首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In-house developed ELISA was standardized to monitor atrazine residues in different environmental samples. The standard curve was linear, indicating an increase in log concentration with decrease in absorbance (%B/B(0)=1.075-0.042 Log C; r= -0.966). The middle of the test was at 75 ng/L and the lowest detection limit at 4 ng/L. ELISA significantly correlated with the high performance liquid chromatography (HPLC) (r=0.990). Internal validation showed good accuracy and precision. Maximum atrazine residues were present in Jehlum River water/sediments and maize/sugarcane plant roots. Most of the food samples were found to be contaminated. ELISA required less clean-up steps than HPLC, but showed matrix effect in soil/colored extracts.  相似文献   

2.
A highly sensitive enzyme immunoassay is described for the detection of atrazine residues in water. Atrazine derivative was conjugated to Bovine Serum Albumin (BSA) to obtain an immunizing antigen and to Horseradish Peroxidase enzyme (POD) to obtain a marker for immunoassay. The formation of these conjugations was confirmed by UV spectroscopy as well as by gel-electrophoresis. Polyclonal antibodies were raised in rabbits by immunization with an atrazine-BSA conjugate containing 29 atrazine residues per BSA molecule. An ELISA on microtitration plates was optimized with peroxidase-atrazine conjugate. The middle of the test (50% B/Bo) was found to be at 90 ng/l, which is well below the maximum concentration permitted by the EC guidelines for drinking water. Detection limits for atrazine of about 1 ng/l could be reached. The assay did not require concentration or cleanup steps for drinking or ground water samples. Validation experiments showed good accuracy and precision. No cross-reactivities were shown by other s-triazines like terbutryn, ametryn, terbuthylazine, des-isopropylatrazine, and de-ethylatrazine except hydroxyatrazine. The latter was present at very low levels that can be calibrated/standardized before analysis or it may be considered as leftover residues of atrazine. Based on these results, it is suggested that this test can be applied to obtain fairly accurate results for atrazine concentration in water samples from different sources.  相似文献   

3.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) has been developed and optimized for atrazine determination in soil at different depths (0–10, 10–20, and 20–30 cm) before and after 48 h of application, corn shoot and cow milk samples collected from Dina farm, Egypt. This assay was based on a specific polyclonal antibodies (PAb) raised by immunizing New Zealand rabbits with an immunogen prepared by coupling 3-{4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine-2-yl} thiopropanoic acid to bovine serum albumin (BSA) via N-hydroxysuccinimide (NHS) active ester method. The sensitivity (estimated as IC50value) was 17.5 μg mL?1 with a detection limit of 0.1 ng mL?1. The maximum atrazine concentration was found in soil especially in the deepest layer (325 and 890 μg kg?1 before and after application, respectively). Atrazine concentration in corn shoot was 333.28, μg kg?1 dry plant, while there was no detectable amount in milk. All samples screened by ELISA were validated by gas chromatography mass spectrometer procedure (GC/MS). Good correlation was achieved between the two methods (r = 0.997 for soil and 0.9814 for plant). This study demonstrates the utility and convenience of the simple, practical and cost–effective ELISA method in the laboratory for analysis of environmental samples. The method is ideal for the rapid screening of large numbers of samples in laboratories where access to GC/MS facilities, is limited or lacking.  相似文献   

4.
The present study outlines applications of an enzyme-linked immunosorbent assay (ELISA) for the analysis of clenbuterol residues. Antisera were raised from rabbits immunized with diazotized clenbuterol-bovine serum albumin (BSA) conjugate. The assay was specific to clenbuterol with a half-maximum inhibition concentration (IC(50)) of 1.8 ng/mL and 2.5 ng/mL in blank swine urine and phosphate buffer solution, respectively. The assay had high cross-reactivity (86%) with mabuterol, but low with other adrenergic agonists and antagonists. The average recovery of clenbuterol, as measured with the ELISA, ranged from 90% to 112% in swine urine samples and from 86% to 95% in feeds, respectively. This new assay was compared with commercial ELISA test kits. An excellent correlation (r(2) = 0.98) between the two methods and satisfactory recoveries suggest that the new assay can be suitable for the determination of clenbuterol residues in real samples. The assay was used to analyze clenbuterol residues in 103 swine urine samples and 68 feed samples collected from northern China. Approximately 50% of the urine samples and 25% of the feed samples analyzed were found positive (concentration of clenbuterol > or = 1 ppb). The results indicate that clenbuterol was misused in some of the areas surveyed.  相似文献   

