首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
《Ecological modelling》2004,175(2):137-149
Bird species are selective on the vegetation types in which they are found but predictive models of bird distribution based on variables derived from land-use/land-cover maps tend to have limited success. It has been suggested that accuracy of existing maps used to derive predictors is in part responsible for the limited success of bird distribution models. In two areas of 4900 km2 of Western Andalusia, Spain, we compared the predictive ability of bird distribution models derived from two existing general-purpose land-use/land-cover maps, which differ in their resolution and accuracy: a coarse scale vegetation map of Europe, the CORINE land-cover map, and a detailed regional map, the 1995 land-use/land-cover map of Andalusia from the SINAMBA (Consejerı́a de Medio Ambiente, Junta de Andalucı́a). We compared the bird distribution models derived from these general-purpose vegetation maps with models derived from two more accurate structural vegetation maps built considering directly variables that influence bird habitat selection, one built from satellite images for this study and another obtained by improving the resolution and accuracy of the SINAMBA map with satellite data. We sampled the presence/absence of bird species at 857 points using 15-min point surveys. Predictive models for 54 bird species were built with generalised additive models (GAMs), using as potential predictors the same set of landscape and vegetation structure variables measured on each map. We compared for each bird species the predictive accuracy of the best model derived from each map. Vegetation structure measured at bird sample points was used as ground-truth for comparing the accuracy of vegetation maps. Although maps differed in their resolution and accuracy, the results show that all of them produced similarly accurate bird distribution models, with a mixed map produced with both thematic and satellite information being the best. The models derived from the more accurate vegetation structure maps obtained from satellite data were not more accurate than those derived directly from the SINAMBA or CORINE maps. Our results suggest that some general-purpose land-use/land-cover maps are accurate enough to derive bird distribution models. There is a certain limit to improve vegetation maps above which there is no effect in their power to predict bird distribution.  相似文献   

2.
To aid air quality model development and assess air quality forecasts, the Meteorological Development Laboratory (MDL) provided categorical verification metrics for developmental aerosol predictions. The National Air Quality Forecasting Capability (NAQFC) generated 48 h (of) gridded hourly developmental predictions for the lower 48 states (CONUS) domain in 12 km horizontal spacing. The NAQFC uses the North American Mesoscale (NAM) model with EPA’s Community Multiscale Air Quality (CMAQ) model to produce predictions of ground level aerosol concentrations. We used bilinear interpolation to calculate predicted daily maximum values at the location of the observation sites. We compared these interpolated predicted values to the observed daily maximum to produce 2 × 2 contingency tables, with a threshold of 40 μg/m3 during the months of March–August, 2007. The model showed some degree of skill in predicting aerosol exceedances. These results are preliminary as the NAQFC model for aerosol prediction is in the developmental stage. A more comprehensive performance evaluation will be accomplished in 2008, when more data become available. Our verification metrics included categorical analyses for Fraction Correct (FC) or percent correct (FC × 100), Threat Score (TS) or Critical Success Index (CSI), Probability of Detection (POD), and the False Alarm Rate (FAR), Mean Absolute Error (MAE) and mean algebraic error or bias, where bias is forecast minus observation. Graphic products included weekly statistics for the CONUS displayed in the form of bar charts, scatterplots, and graphs. In addition, we split the CONUS into six geographic regions and provided regional statistics on a monthly basis. MDL produced spatial maps of daily 1-h maximum predicted aerosol values overlaid with the corresponding point observations. MDL also provided spatial maps of the daily maximum of the 24-h running average. We derived the 24-h running average from the 1-h average predicted aerosol values and observations.  相似文献   

