首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
Endosulfan (1,4,5,6,7,7-hexachloro-8,9,10-trinorborn-5-en-2,3-ylenedimethylsulphite) and quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) persistence and their effect on soil microarthropods were studied after repeated applications in cotton fields. Dissipation behavior of insecticides after repeated applications was observed from 78 to 292 days after the first insecticide treatment. At any given time the concentrations of endosulfan beta residues were always higher as compared to endosulfan alpha. From 78 to 85 days, 5.0% and 20.4% decrease in alpha and beta endosulfan residues was observed, respectively. Endosulfan beta isomer decreased up to 93.0% in 292 days. Endosulfan sulfate was detected as a major metabolite in the soil samples. Total endosulfan residues decreased by 86.6% from 78 to 292 days. The amounts of quinalphos residues were less as compared to endosulfan at any given time. The residues observed after 78 days of application were 0.88 ng g-1 d wt. soil. At the end of 145 days, a 35.0% decrease in quinalphos residue was observed, which decreased further by 50.9% in 292 days. Among the soil microarthropods studied, Acarina was more sensitive to the applied insecticides as compared to Collembola. Three days after the last treatment, up to 94.5% (p < 0.01) and 71.2% (p < 0.05) decrease in Acarina population was observed in endosulfan and quinalphos treated fields, respectively, compared to control field. In general, no noticeable change in Collembola population was observed after the insecticide treatments.  相似文献   

2.
Endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,3,4-benzo-dioxathiepin-3-oxide) is a cyclodiene organochlorine currently used as an insecticide all over the world and its residues are posing a serious environmental threat. This study reports the enrichment and isolation of a microbial culture capable of degrading endosulfan with minimal production of endosulfan sulfate, the toxic metabolite of endosulfan, from tropical acid soil. Enrichment was achieved by using the insecticide as sole sulfur source. The enriched microbial culture, SKL-1, later identified as Pseudomonas aeruginosa, degraded up to 50.25 and 69.77 % of α and β endosulfan, respectively in 20 days. Percentage of bioformation of endosulfan sulfate to total formation was 2.12% by the 20th day of incubation. Degradation of the insecticide was concomitant with bacterial growth reaching up to an optical density of 600 nm (OD600) 2.34 and aryl sulfatase activity of the broth reaching up to 23.93 μg pNP/mL/hr. The results of this study suggest that this novel strain is a valuable source of potent endosulfan–degrading enzymes for use in enzymatic bioremediation. Further, the increase in aryl sulfatase activity of the broth with the increase in degradation of endosulfan suggests the probable involvement of the enzyme in the transformation of endosulfan to its metabolites.  相似文献   

3.
Insecticide residues in cotton crop soil   总被引:2,自引:0,他引:2  
Dimethoate, monocrotophos, triazophos, deltamethrin, cypermethrin and endosulfan were applied to a cotton crop soil located at Nurpur village, Punjab, India. The insecticides were applied sequentially at recommended dosages in cotton fields by foliar application in 1995, 1996 and 1998. Soil samples were collected from the cotton crop farms and extracted with acetone. The extracted material was analysed by a gas liquid chromatograph (GLC) equipped with an 63Ni electron-capture detector (ECD-63Ni). Recovery data was obtained by fortifying soil with insecticide. The average recoveries from the fortified soil samples were 76-92% for organophosphorous compounds and 90-98% for synthetic pyrethroids and organochlorines. The results showed that the insecticide residues under study were present in the range of 1.16 to 41.97 ng g(-1) d.wt.soil. The pattern of dissipation of the insecticides used was similar for the duration of the crop. Half lives of the insecticides ranged from 7 to 22 days. Except endosulfan none of the other insecticides used were leached below 15 cm. Endosulfan was found to be rapidly degraded in the soil and formed a sulfate metabolite. Persistence and dissipation pattern in soils with history of exposure to the insecticide compared to non-history soils were similar.  相似文献   