5.
The present study outlines applications of an enzyme-linked immunosorbent assay (ELISA) for the analysis of clenbuterol residues. Antisera were raised from rabbits immunized with diazotized clenbuterol-bovine serum albumin (BSA) conjugate. The assay was specific to clenbuterol with a half-maximum inhibition concentration (IC50) of 1.8 ng/mL and 2.5 ng/mL in blank swine urine and phosphate buffer solution, respectively. The assay had high cross-reactivity (86%) with mabuterol, but low with other adrenergic agonists and antagonists. The average recovery of clenbuterol, as measured with the ELISA, ranged from 90% to 112% in swine urine samples and from 86% to 95% in feeds, respectively. This new assay was compared with commercial ELISA test kits. An excellent correlation (r 2 = 0.98) between the two methods and satisfactory recoveries suggest that the new assay can be suitable for the determination of clenbuterol residues in real samples. The assay was used to analyze clenbuterol residues in 103 swine urine samples and 68 feed samples collected from northern China. Approximately 50% of the urine samples and 25% of the feed samples analyzed were found positive (concentration of clenbuterol ≥ 1 ppb). The results indicate that clenbuterol was misused in some of the areas surveyed.  相似文献   

6.
An indirect competitive enzyme-linked immunosorbent assay (ELISA) has been developed and optimized for atrazine determination in soil at different depths (0-10, 10-20, and 20-30 cm) before and after 48 h of application, corn shoot and cow milk samples collected from Dina farm, Egypt. This assay was based on a specific polyclonal antibodies (PAb) raised by immunizing New Zealand rabbits with an immunogen prepared by coupling 3-{4-(ethylamino)-6-(isopropylamino)-1,3,5-triazine-2-yl} thiopropanoic acid to bovine serum albumin (BSA) via N-hydroxysuccinimide (NHS) active ester method. The sensitivity (estimated as IC?? value) was 17.5 μg mL?1 with a detection limit of 0.1 ng mL?1. The maximum atrazine concentration was found in soil especially in the deepest layer (325 and 890 μg kg?1 before and after application, respectively). Atrazine concentration in corn shoot was 333.28, μg kg?1 dry plant, while there was no detectable amount in milk. All samples screened by ELISA were validated by gas chromatography mass spectrometer procedure (GC/MS). Good correlation was achieved between the two methods (r = 0.997 for soil and 0.9814 for plant). This study demonstrates the utility and convenience of the simple, practical and cost-effective ELISA method in the laboratory for analysis of environmental samples. The method is ideal for the rapid screening of large numbers of samples in laboratories where access to GC/MS facilities, is limited or lacking.  相似文献   

7.
This study was undertaken to develop and validate direct competitive ELISA for the determination of chloramphenicol residues in bovine milk. Antisera and an enzyme-tracer for chloramphenicol were prepared and used to develop an ELISA with inhibition concentrations, IC20 and IC50, of 0.09 and 0.44 ng mL?1, respectively. Milk samples were spiked with standards equivalent to 0, 0.2, 0.3, 0.5, 1.0 &; 1.5 ng mL?1 and extracted in methanol. The mean recoveries were found to be 73–100% with coefficient of variance 7–11%. The decision limit (CCα) and detection capability (CCβ) were calculated as 0.10 and 0.12 ng mL?1, respectively. The results were found comparable with the commercial ELISA, having recoveries of 87 to 100%, CCα 0.09 ng mL?1 and CCβ 0.12 ng mL?1. As per Commission Decision 2002/657/EC, in-house ELISA was further validated by using LC-MS/MS. Mass spectral acquisition was done by using electrospray ionization in the negative ion mode applying single reaction monitoring of the diagnostic transition reaction for CAP (m/z 152, 194 and 257). The calibration curve showed good linearity in concentrations from 0.025 to 1.6 ng mL?1 with correction coefficient 0.9902. The mean recoveries were found to be 88 to 100%. The CCα was calculated as 0.057 ng mL?1 and CCβ 0.10 ng mL?1. Since CCα and CCβ are less than half of the MRPL (0.15 ng mL?1), the test was found suitable for screening and quantification of CAP residues in bovine milk samples. Results of surveillance studies indicated that out of 31 analyzed milk samples, 12.9% samples were found with CAP residues but only 3.2% samples were declared positive with maximum concentration 0.31 ng mL?1, slightly above the MRPL.  相似文献   