3.
Testing ecological models: the meaning of validation   总被引:9,自引:0,他引:9  
The ecological literature reveals considerable confusion about the meaning of validation in the context of simulation models. The confusion arises as much from semantic and philosophical considerations as from the selection of validation procedures. Validation is not a procedure for testing scientific theory or for certifying the ‘truth’ of current scientific understanding, nor is it a required activity of every modelling project. Validation means that a model is acceptable for its intended use because it meets specified performance requirements.Before validation is undertaken, (1) the purpose of the model, (2) the performance criteria, and (3) the model context must be specified. The validation process can be decomposed into several components: (1) operation, (2) theory, and (3) data. Important concepts needed to understand the model evaluation process are verification, calibration, validation, credibility, and qualification. These terms are defined in a limited technical sense applicable to the evaluation of simulation models, and not as general philosophical concepts. Different tests and standards are applied to the operational, theoretical, and data components. The operational and data components can be validated; the theoretical component cannot.The most common problem with ecological and environmental models is failure to state what the validation criteria are. Criteria must be explicitly stated because there are no universal standards for selecting what test procedures or criteria to use for validation. A test based on comparison of simulated versus observed data is generally included whenever possible. Because the objective and subjective components of validation are not mutually exclusive, disagreements over the meaning of validation can only be resolved by establishing a convention.  相似文献   

4.
Historically, the National Agricultural Statistics Service crop forecasts and estimates have been determined by a group of commodity experts called the Agricultural Statistics Board (ASB). The corn yield forecasts for the “speculative region,” ten states that account for approximately 85 % of corn production, are based on two sets of monthly surveys, a farmer interview survey and a field measurement survey. The members of the ASB subjectively determine a forecast on the basis of a discussion of the survey data and auxiliary information about weather, average planting dates, and crop maturity. The ASB uses an iterative procedure, where initial state estimates are adjusted so that the weighted sum of the final state estimates is equal to a previously-determined estimate for the speculative region. Deficiencies of the highly subjective ASB process are lack of reproducibility and a measure of uncertainty. This paper describes the use of Bayesian methods to model the ASB process in a way that leads to objective forecasts and estimates of the corn yield. First, we use small area estimation techniques to obtain state-level forecasts. Second, we describe a way to adjust the state forecasts so that the weighted sum of the state forecasts is equal to a previously-determined regional forecast. We use several diagnostic techniques to assess the goodness of fit of various models and their competitors. We use Markov chain Monte Carlo methods to fit the models to both historic and current data from the two monthly surveys. Our results show that our methodology can provide reasonable and objective forecasts of corn yields for states in the speculative region.  相似文献   

5.
《Ecological modelling》2005,185(1):133-145
General Purpose Atmosphere Plant Soil Simulator (GAPS), a menu-driven soil-vegetation-atmosphere transfer (SVAT) model, was used to simulate soil water dynamics from 1998 through 2001 for Greenville, PA, USA. GLOBE student data collected by students from Reynolds Junior and Senior High School, coupled with normalized difference vegetation index (NDVI) data derived from SPOT4 vegetation imagery, were used to parameterize and validate the model. Data from the National Weather Service Cooperative (NWSC) was used to evaluate the GLOBE dataset. Overall, there was a high index of agreement (d > 0.80) between field measurements and simulated soil water values from both datasets (GLOBE and NWSC). Simulations using the GLOBE climate data outperformed the NWSC data for the 1999, 2000, and 2001 growing seasons. In addition, the GLOBE simulations showed that NDVI could be utilized to predict transpiration periods (QI, QII, and QIII) for northern latitudes >35° with a distinct winter period. In phenological terms, QI reflects the onset of the growing season when vegetation is greening up (NDVI < 0.60) and transpiration is beginning (<2 mm/day) and QII reflects the end of the growing seasons when vegetation is greening down and transpiration is decreasing. QIII reflects the height of the growing season when transpiration rates average between 2 and 5 mm per day and NDVI is at its maximum (>0.60). Results of this study demonstrate that GLOBE student data, coupled with remotely sensed data, can provide an important source of input and validation information for capacitance SVAT models such as GAPS.  相似文献   