4.
Effects of sub-lethal doses of carbaryl (1-Naphthyl-methylcarbamate), chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridinyl-phosphorothioate) and endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide), respectively a carbamate, an organophosphate and an organochlorine insecticide on growth, reproduction and respiration of the tropical earthworm, Perionyx excavatus (Perrier) were investigated under laboratory conditions. The results showed significant reduction in biomass, production and hatching of cocoon and production of juveniles of the worms exposed to 0.75 to 3.03 mg/kg soil of carbaryl, 0.91 to 3.65 mg/kg soil of chlorpyrifos and 3.75 to 15.0 μg/kg soil of endosulfan corresponding to 12.5 to 50 % of LC50 value of the respective insecticide for P. excavatus. Endosulfan was found most dangerous among the three insecticides followed by carbaryl and chlorpyrifos. There was no hatching of the worms at endosulfan treatment 5.0 μg/kg soil (25 % LC50) or above while the highest dose of carbaryl and chlorpyrifos (50 % of LC50) rendered respectively 87.13 and 24.84 % reductions in hatching as compared to control. Chlorpyrifos produced no change in respiration of the worms except at the highest dose, while the worms showed an increase in evolution of CO2 at all doses of carbaryl and endosulfan. Based on the recommended agricultural dose of each insecticide, it was concluded that application of endosulfan and carbaryl was potentially dangerous to earthworms.  相似文献   

5.
Abstract

A laboratory pot experiment was conducted to study the effect of amending soil with four different sources of organic matter on the degradation rate of α and β endosulfan isomers. Poultry by-product meal, poultry manure, dairy manure, and municipal solid waste compost were cured, dried, ground (<1 mm) and thoroughly mixed with a calcareous soil at a rate of 2% and placed in plastic pots. Endosulfan was added at the rate of 20 mg kg?1. The moisture level was kept near field capacity and the pots were kept at room temperature. Soil sub-samples, 100 g each, were collected from every pot at days 1, 8, 15, 22, 29, 43, and 57 for the measurement of endosulfan isomers. Endosulfan residues were extracted from the soil samples with acetone. The supernatant was filtered through anhydrous sodium sulphate, 5 mL aliquot was diluted to 25 mL with hexane, mixed well, and then two sub-samples from the filtrates were analyzed for α and β endosulfan isomers by gas chromatography. The results indicated that the half-life (T ½) of α-endosulfan in the poultry by-product meal treatment was 15 days compared to about 22 days in the other treatments. The T ½ of β-endosulfan was 22 days in the poultry by-product meal treatment and followed a bi-phasic pattern, 57 days in the municipal solid waste compost treatment and the extrapolated T ½ was about 115 days for the other three treatments.  相似文献   

6.
Pandey S  Singh DK 《Chemosphere》2006,63(5):869-880
Chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2 pyridyl phosphorothioate) 20 EC and Quinalphos (O,O-diethyl O-quinoxalin-2-yl phosphorothioate) 25 EC, were applied in groundnut (Arachis hypogaea L.) field as seed treatment at 25 ml/kg and soil treatment at 4 l/ha in 1998 and 1999. The residues of these insecticides were monitored during the entire crop season and their effect on the soil enzymes dehydrogenase, phosphomonoesterase and arginine deaminase were studied. Ninety nine percent of chlorpyrifos residues were dissipated within 60 days from seed treated soil and 98% dissipation was observed in soil treated field for the same days. Its half lives in seed treated soil were 8 days and 7 days and in soil treated field were 9.2 days in and 7.5 days in 1998 and 1999 respectively. Dissipation of quinalphos in comparison to chlorpyrifos was slow both in seed treated and soil treated field. Eighty seven percentage to 92% dissipation of quinalphos residues were observed from seed treated soil and 98% residues were dissipated from soil treated field within 75 days. Its half lives in seed treated soil were 20 days and 18 days and in soil treated field, its half lives were 13 days and 17 days 1998 and 1999 respectively. Inhibition in dehydrogenase activity followed by recovery was observed both in seed and soil treatments with chlorpyrifos. An inhibition of 17.2% was estimated after 60 days of seed treatment in comparison to control. Dehydrogenase activity was significantly reduced to 63% after 15 days of quinalphos seed treatment in comparison to control in 1998. Similar trends were observed in 1999. A significant inhibition in dehydrogenase activity was observed after soil treatment both in 1998 and 1999. Phosphomonoesterase activities were significantly inhibited upto 25.2% as compared to the control, on the 15th day of chlorpyrifos seed treatment in 1998 and similarly, after one day of treatment in 1999. Quinalphos inhibited the phosphomonoesterase activity till the end of the experimental period in the soil treated fields, whereas recovered within 30-60 days of treatment in the seed treated fields. Arginine deaminase activity was significantly stimulated within one day after chlorpyrifos seed and soil treatments in both years. The activity was almost threefold higher on the 30th and the 15th day of soil treatment in 1998 and 1999, respectively. A temporary inhibition of arginine deaminase activity was observed after quinalphos treatment. It was observed that in most of cases insecticides have temporary inhibitory effect on soil enzymes. However, inhibition was smaller in seed treated soil than in direct soil treatment.  相似文献   

