首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
为探讨西安市典型霾过程中的气溶胶垂直分布特征和气象要素影响,利用地面空气质量数据、CALIPSO卫星激光雷达资料以及气象要素资料,并结合HYSPLIT后向轨迹模式、天气形势分析、相关性分析等,对西安市2016年12月17-21日霾过程依据RH(相对湿度)进行干霾、湿霾和雾霾的划分,并分析不同阶段的气溶胶垂直分布特征.结果表明:前期干霾阶段,西北沙尘的输送使得高空气溶胶退偏比和色比较大,以沙尘型气溶胶为主;中期湿霾阶段,RH的增大使得低层细粒子增多,消光系数达1.7 km-1,以污染型气溶胶为主;后期干霾阶段时,低层大气中非球形粗粒子增多,以混合型气溶胶占主导.气象要素对霾过程影响较大,静风、高湿、"双逆温"效应不利于颗粒物的清除,逆温强度的变化与污染物的消长具有一定的滞后一致性.RH和ρ(PM)共同影响能见度变化,RH高于80%时,能见度由RH主导,相关系数达到-0.871;RH低于80%的污染阶段,ρ(PM)对能见度起主导作用,相关系数达0.85以上.研究显示,不同霾阶段气溶胶垂直分布特征差异较大,气象要素对霾过程的消长有重要影响.   相似文献   

2.
南京冬季雾霾过程中气溶胶粒子的微物理特征   总被引:26,自引:7,他引:19  
2007年冬季南京雾外场试验获得了雾霾转换过程的大气气溶胶和雾滴尺度谱分布同步观测资料,根据能见度和含水量将雾霾过程划分为雾、轻雾、湿霾、霾4个不同阶段,进而分析了不同阶段粗、细气溶胶粒子的微物理特征.结果表明,4个阶段的主要发生顺序为霾←→轻雾—→湿霾—→雾—→湿霾—→轻雾←→霾,雾前湿霾阶段持续时间长于雾后.尺度2μm的粗粒子数浓度、表面积浓度和体积浓度在雾阶段均显著大于其他3个阶段,其中霾阶段浓度最低.雾滴表面积浓度和体积浓度尺度谱分布为双峰或多峰型,而轻雾、湿霾和霾阶段粗粒子谱均为单峰型.尺度0.010μm的细粒子表面积浓度谱形在雾和湿霾阶段、轻雾和霾阶段分别相似,雾和湿霾阶段数浓度占优势的尺度范围分别为0.04~0.13μm和0.02~0.14μm,轻雾及霾阶段数浓度优势粒子尺度范围均为0.02~0.06μm.从霾、轻雾、湿霾到雾的转换过程中,以0.060~0.090μm为界,小粒子减少,大粒子增多.雾霾演变过程中气溶胶粒子数浓度与均方根直径呈显著负相关关系,雾阶段气溶胶粒子数浓度最低、平均尺度最大.  相似文献   

3.
余洋  杨军 《环境科学学报》2016,36(7):2305-2313
2007年南京冬季雾外场综合试验期间,雾、霾交替持续的最长时间达100 h以上。利用大气气溶胶粒子和雾滴数浓度尺度谱分布、能见度、相对湿度等同步观测资料,从Mie散射理论出发,研究了雾、霾不同阶段大气消光特征,重点分析了大气气溶胶粒子和雾滴在雾、霾持续和转化过程中的消光作用。结果表明,雾、霾过程不同阶段平均能见度的大小关系为:雾<湿霾<霾~轻雾。平均而言,雾阶段雾滴和气溶胶粒子的消光作用相当,其中,雾滴消光波动幅度大于气溶胶粒子消光,能见度的变化趋势主要由雾滴的消光决定。湿霾、霾和轻雾阶段的消光主要由气溶胶粒子造成。湿霾阶段的低能见度是由于大量积聚模态的气溶胶粒子在较高相对湿度环境中吸湿增长所致。霾阶段气溶胶粒子数浓度达到最大,核模态粒子占总数浓度的80%左右,是导致该阶段能见度较低的主要原因。轻雾阶段气溶胶粒子的消光系数最小,但雾滴可提供10%~15%的消光贡献,导致能见度与霾阶段相当。  相似文献   