6.
To assess habitat suitability (HS) has become an increasingly important component of species/ecosystem management. HS assessment is usually based on presence/absence data related to environmental variables. An exception is Ecological Niche Factor Analysis (ENFA), which uses only presence data and which does not require absence data. Most HS modelling is based on input of all environmental parameters (EnvPs) without environmental categorization, and does not take into account species interaction and human intervention for an assessment of HS. In this study, the EnvPs are arranged into four features: geographical features, consumable features, human-factor features, and species–human interaction features. These features affect species with respect to movement, behavior and activity. The research presented here has used an already existing dataset of wildlife species and human activities/visitations, which was compiled during 2004–2006 in Phu-Khieo Wildlife Sanctuary (PKWS). Data from 2004 to 2005 were used to produce HS maps, while the data of 2006 were used for evaluating these maps. Sambar Deer (SD) was chosen to predict its own HS. Six HS maps of SD were analyzed using ENFA in the following manner: (1) inputting all EnvPs together, (2) inputting each feature, separately and (3) integrating the four resulting HS maps by model averaging. It was found that model averaging was capable of predicting the HS of SD more reliably than the model with all EnvPs put in together. Multiple linear regressions were computed between the HS map with all EnvPs and the HS maps with each feature. The results show that the HS map with only geographical features has the highest coefficient value (0.516) while the coefficient values of other HS maps with the above features are 0.296, 0.53 and −0.006, respectively. This indicates that the geographical features have an influence on the other features and that the predicting power is lower when all EnvPs are computed in the ENFA model. Therefore, in order to generate HS, each feature should at first be put into the model separately. Following that, the average of all features will be combined.  相似文献   

7.
《Ecological modelling》2003,169(1):131-155
That data from polar orbiting satellites have detected a widespread increase in photosynthetic activity over the last 20 years in the grasslands of the Sahel is justifies investigating its role in the tropical carbon cycle. But this task is undermined because ground data that are generally used to support the use of primary production models elsewhere are lacking. In this paper, we profile a Light Use Efficiency (LUE) model of primary production parameterised with satellite information, and test it for the West African Sahel; solar radiation is absorbed by plants to provide energy for photosynthesis, while moisture shortfalls control the efficiency of light usage. In particular, we show how an economical use of existing, yet meagre data sets can be used to circumvent nominal, yet untenable approaches for achieving this for the region. Specifically, we use a cloudiness layer provided with the NOAA/NASA 8 km Pathfinder Land data archive (PAL) data set to derive solar radiation (and other energy balance terms) required to implement the model (monthly time-step). Of particular note, we index growth efficiency via transpiration by subsuming rangeland-yield formulations into our model. This is important for partially vegetated landscapes where the fate of rainfall is controlled by relative vegetation cover. We accomplish this by using PAL-derived Normalised Difference Vegetation Index (NDVI) to partition the landscape into fractional vegetation cover. A bare soil evaporation model that feeds into bucket model is then applied, thereafter deriving actual transpiration (quasi-daily time-step). We forgo a formal validation of the model due to problems of spatial scale and data limitations. Instead, we generate maps showing model robustness via Monte Carlo simulation. The precision of our Gross Primary Production (GPP) estimates is acceptable, but falls off rapidly for the northern fringes of the Sahel. We also map the locations where errors in the driving variables are mostly responsible for the bulk of uncertainty in predicted GPP, in this case the water stress factor and the NDVI. Comparisons with an independent model of primary production, CENTURY, are relatively poor, yet favourable comparisons are made with previous primary production estimates found for the region in the literature. A spatially exhaustive evaluation of our GPP map is carried out by regressing randomly sampled observations against integrated NDVI, a method traditionally used to quantify absolute amounts of primary production. Our model can be used to quantify stocks and flows of carbon in grasslands over the recent historical period.  相似文献   

8.
To make a macrofaunal (crustacean) habitat potential map, the spatial distribution of ecological variables in the Hwangdo tidal flat, Korea, was explored. Spatial variables were mapped using remote sensing and a geographic information system (GIS) combined with field observations. A frequency ratio (FR) and logistic regression (LR) model were employed to map the macrofauna potential area for the Ilyoplax dentimerosa, a crustacean species. Spatial variables affecting the tidal macrofauna distribution were selected based on abundance and biomass and used within a spatial database derived from remotely sensed data of various types of sensors. The spatial variables included the intertidal digital elevation model (DEM), slope, distance from a tidal channel, tidal channel density, surface sediment facies, spectral reflectance of the near infrared (NIR) bands and the tidal exposure duration. The relation between the I. dentimerosa and each spatial variable was calculated using the FR and LR. The species was randomly divided into a training set (70%) to analyse habitat potential using FR and LR and a test set (30%) to validate the predicted habitat potential map. The relations were overlaid to produce a habitat potential map with the species potential index (SPI) value for each pixel. The potential habitat maps were compared with the surveyed habitat locations such as validation data set. The comparison results showed that the LR model (accuracy is 85.28%) is better in prediction than the FR (accuracy is 78.96%) model. The performance of models gave satisfactory accuracies. The LR provides the quantitative influence of variables on a potential habitat of species; otherwise, the FR shows the quantitative influence of a class in each variable. The combination of a GIS-based frequency ratio and logistic regression models and remote sensing with field observations is an effective method to determine locations favorable for macrofaunal species occurrences in a tidal flat.  相似文献   