7.
Effects of sub-lethal doses of carbaryl (1-Naphthyl-methylcarbamate), chlorpyrifos (O,O-diethyl O-3,5,6-trichloro-2-pyridinyl-phosphorothioate) and endosulfan (6,7,8,9,10,10-Hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepin-3-oxide), respectively a carbamate, an organophosphate and an organochlorine insecticide on growth, reproduction and respiration of the tropical earthworm, Perionyx excavatus (Perrier) were investigated under laboratory conditions. The results showed significant reduction in biomass, production and hatching of cocoon and production of juveniles of the worms exposed to 0.75 to 3.03 mg/kg soil of carbaryl, 0.91 to 3.65 mg/kg soil of chlorpyrifos and 3.75 to 15.0 μg/kg soil of endosulfan corresponding to 12.5 to 50 % of LC(50) value of the respective insecticide for P. excavatus. Endosulfan was found most dangerous among the three insecticides followed by carbaryl and chlorpyrifos. There was no hatching of the worms at endosulfan treatment 5.0 μg/kg soil (25 % LC(50)) or above while the highest dose of carbaryl and chlorpyrifos (50 % of LC(50)) rendered respectively 87.13 and 24.84 % reductions in hatching as compared to control. Chlorpyrifos produced no change in respiration of the worms except at the highest dose, while the worms showed an increase in evolution of CO(2) at all doses of carbaryl and endosulfan. Based on the recommended agricultural dose of each insecticide, it was concluded that application of endosulfan and carbaryl was potentially dangerous to earthworms.  相似文献   

8.
Soils containing low levels of polycyclic aromatic hydrocarbons (PAHs) were collected from an abandoned industrial site. A study was conducted to evaluate the effects of these contaminants on soil invertebrates representing three levels of ecological hierarchy: the microfauna, mesofauna, and macrofauna. Nematodes were studied as representatives of the soil microfauna, microarthropods as representatives of the mesofauna, and earthworms as representatives of the macrofauna. Six sample plots representing a gradient of PAH contamination ranging from 5.28 to 80.46 mg/kg total PAHs were evaluated. Nematode community structure, including abundance and diversity of trophic and taxonomic groups; the total abundance of microarthropods (orders Collembola and Acarina); and earthworm (Eisenia andrei) growth were evaluated. Multiple regression analyses were used to evaluate trends in the responses of these target organisms to PAH concentrations and habitat variability. Abundance of omnivore/predator nematodes and microarthropod order Collembola; nematode taxonomic diversity; and the percent difference in earthworm weights exhibited positive associations with PAH concentrations. Total abundance of microarthropod order Acarina was negatively associated with PAH concentrations.  相似文献   

9.
Menon P  Gopal M 《Chemosphere》2003,53(8):1023-1031
The dissipation of 14C carbaryl in undisturbed soil cores, and of quinalphos (25EC and 20AF) after seed and soil treatments, was investigated under field use conditions, in a semi-arid groundnut field. Residues were analyzed by TLC and HPLC and additionally by LSC for 14C carbaryl. The harvested seed kernels were also tested for the presence of insecticide residues. The movement of carbaryl was limited to 15 cm depth in the loamy sand of Jaipur and was detected till 120 days (DT50 of 14.93 days) after application. Bound residues and 1-naphthol had a DT50 of 11.45 and 13.68 days, respectively. Irrespective of the three types of soil samples investigated, the principal metabolite formed on seed and soil treatments with quinalphos, was 2-hydroxyquinoxaline. With seed treatment, a thiol metabolite of quinalphos was also detected. Higher yields of groundnut were realized with quinalphos treatments in comparison to those from control. Post-harvest, no pesticide residues were found in seeds.  相似文献   

10.

