention must therefore have taken place either deeper in the soil or in the lowland peatland areas. The humus layer was particularly effective in retaining Cu and Cd (65-81% and 51-78% of total inputs to the forest floor (TF + LF)). The retention of Pb by the humus layer was less than expected (26-54% of TF + LF). Litterfall was a particularly important internal flux for Zn.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号