9.
Expert knowledge is used in the development of wildlife habitat suitability models (HSMs) for management and conservation decisions. However, the consistency of such models has been questioned. Focusing on 1 method for elicitation, the analytic hierarchy process, we generated expert-based HSMs for 4 felid species: 2 forest specialists (ocelot [Leopardus pardalis] and margay [Leopardus wiedii]) and 2 habitat generalist species (Pampas cat [Leopardus colocola] and puma [Puma concolor]). Using these HSMs, species detections from camera-trap surveys, and generalized linear models, we assessed the effect of study species and expert attributes on the correspondence between expert models and camera-trap detections. We also examined whether aggregation of participant responses and iterative feedback improved model performance. We ran 160 HSMs and found that models for specialist species showed higher correspondence with camera-trap detections (AUC [area under the receiver operating characteristic curve] >0.7) than those for generalists (AUC < 0.7). Model correspondence increased as participant years of experience in the study area increased, but only for the understudied generalist species, Pampas cat (β = 0.024 [SE 0.007]). No other participant attribute was associated with model correspondence. Feedback and revision of models improved model correspondence, and aggregating judgments across multiple participants improved correspondence only for specialist species. The average correspondence of aggregated judgments increased as group size increased but leveled off after 5 experts for all species. Our results suggest that correspondence between expert models and empirical surveys increases as habitat specialization increases. We encourage inclusion of participants knowledgeable of the study area and model validation for expert-based modeling of understudied and generalist species.  相似文献   

10.
《Ecological modelling》2005,185(1):13-27
This paper describes an approach for conducting spatial uncertainty analysis of spatial population models, and illustrates the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial population models typically simulate birth, death, and migration on an input map that describes habitat. Typically, only a single “reference” map is available, but we can imagine that a collection of other, slightly different, maps could be drawn to represent a particular species’ habitat. As a first approximation, our approach assumes that spatial uncertainty (i.e., the variation among values assigned to a location by such a collection of maps) is constrained by characteristics of the reference map, regardless of how the map was produced. Our approach produces lower levels of uncertainty than alternative methods used in landscape ecology because we condition our alternative landscapes on local properties of the reference map. Simulated spatial uncertainty was higher near the borders of patches. Consequently, average uncertainty was highest for reference maps with equal proportions of suitable and unsuitable habitat, and no spatial autocorrelation. We used two population viability models to evaluate the ecological consequences of spatial uncertainty for landscapes with different properties. Spatial uncertainty produced larger variation among predictions of a spatially explicit model than those of a spatially implicit model. Spatially explicit model predictions of final female population size varied most among landscapes with enough clustered habitat to allow persistence. In contrast, predictions of population growth rate varied most among landscapes with only enough clustered habitat to support a small population, i.e., near a spatially mediated extinction threshold. We conclude that spatial uncertainty has the greatest effect on persistence when the amount and arrangement of suitable habitat are such that habitat capacity is near the minimum required for persistence.  相似文献   

11.
Urban sprawl and its evolution over relatively short periods of time demands that we develop statistical tools to make best use of the routinely produced land use data from satellites. An efficient smoothing framework to estimate spatial patterns in binary raster maps derived from land use datasets is developed and presented in this paper. The framework is motivated by the need to model urbanization, specifically urban sprawl, and also its temporal evolution. We frame the problem as estimation of a probability of urbanization surface and use Bayesian P-splines as the tool of choice. Once such a probability map is produced, with associated uncertainty, we develop exploratory tools to identify regions of significant change across space and time. The proposal is used to study urbanisation and its development around the city of Bologna, Emilia Romagna, Italy, using land use data from the Cartography Archive of Emilia Romagna Region for the period 1976–2008.  相似文献   