A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.  相似文献   

11.
Pandey S  Singh DK 《Chemosphere》2004,55(2):197-205
Short-term inhibitory effect on the total bacterial population was observed after chlorpyrifos and quinalphos applications in the groundnut fields, which recovered within 60 days after seed treatment and by 45 days of soil treatment. The fungal population was significantly enhanced after chlorpyrifos treatment whereas quinalphos inhibited the fungal population during the initial days of treatment but no effect was observed after 60 days of treatment. The residues of chlorpyrifos and quinalphos in the treated soil were not persistent and their half-lives ranged from 7.0 to 9.2 days and 13.2 to 20.6 days, respectively.  相似文献   

12.
Abstract

A laboratory study was conducted to determine the effect of four experimental insecticides, DOWCO429X, DPX43898, tefluthrin and trimethacarb, on enzyme activities and levels of adenosine 5'‐triphosphate (ATP) in mineral and organic soils. DOWCO429X decreased urease activity in organic soil after 7 days while a stimulatory effect was observed with most treatments after 14 days. No inhibition on acetylene (C2H2) reduction by nitrogenase was evident with any of the insecticides in either soil. With the exception of DOWCO429X and tefluthrin at 7 days in organic soil, none of the insecticide treatments inhibited dehydrogenase activity in either soil. Dehydrogenase activity, measured by formazan formation, was greater in many samples in sandy loam than the control throughout the experiment. No inhibitory effect was observed on amylase activity after 2 or 3 days in sandy soil. A stimulatory effect was apparent in many samples after 2 days in organic soil. All insecticide treatments in sandy soil reduced invertase activity at 2 days. However, none of the experimental insecticides inhibited invertase activity after 3 days. A stimulatory effect in invertase activity was apparent in most cases at 2 days in organic soil and no difference was observed after 3 days. Phosphatase activity in insecticide treated samples was equal to or greater than that of control in sandy soil after 2 h. With the exception of DPX43898, the insecticides depressed phosphatase activity in most organic soil samples. The insecticides did not affect ATP levels in either soil. Results indicated that the chemical treatments at the levels tested did not significantly affect activities of enzymes or level of ATP in both soils.  相似文献   

13.
A laboratory pot experiment was conducted to study the effect of amending soil with four different sources of organic matter on the degradation rate of alpha and beta endosulfan isomers. Poultry by-product meal, poultry manure, dairy manure, and municipal solid waste compost were cured, dried, ground (<1 mm) and thoroughly mixed with a calcareous soil at a rate of 2% and placed in plastic pots. Endosulfan was added at the rate of 20 mg kg(-1). The moisture level was kept near field capacity and the pots were kept at room temperature. Soil sub-samples, 100 g each, were collected from every pot at days 1, 8, 15, 22, 29, 43, and 57 for the measurement of endosulfan isomers. Endosulfan residues were extracted from the soil samples with acetone. The supernatant was filtered through anhydrous sodium sulphate, 5 mL aliquot was diluted to 25 mL with hexane, mixed well, and then two sub-samples from the filtrates were analyzed for alpha and beta endosulfan isomers by gas chromatography. The results indicated that the half-life (T(1/2)) of alpha-endosulfan in the poultry by-product meal treatment was 15 days compared to about 22 days in the other treatments. The T(1/2) of beta-endosulfan was 22 days in the poultry by-product meal treatment and followed a bi-phasic pattern, 57 days in the municipal solid waste compost treatment and the extrapolated T(1/2) was about 115 days for the other three treatments.  相似文献   

14.

Although the use of endosulfan to control cotton pests has declined, this insecticide still has widespread application in agriculture and can contaminate riverine systems as runoff from soil or by aerial deposition. The degradation of endosulfan in pure water at different pH values of 5, 7 and 9 and in river water from the Namoi and the Hawkesbury rivers of New South Wales (NSW), Australia, was studied in the laboratory. Endosulfan transformation into endosulfan sulfate in river water using artificial mesocosms was also investigated. The results show endosulfan is stable at pH 5, with increasing rates of disappearance at pH 7 and pH 9 by chemical hydrolysis. Incubation of endosulfan with river water at pH 8.3 resulted in the disappearance of endosulfan and the formation of endosulfan diol due to the alkaline pH as well as formation of endosulfan sulfate. Although the degradation of endosulfan by Anabaena, a blue-green alga, did not result in the transformation of endosulfan to endosulfan sulfate, we conclude that other microorganisms catalyzed the formation of the sulfate. Significant conversions of endosulfan into endosulfan sulfate were also reported from associated field studies using artificial mesocoms containing irrigation water from rivers inhabitated by micro-macro fauna. From these results, we conclude that the presence of endosulfan sulfate in river water cannot be used to distinguish contamination by runoff from soil from contamination by aerial drift or redeposition.  相似文献   

15.

