共查询到18条相似文献,搜索用时 628 毫秒
1.
采用顶空固相微萃取(HS -SPME)技术萃取水中6种氯苯类化合物,全面分析对目标物萃取效率的影响因素,并确定萃取试验的最佳条件。用顶空固相微萃取联合气相色谱法(HS -SPME -GC)测定水中6种氯苯类化合物,方法在0.500 ng/L~2.00×10^5 ng/L范围内线性良好,检出限为0.05 ng/L ~2000 ng/L,空白样品加标回收率为69.8%~121%, RSD为4.8%~18.3%。用该方法测定实际水样,平行双样的相对偏差低于20%。 相似文献
2.
建立了顶空固相微萃取(HS-SPME)-气相色谱法(GC-ECD)分析饮用水中百菌清的方法。对HS-SPME的各项参数进行了优化:萃取纤维应选择弱极性的聚二甲基硅氧烷(PDMS,100μm),水样分析前应加入一定量的H2SO4溶液和Na Cl固体,调节pH和离子强度,可显著提高萃取效率。萃取温度70℃,萃取时间30 min,搅拌速度250 r/min,解吸时间3 min。根据优化后的条件,从线性、检出限、回收率、精密度等方面对整个方法进行了验证,结果表明,该方法线性良好,相关系数大于0.999,回收率与精密度均符合要求。取样量为10.0 mL时,检出限为0.09μg/L,可完全满足饮用水分析的需要。 相似文献
3.
固相微萃取-毛细管气相色谱法快速分析水中酚类化合物 总被引:14,自引:4,他引:10
固相微萃取是一种快速、简便、集萃取浓缩进样于一体的样品前处理技术,具有分析时间短、灵敏度高、无需有机溶剂的优点.本工作用固相微萃取富集水中酚类化合物,毛细管气相色谱分离分析,整个分析过程只需45min,检出限可达1.0~10.0μg/L,已用于地面水、海水、工厂废水中酚类化合物含量的测定. 相似文献
4.
建立了固相微萃取-气相色谱法测定水中痕量甲萘威的方法,并对固相微萃取条件进行了优化。结果显示,固相萃取的最佳条件为:水样pH值≤3,不添加无机盐,聚二甲基硅氧烷(PDMS,100μm)作为萃取纤维,萃取温度为80℃,萃取时间为30 min,解吸时间为90 s。优化后的方法,在甲萘威质量浓度0.01~1.0 mg/L范围内线性良好,相关系数为0.999 5,方法的精密度为1.9%,检出限为0.3μg/L,加标回收率为85.6%~92.4%,可满足地表水中甲萘威的测定要求。 相似文献
5.
建立固相微萃取(SPME)-气相色谱法(GC-ECD)分析环境水样中痕量硝基氯苯类化合物的方法。选用65μm PDMS-DVB萃取纤维,磁力搅拌速度为200 r/min,萃取温度为60℃时,对水中硝基氯苯类物质萃取富集50 min,直接注入GC进样口,在250℃温度下解吸2.0 min后分析测定。优化条件下,方法线性良好,检出限为0.2~0.4 ng/L,加标水平为0.000 5、0.005、0.05μg/L时,回收率为56.02%~136.38%,RSD(n=7)为9.34%~28.33%。用该方法对实际水样进行实验,结果良好,能够满足环境水样中痕量硝基氯苯类化合物的测定。 相似文献
6.
7.
建立了固相微萃取-气相色谱联用快速测定水中14种痕量有机氯农药的方法,对比研究了浸入式直接固相微萃取与顶空固相微萃取两种方式对不同有机氯农药的富集效率,优化了试验条件.方法线性关系良好,检出限为0.1 ng/L~10 ng/L,定量下限为0.2 ng/L~40 ng/L,RSD<8%,实际水样的加标回收率为67.0%~133%. 相似文献
8.
采用固相萃取-高效液相色谱法测定饮用水中酚类化合物,优化了试验条件。方法在0 mg/L~40.0 mg/L范围内线性良好,14种酚类化合物的检出限为0.6μg/L~2.6μg/L,水样平行测定的RSD为0.2%~2.7%,加标回收率为96.3%~99.9%。 相似文献
9.
采用固相微萃取-毛细管柱电子捕获气相色谱法测定水源地水中18种半挥发性有机物,优化了萃取纤维、时间、温度、pH值、转子转速、离子强度等萃取条件。方法线性良好,18种化合物的检出限为0.000 2μg/L~0.1μg/L,实际水样加标回收率为84.3%~109%。 相似文献
10.
建立了固相微萃取(SPME)-气相色谱(GC)法分析环境水样中痕量酞酸酯类化合物(PAEs)的方法。选用65 μm PDMS/CVB萃取纤维,在磁力搅拌转速为700 r/min、萃取温度为60℃条件下,对水样中的PAEs萃取富集50 min,然后直接注入GC进样口,在 250℃ 温度下解吸1.5 min后进行分析测定,6种PAEs能得到充分提取和分离。方法的检出限为0.010 8~0.029 3 μg/L。对水样进行3个质量浓度水平(0.025、0.125、0.25 μg/L)的加标实验,加标回收率为41.79%~132.80%,RSD为6.53%~18.74%(n=7),用该法测定了某制药厂的实际水样,测得DBP含量为0.018 6 μg/L,DEHP、 DMP、DEP、DOP、BBP均未检测到。 相似文献
11.