12.
The lack of high-resolution distribution maps for freshwater species across large extents fundamentally challenges biodiversity conservation worldwide. We devised a simple framework to delineate the distributions of freshwater fishes in a high-resolution drainage map based on stacked species distribution models and expert information. We applied this framework to the entire Chinese freshwater fish fauna (>1600 species) to examine high-resolution biodiversity patterns and reveal potential conflicts between freshwater biodiversity and anthropogenic disturbances. The correlations between spatial patterns of biodiversity facets (species richness, endemicity, and phylogenetic diversity) were all significant (r = 0.43–0.98, p < 0.001). Areas with high values of different biodiversity facets overlapped with anthropogenic disturbances. Existing protected areas (PAs), covering 22% of China's territory, protected 25–29% of fish habitats, 16–23% of species, and 30–31% of priority conservation areas. Moreover, 6–21% of the species were completely unprotected. These results suggest the need for extending the network of PAs to ensure the conservation of China's freshwater fishes and the goods and services they provide. Specifically, middle to low reaches of large rivers and their associated lakes from northeast to southwest China hosted the most diverse species assemblages and thus should be the target of future expansions of the network of PAs. More generally, our framework, which can be used to draw high-resolution freshwater biodiversity maps combining species occurrence data and expert knowledge on species distribution, provides an efficient way to design PAs regardless of the ecosystem, taxonomic group, or region considered.  相似文献   

13.
High resolution remote sensing data facilitate the use of small-scale habitat features such as trees or hedges in the analysis of species-habitat relationships. Such data potentially enable more accurate species-habitat mapping than lower resolution data. Here, for the first time, we systematically investigated this hypothesis by altering the spatial resolution from 1 m up to 1000 m grain size in species-habitat models of 13 bird species. The study area covered the Nidda river catchment in central Germany, a large heterogeneous landscape of 1620 km2. A high resolution habitat map of the area was converted to coarser spatial and thematic resolutions in seven steps. We investigated how model performance responded to grain size, and we compared the differential effects of spatial resolution and thematic resolution on model performance. Explained deviance (D2) of the bird models generally decreased with coarser spatial resolution of the data, although it did not decrease monotonically in all species. On average across all species, model D2 decreased from 41.5 at 1 m grain size to 15.9 at 1000 m grain size. Ten species were best modelled at 1 m, two species at 3 m and one species at 32 m grain size. Model performance degraded continuously with increasing grain size, both in habitat generalist and habitat specialist bird species, and was systematically lower in habitat generalists. The higher model performance observed at finer grain sizes was most likely caused by the combination of three factors: (1) high spatial accuracy of bird records and (2) a more precise location and delineation of habitat features and, (3) to a lesser degree, by more habitat types differentiated in maps of finer resolution. We conclude that higher spatial and thematic resolution data can be essential for deriving accurate predictions on bird distribution patterns from species-habitat models. Especially for bird species that are sensitive to specific land-use types or to small-scaled habitat features, a grain size of 1-3 m seems most promising.  相似文献   

14.
The air temperature is one of the main input data in models for water balance monitoring or crop models for yield prediction. The different phenological stages of plant growth are generally defined according to cumulated air temperature from the sowing date. When these crop models are used at the regional scale, the meteorological stations providing input climatic data are not spatially dense enough or in a similar environment to reflect the crop local climate. Hence spatial interpolation methods must be used. Climatic data, particularly air temperature, are influenced by local environment. Measurements show that the air above dry surfaces is warmer than above wet areas. We propose a method taking into account the environment of the meteorological stations in order to improve spatial interpolation of air temperature. The aim of this study is to assess the impact of these corrected climatic data in crop models. The proposed method is an external drift kriging where the Kriging system is modified to correct local environment effects. The environment of the meteorological stations was characterized using a land use map summarized in a small number of classes considered as a factor influencing local temperature. This method was applied to a region in south-east France (150×250 km) where daily temperatures were measured on 150 weather stations for two years. Environment classes were extracted from the CORINE Landcover map obtained from remote sensing data. Categorical external drift kriging was compared to ordinary kriging by a cross validation study. The gain in precision was assessed for different environment classes and for summer days. We then performed a sensitivity study of air temperature with the crop model STICS. The influence of interpolation corrections on the main outputs as yield or harvest date is discussed. We showed that the method works well for air temperature in summer and can lead to significant correction for yield prediction. For example, we observed by cross validation a bias reduction of 0.5 to 1.0°C (exceptionally 2.5°C for some class), which corresponds to differences in yield prediction from 0.6 to 1.5 t/ha.  相似文献   