4.
采用地面大气能见度、PM_(2.5)质量浓度、梯度气象资料、塔上湍流观测资料等多种资料及后向轨迹方法,分析近地层温湿结构和湍流特征对2016年12月16日—21日天津地区一次严重持续雾霾天气演变过程的影响.结果表明,本次雾霾天气过程可以明显的分为霾、雾的生成和发展、雾成熟和雾霾消散等4个阶段,近地层温度、相对湿度和风的垂直分布及湍流特征对各阶段的雾-霾转化起到了重要作用.霾生成期间,偏南气流盛行,地面风速降低,RH不断增大,湍流不活跃;地面辐射降温引发了近地层内显著的强逆温,并导致RH由地面到高空逐渐增大,有利于雾的生成和发展;感热通量和潜热通量爆发式增长,导致逆温层瓦解,雾顶继续抬升,雾进入成熟阶段,湍流活动减弱;受西北气流影响,湍流活跃,高空的干冷气团向下取代地面暖湿气团,结束本次雾霾天气过程.采用近地层温湿结构和湍流特征资料,可用于雾-霾天气的演变及其转化过程精细分析.  相似文献   

5.
为研究徐州冬季雾-霾天气形成过程中颗粒物粒径及气溶胶光学特性的变化特征,分析了2014年12月1日~2015年2月28日徐州大气颗粒物质量浓度(PM10、PM2.5、PM1)、数浓度(0~1μm、1~2.5μm、2.5~10μm)和气溶胶光学特性等数据.结果表明:0~1μm粒径范围细颗粒物的大量增多是引发徐州冬季雾-霾天气的主要因素,徐州冬季地面风速小(静风或轻风天气),较高的大气相对湿度对雾-霾的形成和维持起着重要影响作用.持续时间较长的雾霾天气,因颗粒物吸湿增长和水汽附着,1~10μm粒径范围大气颗粒物在雾霾时段易发生沉降而减少,后随相对湿度降低雾霾转为短时间的霾天气,1~10μm颗粒物数浓度大幅上升.徐州冬季500nm波段AODtotal和AODfine mode具有相同的变化趋势,雾-霾日AODtotal和AODfine mode显著高于非霾日.AODfine mode与AODcoarse mode的比值雾-霾日亦明显高于非霾日,而且在雾-霾日Angstrom波长指数主要集中在1~1.6,表明徐州冬季雾-霾时段大气中细颗粒物为主控粒子.  相似文献   

6.
利用2015年1月气溶胶散射和吸收系数、PM2.5质量浓度、大气能见度以及常规气象观测数据,分析了南京冬季大气气溶胶散射系数与吸收系数的变化特征,给出了散射系数与吸收系数对大气消光的贡献,以及能见度与PM2.5质量浓度和相对湿度的关系.结果表明,观测期间南京大气气溶胶的散射系数和吸收系数分别为(423.4±265.3) Mm-1和(24.5±14.3) Mm-1,对大气消光的贡献分别为89.2%和5.2%,表明大气消光主要贡献来自于气溶胶的散射.散射系数与PM2.5相关性较好(R2=0.91),能见度随PM2.5质量浓度呈指数下降,也与相对湿度保持一定负相关性.能见度均值为4.3km,且连续出现能见度不足2km的低能见度天气,霾天气下消光系数和PM2.5质量浓度大幅超过非霾天气,最高值分别达到1471.2Mm-1和358 μg/m3,霾天气下能见度的降低来自颗粒物与相对湿度的共同影响.  相似文献   