8.
The possibility of applying thin layer chromatography (TLC) detection for the analysis of pesticide residues in tomatoes was investigated. Samples of tomatoes that have never been treated with pesticide were fortified with atrazine, carbaryl, carbofuran, chloroxuron, diuron, dimethoate, imazalil, oxamyl and methamidophos. The samples were extracted, cleaned-up by gel permeation chromatography and then applied on silica gel plates. The pesticides were eluted with ethyl acetate and dichloromethane. Two eluting solvent systems were tested, one using the reagents o-toluidine + potassium iodite (o-TKI) and the other p- nitrobenzene fluoroborate (NBFB). After the development of the plates, the diameter of the spots was measured. The lowest minimum detection quantity (MDQ) for o-TKI system for atrazine was 12 ng. The highest was 125 ng for carbofuran. Using NBFB system, the lowest MDQ was 60 ng for carbaryl and the highest was 70 ng obtained for carbofuran. Considering the concentration of these pesticides in the spiked tomato samples, the minimum concentration was 1.1 ng/microL and 32.3 ng/microL for atrazine and carbofuran, respectively, by using o-TKI system. For NBFB system the minimum concentration reached was 3.5 ng/microL and 4.3 ng/microL for carbaryl and carbofuran, respectively. This study showed that TLC can be used for semi-quantitative analysis.  相似文献   

9.
Rainwater and surface water from four sites in Germany (Bavaria and Lower Saxony) were analyzed for atrazine by enzyme immunoassay from June 1990 until October 1992. The limit of quantification of the immunoassay was 0.02 μg/L with a middle of the test at 0.2 μg/L. About 60 % of the samples contained measurable amounts of atrazine. Seasonal trends were observed, with the highest concentration in the summer months of up to 4 μg/L for rainwater and up to 15 μg/L for surface waters. The highest concentrations were found in agricultural areas, while in the investigated national parks up to 0.56 μg/L could be detected in rain water. This points to long-range atmospheric transport from agricultural areas to pristine national parks. Samples from forest stands usually showed higher atrazine concentrations than samples from open fields. Deposition rates of 10 – 50 μg/m2 · yr were observed in the national parks and 10–180 μg/m2 · yr at the agricultural sites. Comparison of results obtained by enzyme immunoassay and GC/MS showed a good correlation of r = 0.95.  相似文献   

10.
During 1993, estuarine surface water samples were collected from the mid-Texas coast (Corpus Christi to Port Lavaca, TX). Agricultural watershed areas as well as tidal creeks immediately downstream were chosen as sampling sites along with adjoining bay sampling stations. Collections were made throughout the growing season (February to October 1993) before and after periods of significant (> 1.25 cm) rainfall. All samples were initially screened for the presence of pesticides using enzyme-linked immunosorbent assay (ELISA) test kits (EnviroGard) for triazine herbicides and carbamate insecticides. All samples were extracted and then analyzed using gas chromatography (GC) for quantification of atrazine. Only samples testing positive for carbamate insecticides via ELISA were further extracted for GC analysis to quantify aldicarb and carbofuran. Additionally, laboratory toxicity tests using phytoplankton were examined from published, peer-reviewed literature and compared with the atrazine field levels found in Texas. Results of ELISA screening indicated the presence of triazine herbicides in nearly all samples (>93%). GC analysis further confirmed the presence of atrazine concentrations ranging from <0.01-62.5 microg/L. Screening tests also found detectable levels of carbamate insecticides (aldicarb and carbofuran) that were also confirmed and quantified by GC. Comparison of measured concentrations of atrazine compared with published toxicity tests results indicated that there was a potential environmental risk for marine/estuarine phytoplankton in surface waters of Texas estuaries, particularly when the chronic nature of atrazine exposure is considered.  相似文献   