Dissipation and leaching behavior of 14C-monocrotophos was studied for 365 days under field conditions using PVC cylinders. The first set (24 cylinders) was spiked with 1.0 μCi 14C-labeled monocrotophos along with 1.06 mg unlabeled monocrotophos to give a concentration of 2 mg kg ?1 in the soil up to 15 cm depth. The second set (24 cylinders) received 14C-labeled monocrotophos along with other non-labeled insecticides viz., dimethoate @ 300 g a.i ha?1, deltamethrin @ 12.5 g a.i ha?1, endosulfan @ 750 g a.i ha?1, cypermethrin @ 60 g a.i ha?1, and triazophos @ 600 g a.i ha?1 at an interval of 15 days each as recommended for the cotton crop. 14C-monocrotophos dissipated faster, up to 45% in first 90 days in columns treated with only monocrotophos compared to 25% in columns that received monocrotophos along with other insecticides. However, both the columns showed similar residues 180 days onward. After 180 days of treatment, 46% radiolabeled residues were observed, which reduced up to 39.6% after 365 days. Leaching of 14C-monocrotophos to 15–30 cm soil layer was observed in both the experimental setups. In the 15–30 cm soil layer of both soil columns, up to 0.19 mg 14C-monocrotophos kg?1d. wt. soil was detected after 270 days.  相似文献   

16.
Dissipation and leaching behavior of 14C-monocrotophos was studied for 365 days under field conditions using PVC cylinders. The first set (24 cylinders) was spiked with 1.0 microCi 14C-labeled monocrotophos along with 1.06 mg unlabeled monocrotophos to give a concentration of 2 mg kg -1 in the soil up to 15 cm depth. The second set (24 cylinders) received 14C-labeled monocrotophos along with other non-labeled insecticides viz., dimethoate @ 300 g a.i ha-1, deltamethrin @ 12.5 g a.i ha-1, endosulfan @ 750 g a.i ha-1, cypermethrin @ 60 g a.i ha-1, and triazophos @ 600 g a.i ha-1 at an interval of 15 days each as recommended for the cotton crop. 14C-monocrotophos dissipated faster, up to 45% in first 90 days in columns treated with only monocrotophos compared to 25% in columns that received monocrotophos along with other insecticides. However, both the columns showed similar residues 180 days onward. After 180 days of treatment, 46% radiolabeled residues were observed, which reduced up to 39.6% after 365 days. Leaching of 14C-monocrotophos to 15-30 cm soil layer was observed in both the experimental setups. In the 15-30 cm soil layer of both soil columns, up to 0.19 mg 14C-monocrotophos kg-1d. wt. soil was detected after 270 days.  相似文献   

17.
Biodegradation of endosulfan by a soil bacterium   总被引:1,自引:0,他引:1  
A bacterium capable of metabolizing endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxathiepine3-oxide) was isolated from cotton-growing soil and effectively shown to degrade endosulfan into endosulfan sulfate. The bacterium degraded 50% of the compound within 3 days of incubation. Endosulfan sulfate was the only terminal product and no other metabolites were formed during the incubation. Endosulfan and its metabolites were analyzed by gas chromatography. The metabolites formed indicated that the organism follows an oxidative pathway for metabolism of this pesticide. Therefore, the present study, microbial degradation of endosulfan by a soil bacterium, may provide a basis for the development of bioremediation strategies to remediate the pollutants in the environment.  相似文献   

18.
The main aim of this study was to assess the impact of pesticidal residues on soil microbial and biochemical parameters of the tea garden soils. The microbial biomass carbon (MBC), basal (BSR) and substrate induced respirations (SIR), β -glucosidase activity and fluorescein diacetate hydrolyzing activity (FDHA) of six tea garden soils, along with two adjacent forest soils (control) in West Bengal, India were measured. The biomass and its activities and biochemical parameters were generally lower in the tea garden soils than the control soils. The MBC of the soils ranged from 295.5 to 767.5 μ g g? 1. The BSR and SIR ranged from 1.65 to 3.08 μ g CO2-C g? 1 soil h? 1 and 3.08 to 10.76 μ g CO2-C g? 1h? 1 respectively. The β -glucosidase and FDHA of the soils varied from 33.3 and 76.3 μ g para-nitrophenol g? 1 soil h? 1 and 60.5 to 173.5 μ g fluorescein g? 1h? 1respectively. The tea garden soils contained variable residues of organophosphorus and organochlorine pesticides, which negatively affected the MBC, BSR, SIR, FDHA and β -glucosidase activity. Ethion and chlorpyriphos pesticide residues in all the tea garden soils varied from 5.00 to 527.8 ppb and 17.6 to 478.1 ppb respectively. The α endosulfan, β endosulfan and endosulfan sulfate pesticide residues in the tea garden soils ranged from 7.40 to 81.40 ppb, 8.50 to 256.1 ppb and 55 to 95.9 ppb respectively. Canonical correlation analysis shows that 93% of the total variation was associated with the negative impact of chlorpyriphos, β and α endosulfan and endosulfan sulfate on MBC, BSR and FDHA. At the same time ethion had negative impact on SIR and β -glucosidase. Data demonstrated that the pesticide residues had a strong impact on the microbial and biochemical components of soil quality.  相似文献   