7.
南京北郊能见度变化中二次无机盐消光的重要作用   总被引:1,自引:1,他引:0  
利用2013年5月~2014年5月的能见度和大气气溶胶化学组分资料,分析南京北郊能见度变化特征、气溶胶化学组分与能见度变化的关联及其对大气消光的贡献,识别在能见度变化中二次无机盐消光的重要作用.结果表明,观测期间平均能见度为(6.78±3.68)km,能见度存在显著的季节变化.粒径小于2.1μm的细粒子对能见度降低有较大影响,SO2-4、NO-3、NH+4和OC是细粒子主要成分,其中二次无机离子对重霾日能见度恶化具有重要贡献.利用修正的IMPROVE方程重建观测期间消光系数,均值为(527.2±295.2)Mm-1,PM2.1化学组分中硫酸铵、硝酸铵以及有机物对消光系数贡献最大,达到80.6%.尽管在清洁日(VR10 km)有机物的消光贡献高达43.51%,但随着能见度降低,有机物消光贡献减少,二次无机盐组分消光贡献增加,在低能见度的重霾日(VR5 km)二次无机盐消光贡献达到58.96%,表明二次无机盐消光对能见度恶化具有重要作用.  相似文献   

8.
上海地区不同类和不同强度灰霾季节分布特征   总被引:1,自引:0,他引:1  
主要采用美国宇航局(NASA)2007年1月-2010年11月CALIPSO卫星搭载的正交极化云-气溶胶激光雷达(CALIOP)L1产品及地面气象观测资料,分析得到上海地区干霾和湿霾、不同强度灰霾天气的季节分布特征,并重点研究了发生干霾时气溶胶散射强度、粒子规则性和尺度大小随季节的变化规律。结果表明:灰霾的发生具有较明显的季节性,春季为干霾高发期,其次是夏冬季;夏冬两季轻度以上干霾发生比例均大于春季与秋季;大气中主要以小尺度、较规则的气溶胶粒子为主;干霾时,气溶胶粒子和不同量级色比值所占比例季节变化不大;夏季发生干霾时小尺度粒子所占比例最大。  相似文献   

9.
于2013年1月连续在线观测天津城区气溶胶数浓度谱分布和大气能见度,并结合相关气象资料,探讨相对湿度(RH)对气溶胶浓度谱分布和大气能见度的影响.结果表明,观测期间发生了4次连续雾霾天气过程,4次雾霾天气过程对应着气溶胶粒子数浓度的连续高值,低能见度天气系高浓度气溶胶粒子和高相对湿度协同所致;随着RH增大,PN1和PN2.5-10呈增长趋势,RH90%后,PN1和PN2.5-10有所降低,PN1-2.5则持续增长,高RH对气粒转化和气溶胶粒子的碰并聚合作用明显;气溶胶吸湿增长因子计算表明,高RH下水汽对能见度影响很大,尤其是大雾天气下其影响甚至可能超过气溶胶粒子浓度对其的影响.  相似文献   

10.
于2013年1月连续在线观测天津城区气溶胶数浓度谱分布和大气能见度,并结合相关气象资料,探讨相对湿度(RH)对气溶胶浓度谱分布和大气能见度的影响.结果表明,观测期间发生了4次连续雾霾天气过程, 4次雾霾天气过程对应着气溶胶粒子数浓度的连续高值,低能见度天气系高浓度气溶胶粒子和高相对湿度协同所致;随着RH增大,PN1和PN2.5-10呈增长趋势, RH>90%后,PN1和PN2.5-10有所降低,PN1-2.5则持续增长,高RH对气粒转化和气溶胶粒子的碰并聚合作用明显;气溶胶吸湿增长因子计算表明,高RH下水汽对能见度影响很大,尤其是大雾天气下其影响甚至可能超过气溶胶粒子浓度对其的影响.  相似文献   

11.
Toxic effects of two agrochemicals on nifH gene in agricultural black soil were investigated using denaturing gradient gel electrophoresis (DGGE) and sequencing approaches in a microcosm experiment. Changes of soil nifH gene diversity and composition were examined following the application of acetochlor, methamidophos and their combination. Acetochlor reduced the nifH gene diversity (both in gene richness and diversity index values) and caused changes in the nifH gene composition. The effects of acetochlor on nifH gene were strengthened as the concentration of acetochlor increased. Cluster analysis of DGGE banding patterns showed that nifH gene composition which had been affected by low concentration of acetochlor (50 mg/kg) recovered firstly. Methamidophos reduced nifH gene richness that except at 4 weeks. The medium concentration of methamidophos (150 mg/kg) caused the most apparent changes in nifH gene diversity at the first week while the high concentration of methamidophos (250 mg/kg) produced prominent effects on nifH gene diversity in the following weeks. Cluster analysis showed that minimal changes of nifH gene composition were found at 1 week and maximal changes at 4 weeks. Toxic effects of acetochlor and methamidophos combination on nifH gene were also apparent. Different nifH genes (bands) responded differently to the impact of agrochemicals: four individual bands were eliminated by the application of the agrochemicals, five bands became predominant by the stimulation of the agrochemicals, and four bands showed strong resistance to the influence of the agrochemicals. Fifteen prominent bands were partially sequenced, yielding 15 different nifH sequences, which were used for phylogenetic reconstructions. All sequences were affiliated with the alpha- and beta-proteobacteria, showing higher similarity to eight different diazotrophic genera.  相似文献   