11.
The primary aim of this study was to evaluate the “clearance concept” as a tool for describing the behavior of xenobiotic movement into and through soils. As an example, degradation of 2-chloro-4-ethylamino-6-isopropylamino-s-triazine (atrazine) with the formation of metabolites 2-chloro-6-isopropylamino-s-triazine (desethylatrazine) and 2-chloro-4-ethylamino-s-triazine (desisopropylatrazine) was investigated. Atrazine was sprayed post-emergently in doses of 0.125 or 0.5 g active ingredient/m2 each on four test plots. Soil type was a sandy-loam, on which corn (Zea mays L.) was cultivated. Soil samples were taken as cores of 0.2 m depth 0, 1, 2, 4, 8, 12, 16 and 20 weeks after application of atrazine, and analyzed by HPLC. Soil concentrations of atrazine were highly correlated (r=0.993, p< 0.001) between the two applications of 0.125 g/m2 and 0.5 g/m2. Up to 50% of the atrazine was measured as metabolites during the whole vegetation period. Clearance of atrazine from soil was calculated as the total load of atrazine divided by the area under the soil atrazine concentration time curve. Soil atrazine clearance was calculated as 5.13 +/? SD 1.10 and 5.17 +/? SD 1.02 liter of soil per day for doses of 0.125 g/m2 and 0.5 g/m2, respectively (from a “soil unit” of 1 × 1 × 0.2 meter). The clearance concept might be a tool for risk assessment of xenobiotics.  相似文献   

12.
Gentamicin (Gent) is an aminoglycoside antibiotic being used in livestock sector. Gent residues could cause some genetic disorders by nonsense mutations. This study aimed to develop IgY-based ELISA for the detection of Gent in animal products. Gent was conjugated with Bovine serum albumin (BSA) by carbodiimide method for further immunization in the laying chickens. PEG-6000 extraction method was employed to extract IgY from the egg yolk. The titer of anti-Gent-IgY attained the peak of 1:256,000 after the 5th booster immunization. Checkerboard titration confirmed that, anti-Gent IgY in 1:2,000 dilution could give an Optical Density (OD) 1.0 at 2 µg mL?1 of Gent-OVA coating concentration. IgY-based indirect competitive ELISA (Ic-ELISA) showed that, the IC50 value of anti-Gent IgY was 2.69 ng mL?1 and regression curve equation was y = ?16.27x + 56.97 (R2 = 0.95, n = 3), confirming that, the detection limit (LOD, IC10 value) was 0.01 ng mL?1. Recoveries from fresh milk, pork and chicken samples were ranged from 69.82% to 94.32%, with relative standard deviation lower than 10.88%. Our results suggested that generated anti-Gent IgY antibodies can be used in routine screening analysis of Gent residues in food samples.  相似文献   

13.
Although atrazine has been banned in the European Union since 2007 it still persists in soil from where it can enter the food chain. Milk-producing animals accumulate atrazine from contaminated feed and water and since large quantities of milk and milk products are consumed its quality should be constantly monitored. The objective of this investigation was to develop a simple tube ELISA procedure suitable for use in non-specialised laboratories and in the field. A polyclonal antibody raised in sheep and the hapten-gelatine conjugate was immobilised onto polystyrene tubes. This enables the colour produced to be read on a basic spectrophotometer. Milk samples were collected from three farms in different regions of Poland and diluted before immunoassay was performed. Samples were extracted with hexane-acetone for HPLC analysis. The amount of fat in the milk samples interferes with the dose response so it essential that the standards are prepared in the same samples matrix. A good correlation between 1% and 2% was found between the two methods in the analysis of real samples. However the ELISA procedure was more sensitive that the HPLC method since atrazine was detected in some samples by the ELISA but was not confirmed by the HPLC method. The study demonstrated that the simple antigen-coated tube assay provides a cost effective and valuable screening test that can be easily modified for direct use as a screening tool in the field.  相似文献   

14.

This study examined the toxicity of irgarol, individually and in binary mixtures with three other pesticides (the fungicide chlorothalonil, and the herbicides atrazine and 2,4-D), to the marine phytoplankton species Dunaliella tertiolecta. Standard 96-h static algal bioassays were used to determine pesticide effects on population growth rate. Irgarol significantly inhibited D. tertiolecta growth rate at concentrations ≥ 0.27 μ g/L. Irgarol was significantly more toxic to D. tertiolecta than the other pesticides tested (irgarol 96 h EC50 = 0.7 μ g/L; chlorothalonil 96 h EC50 = 64 μ g/L; atrazine 96 h EC50 = 69 μ g/L; 2,4-D 96 h EC50 = 45,000 μ g/L). Irgarol in mixture with chlorothalonil exhibited synergistic toxicity to D. tertiolecta, with the mixture being approximately 1.5 times more toxic than the individual compounds. Irgarol and atrazine, both triazine herbicides, were additive in mixture. The toxicity threshold of 2,4-D was much greater than typical environmental levels and would not be expected to influence irgarol toxicity. Based on these interactions, overlap of certain pesticide applications in the coastal zone may increase the toxicological risk to resident phytoplankton populations.  相似文献   