15.
Spatial information in the form of geographical information system coverages and remotely sensed imagery is increasingly used in ecological modeling. Examples include maps of land cover type from which ecologically relevant properties, such as biomass or leaf area index, are derived. Spatial information, however, is not error-free: acquisition and processing errors, as well as the complexity of the physical processes involved, make remotely sensed data imperfect measurements of ecological attributes. It is therefore important to first assess the accuracy of the spatial information being used and then evaluate the impact of such inaccurate information on ecological model predictions. In this paper, the role of geostatistics for mapping thematic classification accuracy through integration of abundant image-derived (soft) and sparse higher accuracy (hard) class labels is presented. Such assessment leads to local indices of map quality, which can be used for guiding additional ground surveys. Stochastic simulation is proposed for generating multiple alternative realizations (maps) of the spatial distribution of the higher accuracy class labels over the study area. All simulated realizations are consistent with the available pieces of information (hard and soft labels) up to their validated level of accuracy. The simulated alternative class label representations can be used for assessing joint spatial accuracy, i.e., classification accuracy regarding entire spatial features read from the thematic map. Such realizations can also serve as input parameters to spatially explicit ecological models; the resulting distribution of ecological responses provides a model of uncertainty regarding the ecological model prediction. A case study illustrates the generation of alternative land cover maps for a Landsat Thematic Mapper (TM) subscene, and the subsequent construction of local map quality indices. Simulated land cover maps are then input into a biogeochemical model for assessing uncertainty regarding net primary production (NPP).  相似文献   

16.
In this paper, we report an application of neural networks to simulate daily nitrate-nitrogen and suspended sediment fluxes from a small 7.1 km2 agricultural catchment (Melarchez), 70 km east of Paris, France. Nitrate-nitrogen and sediment losses are only a few possible consequences of soil erosion and biochemical applications associated to human activities such as intensive agriculture. Stacked multilayer perceptrons models (MLPs) like the ones explored here are based on commonly available inputs and yet are reasonably accurate considering their simplicity and ease of implementation. Note that the simulation does not resort on water quality flux observations at previous time steps as model inputs, which would be appropriate, for example, to predict the water chemistry of a drinking water plant a few time steps ahead. The water quality fluxes are strictly mapped to historical mean flux values and to hydro-climatic variables such as stream flow, rainfall, and soil moisture index (12 model input candidates in total), allowing its usage even when no flux observations are available. Self-organizing feature maps based on the network structure established by Kohonen were employed first to produce the training and the testing data sets, with the intent to produce statistically close subsets so that any difference in model performance between validation and testing has to be associated to the model and not to the data subsets. The stacked MLPs reached different levels of performance simulating the nitrate-nitrogen flux and the suspended sediment flux. In the first instance, 2-input stacked MLP nitrate-nitrogen simulations, based on the same-day stream flow and on the 80-cm soil moisture index, have a performance of almost 90% according to the efficiency index. On the other hand, the performance of 3-input stacked MLPs (same-day stream flow, same-day historical flux, and same-day stream flow increment) reached a little more than 75% according to the same criterion. The results presented here are deemed already promising enough, and should encourage water resources managers to implement simple models whenever appropriate.  相似文献   

17.
This paper proposes a method of controlled trend surface to simultaneously account for large-scale spatial trends and non-spatial local effects. With this method, a geospatial model of forest dynamics was developed for the Alaska boreal forest from 446 constantly monitored permanent sample plots. The geospatial component of this model represented large-scale spatial trends in recruitment, diameter growth, and mortality. The model was tested on two sets of validation plots which represented temporal and spatial extensions of the current sample coverage. The results suggest that the controlled trend surface model was generally more accurate than both the non-spatial and conventional trend surface models. With this model, we mapped the forest dynamics of the entire Alaska boreal region by aggregating predicted stand states across the region. It was predicted that under current conditions of climate and natural disturbances, most of the Alaska boreal forest region may undergo a major shift from deciduous-dominant to conifer-dominant, with an average increase of 0.33 m2 ha year−1 in basal area over the Twenty-First Century.  相似文献   