12.
Phytoremediation is a potential cleanup technology for the removal of heavy metals from contaminated soils.Bidens maximowicziana is a new Pb hyperaccumulator,which not only has remarkable tolerance to Pb but also extraordinary accumulation capacity for Pb.The maximum Pb concentration was 1509.3 mg/kg in roots and 2164.7 mg/kg in overground tissues.The Pb distribution order in the B. maximowicziana was:leaf>stem>root.The effect of amendments on phytoremediation was also studied.The mobility of soil Pb and the Pb concentrations in plants were both increased by EDTA application.Compared with CK(control check),EDTA application promoted translocation of Pb to overground parts of the plant.The Pb concentrations in overground parts of plants was increased from 24.23-680.56 mg/kg to 29.07-1905.57 mg/kg.This research demonstrated that B.maximowicziana appeared to be suitable for phytoremediation of Pb contaminated soil,especially,combination with EDTA.  相似文献   

13.
Laogang landfill near Shanghai is the largest landfill in China, and receives about 10000 t of daily garbage per day, Samples of topsoil and plants were analyzed to evaluate mercury pollution from the landfill. For topsoil samples, there were significant correlations among total mercury (HgT), combinative mercury (Hgc) and gaseous mercury (HgG), and content of total organic carbon (TOC), but, no significantly relationship was found between Hg content and filling time. Hg content changes in vertical profiles with time showed that the average Hgv of profiles 1992, 1996, and 2000 was similar, but their average HgG was quite different. HgT was significantly correlated with Hgc in profile 1992 and 2000, and Hgv was significantly correlated with Hg6 in profile 1996. HgG/Hgv ratio in profile samples decreased in the order of (HgG,/HgT)1992〉(HgG/HgT)1996〉〉(HgG/HgT)2000. A simple outline of Hg release in landfill could be drawn: with increasing of filling time, degradation undergoes different biodegradation, accordingly, gaseous mercury goes through small, more, and small proportion to total mercury. Distribution of Hg in plants was inhomogeneous, following the order of leaf〉root〉stem. The highest value of leaf may be associated with higher atmospheric Hg from landfill. Ligneous plants (e.g. Phyllostachys glanca, Prunus salicina and Ligustrum lucidum) are capable of enriching more Hg than herbaceous plants.  相似文献   

14.
The effects of arbuscular mycorrhizal (AM) fungus (Glomus mosseae) and phosphorus (P) addition (100 mg/kg soil) on arsenic (As) uptake by maize plants (Zea mays L.) from an As-contaminated soil were examined in a glasshouse experiment.Non-mycorrhizal and zero-P addition controls were included.Plant biomass and concentrations and uptake of As,P,and other nutrients,AM colonization,root lengths,and hyphal length densities were determined.The results indicated that addition of P significantly inhibited root colonization and development of extraradical mycelium.Root length and dry weight both increased markedly with mycorrhizal colonization under the zero-P treatments,but shoot and root biomass of AM plants was depressed by P application.AM fungal inoculation decreased shoot As concentrations when no P was added,and shoot and root As concentrations of AM plants increased 2.6 and 1.4 times with P addition,respectively.Shoot and root uptake of P,Mn,Cu,and Zn increased,but shoot Fe uptake decreased by 44.6%,with inoculation, when P was added.P addition reduced shoot P,Fe,Mn,Cu,and Zn uptake of AM plants,but increased root Fe and Mn uptake of the nonmycorrhizal ones.AM colonization therefore appeared to enhance plant tolerance to As in low P soil,and have some potential for the phytostabilization of As-contaminated soil,however,P application may introduce additional environmental risk by increasing soil As mobility.  相似文献   