15.
Biotransformation studies of atrazine, metolachlor and evolution of their metabolites were carried out in soils and subsoils of Northern Greece. Trace atrazine, its metabolites and metolachlor residues were detected in field soil samples 1 year after their application. The biotransformation rates of atrazine were higher in soils and subsoils of field previously exposed to atrazine (maize field sites) than in respective layers of the field margin. The DT50 values of atrazine ranged from 5 to 18 d in the surface layers of the adapted soils. DT50 values of atrazine increased as the soil depth increased reaching the value of 43 d in the 80-110 cm depth layer of adapted soils. Metolachlor degraded at slower rates than atrazine in surface soils, subsoils of field and field margins with the respective DT50 values ranging from 56 to 72 d in surface soils and from 165 to 186 d in subsoils. Hydroxyatrazine was the most frequently detected metabolite of atrazine. The maximum concentrations of metolachlor-OXA and metolachlor-ESA were detected in the soil layers of 20-40 cm depth after 90 d of incubation. Principal Component Analysis (PCA) of soil Phospholipid Fatty Acids (PLFAs), fungal/bacterial and Gram-negative/Gram-positive ratios of the PLFA profiles revealed that the higher biotransformation rates of atrazine were simultaneously observed with the abundance of Gram-negative bacteria while the respective rates of metolachlor were observed in soil samples with abundance of fungi.  相似文献   

16.
The objective of this study was to characterize concentrations of atrazine, terbuthylazine, and other pesticides in amphibian habitats in surface waters of a corn-production area of the western Highveld region (North-West Province) of South Africa. The study was conducted from November 2001 to June 2002, coinciding with the corn-production season. Pesticide residues were measured at regular intervals in surface water from eight ponds, three in a non-corn-growing area (NCGA) and five within the corn-growing area (CGA). Measured atrazine concentrations differed significantly among sites and between samples. In the five CGA sites, the maximum atrazine concentrations measured during the study ranged from 1.2 to 9.3 microg/L. Although no atrazine was recorded as being applied in the catchment of the three NCGA sites, maximum concentrations from 0.39 to 0.84 microg/L were measured during the study, possibly as a result of atmospheric transport. Maximum measured concentrations of terbuthylazine ranged from 1.22 to 2.1 microg/L in the NCGA sites and from 1.04 to 4.1 microg/L in the CGA sites. The source of terbuthylazine in the NCGA sites may have been in use other than in corn. The triazine degradation products, deisopropylatrazine (DIA) and deethylatrazine (DEA) and diaminochlorotriazine (DACT) were also found in water from both the CGA and NCGA sites. Concentrations of DIA were > or = 1 microg/L throughout the season, while DEA concentrations were mostly <0.5 microg/L before planting but increased after planting and application of herbicides to concentrations >2 microg/L in some locations. Concentrations of DACT were highly variable (LOD to 8 microg/L) both before and after planting and application, suggesting that they resulted from historical use of triazines in the area. Other herbicides such as simazine and acetochlor were only detected infrequently and pesticides such as S-metolachlor, cypermethrin, monocrotophos, and terbuphos, known to be used in the CGA, were not detected in any of the samples. Because of dilution by higher than normal rainfall in the study period, these concentrations may not be predictive of those in years of normal rainfall.  相似文献   

17.
The atrazine behaviour in soils when submitted to an electric field was studied and the applicability of the electrokinetic process in atrazine soil remediation was evaluated. Two polluted soils were used, respectively with and without atrazine residues, being the last one spiked. Four electrokinetic experiments were carried out at a laboratory scale. Determination of atrazine residues were performed by enzyme-linked immunosorbent assay (ELISA). The results show that the electrokinetic process is able to remove efficiently atrazine in soil solution, mainly towards the anode compartment: Estimations show that 30-50% of its initial amount is removed from the soil within the first 24h. A one-dimensional model is developed for simulating the electrokinetic treatment of a saturated soil containing atrazine. The movement of atrazine is modelized taking into account the diffusion transport resulting from atrazine concentration gradients and the reversed electro-osmotic flow at acidic soil pH.  相似文献   