18.
Landslides are very common natural problems in the Selangor area of Malaysia due to the improper use of landcover and tropical rainfall. There are many landslide susceptibility analyses such as statistical, bivariate and data mining approaches exist in the literature. This paper presents the use of fuzzy logic relations for landslide susceptibility mapping on part of Selangor area, Malaysia, using a Geographic Information System (GIS) and remote sensing data. At first, landslide locations were identified in the study area from the interpretation of aerial photographs and satellite images, supported by extensive field surveys. Topographic and geological data and satellite images were collected, processed, and constructed into a spatial database using GIS and image processing. Thirteen landslide conditioning factors such as slope gradient, slope exposure, plan curvature, altitude, stream power index, topographic wetness index, distance from drainage, distance from road, lithology, distance from faults, soil, landcover and normalized difference vegetation index (ndvi) were extracted from the spatial database. These factors were analyzed using fuzzy logic relations to produce the landslide susceptibility maps. Using the landslide conditioning factors and the identified landslides, the fuzzy membership values were calculated. Then fuzzy algebraic operators were applied to the fuzzy membership values for landslide susceptibility mapping. Finally, the ROC curves for all landslide susceptibility models were drawn and the area under curve values were calculated. Landslide locations were used to validate results of the landslide susceptibility maps and the validation results showed 94% accuracy for the fuzzy gamma operator employing all parameters produced in the present study as the landslide conditioning factors. Results showed that, among the fuzzy relations, in the case in which the gamma operator (λ =  0.975) showed the best accuracy (94.73%) while the case in which the fuzzy algebraic Or was applied showed the worst accuracy (84.76%). The landslide susceptibility maps produced by the fuzzy gamma operators shows similar trends as those obtained by applying logistic regression procedure by the same author and indicate that fuzzy relations results perform slightly better than the earlier method. Qualitatively, the model yields reasonable results which can be used for preliminary land-use planning purposes.  相似文献   

19.
Conservation of migratory species exhibiting wide-ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep-diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear-specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space-use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high-risk interactions with turtles in a residential, deep-diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) ( https://www.upwell.org/sptw ), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high-risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors.  相似文献   

20.
The Eastern Arc Mountains (EAMs) of Tanzania and Kenya support some of the most ancient tropical rainforest on Earth. The forests are a global priority for biodiversity conservation and provide vital resources to the Tanzanian population. Here, we make a first attempt to predict the spatial distribution of 40 EAM tree species, using generalised additive models, plot data and environmental predictor maps at sub 1 km resolution. The results of three modelling experiments are presented, investigating predictions obtained by (1) two different procedures for the stepwise selection of predictors, (2) down-weighting absence data, and (3) incorporating an autocovariate term to describe fine-scale spatial aggregation. In response to recent concerns regarding the extrapolation of model predictions beyond the restricted environmental range of training data, we also demonstrate a novel graphical tool for quantifying envelope uncertainty in restricted range niche-based models (envelope uncertainty maps). We find that even for species with very few documented occurrences useful estimates of distribution can be achieved. Initiating selection with a null model is found to be useful for explanatory purposes, while beginning with a full predictor set can over-fit the data. We show that a simple multimodel average of these two best-model predictions yields a superior compromise between generality and precision (parsimony). Down-weighting absences shifts the balance of errors in favour of higher sensitivity, reducing the number of serious mistakes (i.e., falsely predicted absences); however, response functions are more complex, exacerbating uncertainty in larger models. Spatial autocovariates help describe fine-scale patterns of occurrence and significantly improve explained deviance, though if important environmental constraints are omitted then model stability and explanatory power can be compromised. We conclude that the best modelling practice is contingent both on the intentions of the analyst (explanation or prediction) and on the quality of distribution data; generalised additive models have potential to provide valuable information for conservation in the EAMs, but methods must be carefully considered, particularly if occurrence data are scarce. Full results and details of all species models are supplied in an online Appendix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号