探讨了顶空气相色谱法测定水中三氯乙醛的条件控制,阐述了加碱量对测定结果的影响,以及加热温度过高或加热时间过长导致三氯甲烷响应值变低的原因。结果表明,在5.0 mL水样中加入0.4 mL 5 mol/L NaOH水溶液,于45 ℃条件下加热30 min,可使目标产物三氯甲烷的响应值及稳定状态达到最佳。方法在2.00 μg/L~30.0 μg/L范围内线性良好,检出限为0.5 μg/L。对三氯甲烷背景浓度较高的自来水样品的加标回收率为88.3%~105%,RSD为6.3%。 相似文献
12.
建立了顶空固相微萃取-气相色谱-串联质谱法(HS-SPME-GC-MS-MS)测定水中2,4,6-三氯酚的方法。优化条件下,在1.00~50.0μg/L质量浓度范围内线性响应良好(r^2=0.9991);检出限0.224μg/L,测定下限0.896μg/L;加标样相对标准偏差(RSD)为4.15%~6.24%;加标回收率为81.0%~115%;单个样品检测总时间<40min。该方法萃取与气相色谱-串联质谱分析在线一步完成,操作简便、灵敏度高、抗干扰性强,适用于地表水、生活饮用水、工业废水等水体中2,4,6-三氯酚的检测。 相似文献
13.
建立了顶空-毛细管气相色谱测定水中吡啶丙酮乙腈的方法,不用有机溶剂萃取和浓缩,减少了损失和对环境的污染,具有灵敏度高、检出限低、定量准确、操作简便等特点。当取样量为5ml时,检出限可达到0.006~0.03mg/L级,相对标准偏差为1.0%~2.3%,加标回收率在78.0%~100.2%之间,完全适合水中吡啶丙酮乙腈的测定。 相似文献
14.
采用顶空进样-气相色谱/质谱联用法(HS-GC/MS)测定水和废水中苯、甲苯、乙苯、对二甲苯、间二甲苯、邻二甲苯、异丙苯、苯乙烯等8种苯系物,优化了分析条件,讨论了色谱柱极性、加热温度、平衡时间和进样次数对测定结果的影响。8种苯系物在1.00μg/L~1 000μg/L范围内线性良好,方法检出限为0.22μg/L~0.38μg/L,实际样品平行测定的相对标准偏差5.0%,加标回收率在86.0%~115%之间。 相似文献
15.
通过试验,讨论盐析效应、顶空的平衡温度和平衡时间、水样的p H值、色谱条件等对顶空-气相色谱法测定环境水体中吡啶准确度的影响。优化上述条件后,方法在0 mg/L~3.95 mg/L范围内线性良好,检出限可达0.016 mg/L,测定下限为0.064 mg/L。用该方法对地表水和生活污水做3个质量浓度水平的加标回收试验,测定6次结果的RSD为1.7%~5.7%,回收率为93.9%~113%。 相似文献
16.
研究了顶空固相微萃取-气相色谱质谱联用测定饮用水中二甲基异冰片和土味素的方法。结果表明,当选用聚二甲基硅氧烷(PDMS)萃取纤维萃取头,萃取温度为60℃,萃取时间为40min时,得到二甲基异冰片标准曲线方程为y=122.59+157.76x,相关系数(R)0.9998;土味素的标准曲线方程为y=14.847+180.99x,相关系数(R)0.9999;检出限为0.1ng/L,相对标准偏差在0.99%~4.05%之间,加标回收率86.4%~109.5%。 相似文献
17.
采用顶空-气相色谱法测定地表水中乙酸酯类化合物,并对顶空瓶的加热温度、平衡时间进行优化。优化后,方法在6种乙酸酯类化合物质量浓度0.05~1.00 mg/L范围内线性良好,检出限为4.49~58.5μg/L,RSD为0.61%~2.51%,加标回收率为96.5%~104%,方法便捷、环保、经济,适用于地表水中乙酸酯类的检测。 相似文献
18.
使用Oasis HLB固相萃取柱,以正己烷/丙酮混合溶剂(体积比为3∶1)为洗脱溶剂,采用毛细管柱气相色谱电子捕获检测器同时测定水中15种硝基苯类化合物,以保留时间定性,外标标准曲线法定量。硝基苯和硝基甲苯在50.0μg/L~1 000μg/L、其他硝基苯类化合物在5.00μg/L~100μg/L范围内线性良好,检出限硝基苯和硝基甲苯为0.035μg/L~0.052μg/L,其他硝基苯类化合物为0.003 5μg/L~0.005 6μg/L,加标水样平行测定的RSD为1.4%~4.0%,平均回收率为92%~100%。 相似文献