18.
A 96-microwell enzyme-linked immunosorbent assay (ELISA) method was evaluated to determine PCDDs/PCDFs in sediment and soil samples from an EPA Superfund site. Samples were prepared and analyzed by both the ELISA and a gas chromatography/high resolution mass spectrometry (GC/HRMS) method. Comparable method precision, accuracy, and detection level (8 ng kg(-1)) were achieved by the ELISA method with respect to GC/HRMS. However, the extraction and cleanup method developed for the ELISA requires refinement for the soil type that yielded a waxy residue after sample processing. Four types of statistical analyses (Pearson correlation coefficient, paired t-test, nonparametric tests, and McNemar's test of association) were performed to determine whether the two methods produced statistically different results. The log-transformed ELISA-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin values and log-transformed GC/HRMS-derived TEQ values were significantly correlated (r=0.79) at the 0.05 level. The median difference in values between ELISA and GC/HRMS was not significant at the 0.05 level. Low false negative and false positive rates (<10%) were observed for the ELISA when compared to the GC/HRMS at 1,000 ng TEQ kg(-1). The findings suggest that immunochemical technology could be a complementary monitoring tool for determining concentrations at the 1,000 ng TEQ kg(-1) action level for contaminated sediment and soil. The ELISA could also be used in an analytical triage approach to screen and rank samples prior to instrumental analysis.  相似文献   

19.
The results of a one-year monitoring program on the two Eastern Chinese River systems, i.e. the Liao-He and the Yangtse, with special emphasis on the presence of triazine herbicides are presented. Sediment, suspended solids and water samples from both rivers were analyzed. Additionally, recovery experiments on the SPE-in-field-enrichment procedure and the extraction methods were performed. The samples were measured by gas chromatography coupled with mass spectrometry, electron capture detection and a newly developed mu-plasma atomic emission detector. A typical result of a one-year monitoring was obtained in case of the Liao-He: During winter, at low water period, low triazine values were found. A similar situation was found in early spring. Highest concentrations of atrazine up to 1600 ng/l were found in late spring in the water samples. Maximum concentrations of atrazine, simazine, propazine, simetryn and prometryn were observed in this season as a result of the actual use of triazines. Finally, after the high water period in autumn the triazine concentrations decreased. Additionally, atrazine adsorbed on sediment (up to 2.8 ng/g) and suspended solids was determined (up to 8 ng/l) during late spring sampling. Therefore, the logarithm of the organic carbon based sorption coefficient of atrazine could be calculated. Low levels of atrazine were measured in the water of Yangtse (up to 18.3 ng/l). The concentrations from all sampling points and sampling stations of a particular sampling date were similar, which indicates a homogeneous distribution of this herbicide. Due to the high discharge rate of up to 79,000 m3/s in case of the Yangtse a considerable mass transport of up to 57.5 kg per day atrazine may take place, even at concentrations below the European drinking water limit of 100 ng/l.  相似文献   

20.
《Chemosphere》2013,90(11):1330-1338
Biotransformation studies of atrazine, metolachlor and evolution of their metabolites were carried out in soils and subsoils of Northern Greece. Trace atrazine, its metabolites and metolachlor residues were detected in field soil samples 1 year after their application. The biotransformation rates of atrazine were higher in soils and subsoils of field previously exposed to atrazine (maize field sites) than in respective layers of the field margin. The DT50 values of atrazine ranged from 5 to 18 d in the surface layers of the adapted soils. DT50 values of atrazine increased as the soil depth increased reaching the value of 43 d in the 80–110 cm depth layer of adapted soils. Metolachlor degraded at slower rates than atrazine in surface soils, subsoils of field and field margins with the respective DT50 values ranging from 56 to 72 d in surface soils and from 165 to 186 d in subsoils. Hydroxyatrazine was the most frequently detected metabolite of atrazine. The maximum concentrations of metolachlor-OXA and metolachlor-ESA were detected in the soil layers of 20–40 cm depth after 90 d of incubation. Principal Component Analysis (PCA) of soil Phospholipid Fatty Acids (PLFAs), fungal/bacterial and Gram-negative/Gram-positive ratios of the PLFA profiles revealed that the higher biotransformation rates of atrazine were simultaneously observed with the abundance of Gram-negative bacteria while the respective rates of metolachlor were observed in soil samples with abundance of fungi.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号