19.
This investigation was undertaken to determine the impact of the insecticides Dursban 480 EC (with organophosphate compound chlorpyrifos as the active ingredient) and Talstar 10 EC (with pyrethroid bifenthrin as the active ingredient) on the respiration activity and microbial diversity in a sandy loam luvisol soil. The insecticides were applied in two doses: the maximum recommended dose for field application (15 mg kg?1 for Dursban 480 EC and 6 mg kg?1 for Talstar 10 EC) and a 100-fold higher dose for extrapolation of their effect. Bacterial and fungal genetic diversity was analysed in soil samples using PCR DGGE and the functional diversity (catabolic potential) was studied using BIOLOG EcoPlates at 1, 3, 7, 14, 28, 56 and 112 days after insecticide application. Five bacterial groups (α, β, γ proteobacteria, firmibacteria and actinomycetes) and five groups of fungi or fungus-like microorganisms (Ascomycota, Basidiomycota, Chytridiomycota, Oomycota and Zygomycota) were analysed using specific primer sets. This approach provides high resolution of the analysis covering majority of microorganisms in the soil. Only the high-dose Dursban 480 EC significantly changed the community of microorganisms. We observed its negative effect on α- and γ-proteobacteria, as the number of OTUs (operational taxonomic units) decreased until the end of incubation. In the β-proteobacteria group, initial increase of OTUs was followed by strong decrease. Diversity in the firmibacteria, actinomycetes and Zygomycota groups was minimally disturbed by the insecticide application. Dursban 480 EC, however, both positively and negatively affected certain species. Among negatively affected species Sphingomonas, Flavobacterium or Penicillium were detected, but Achromobacter, Luteibacter or Aspergillus were supported by applied insecticide. The analysis of BIOLOG plates using AWCD values indicated a significant increase in metabolic potential of microorganisms in the soil after the high-dose Dursban application. Analysis of respiration demonstrated high microbial activity after insecticide treatments; thus, microbial degradation was relatively fast. The half-life of the active insecticide compounds were estimated within the range of 25 to 27 days for Talstar and 6 to 11 days for Dursban and higher doses stimulated degradation. The recommended dose levels of both insecticides can be considered as safe for microbial community in the soil.  相似文献   

20.
The blood serum of cacao farmers and their domestic water sources were analyzed for insecticide residues in selected cacao growing communities of Southwestern Nigeria. The farmers were grouped into five exposure periods based on their years of involvement in insecticide application, viz, <5 years, 5-9 years, 10-14 years, 15-19 years and >20 years. The residue analyses revealed that 42 out of the 76 farmers had residues of diazinon, endosulfan, propoxur and lindane in their blood; and 47.6% out of these farmers belonged in the >20 years exposure duration period. About 34% of the farmers had diazinon with a mean concentration of 0.067 mg kg(-1), 29% endosulfan (mean=0.033 mg kg(-1)), 23% propoxur (mean=0.095 mg kg(-1)), and 17% lindane (mean=0.080 mg kg(-1)) in their blood. The residues of lindane, endosulfan and propoxur in all the exposure duration categories were found to be far below the no observable adverse effect level (NOAEL) while diazinon residues detected in the blood serum of the farmers in all the exposure duration categories exceeded the NOAEL of 0.02 mg kg(-1) for the insecticide. The study also revealed that the sources of drinking water had been contaminated with dazinon and propoxur in some of the farmers' localities; and the concentrations of the insecticides exceeded the acceptable daily intake (ADI). It is concluded that cacao farmers in Southwestern Nigeria may have been occupationally exposed due to insecticide application for mirid control in their cacao plantations; and the exposure at times is of such magnitude as to be hazardous to the farmers and their respective communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号