15.
The influence of the nonionic surfactant Tween 80 on pentachlorophenol (PCP) oxidation catalyzed by horseradish peroxidase was studied. The surfactant was tested at concentrations below and above its critical micelle concentration (CMC). Enhancement of PCP removal was observed at sub-CMCs. The presence of Tween 80 in the reaction mixture reduced enzyme inactivation which occurred through a combination of free radical attack and sorption by precipitated products. A simple first-order model was able to simulate time profiles for enzyme inactivation in the presence or absence of Tween 80. At supra-CMCs, the surfactant caused noticeable reductions in PCP removal, presumably through micelle partitioning of PCP which precluded the hydrophobic PCP molecule from interacting with the enzyme.  相似文献   

16.
Decomposition of alachlor by ozonation and its mechanism   总被引:1,自引:0,他引:1  
Decomposition and corresponding mechanism of alachlor, an endocrine disruptor in water by ozonation were investigated. Results showed that alachlor could not be completely mineralized by ozone alone. Many intermediates and final products were formed during the process, including aromatic compounds, aliphatic carboxylic acids, and inorganic ions. In evoluting these products, some of them with weak polarity were qualitatively identified by GC-MS. The information of inorganic ions suggested that the dechlorination was the first and the fastest step in the ozonation of alachlor.  相似文献   

17.
Several main metabolites of benzo[a]pyrene (BaP) formed by Penicillium chrysogenum, Benzo[a]pyrene-1,6-quinone (BP 1,6- quinone), trans-7,8-dihydroxy-7,8-dihydrobenzo[a]pyrene (BP 7,8-diol), 3-hydroxybenzo[a]pyrene (3-OHBP), were identified by high-performance liquid chromatography (HPLC). The three metabolites were liable to be accumulated and were hardly further metabolized because of their toxicity to microorganisms. However, their further degradation was essential for the complete degradation of BaP. To enhance their degradation, two methods, degradation by coupling Penicillium chrysogenum with KMnO4 and degradation only by Penicillium chrysogenum, were compared; Meanwhile, the parameters of degradation in the superior method were optimized. The results showed that (1) the method of coupling Penicillium chrysogenum with KMnO4 was better and was the first method to be used in the degradation of BaP and its metabolites; (2) the metabolite, BP 1,6-quinone was the most liable to be accumulated in pure cultures; (3) the effect of degradation was the best when the concentration of KMnO4 in the cultures was 0.01% (w/v), concentration of the three compounds was 5 mg/L and pH was 6.2. Based on the experimental results, a novel concept with regard to the bioremediation of BaP-contaminated environment was discussed, considering the influence on environmental toxicity of the accumulated metabolites.  相似文献   

18.
Sorption of chlorotoluron in ammonium sulfate, urea and atrazine multi-solutes system was investigated by batch experiments. The results showed application of nitrogen fertilizers to the soil could affect the behavior of chlorotoluron. At the same concentration of N, sorption of chlorotoluron decreased as the concentration of atrazine increased on the day 0 and 6 in soil, respectively. The sorption of chlorotoluron increased from 0 to 6 d when soils were preincubated with deionized water, ammonium sulfate and urea solution for 6 d. That indicated incubation time was one of the most important factors for the sorption of chlorotoluron in nitrogen fertilizers treatments. The individual sorption isotherms of chlorotoluron in rubbery polymer and silica were strictly linear in single solute system, but there were competition sorption between pesticides or between pesticides and nitrogen fertilizers. That indicated the sorption taken place by concurrent solid-phase dissolution mechanism and sorption on the interface of water-organic matter or water-mineral matter.  相似文献   

19.
以三峡大学的校园河道求索溪为研究对象,利用综合水质标识指数法确定求索溪水质类别,分析其水质时空变化规律,并利用对应分析法得出求索溪中不同监测点的主要污染因子.研究结果表明:求索溪整体的综合水质标识指数为7.423,整体水质为劣V类(地表水环境质量标准GB 3838-2002)且黑臭.从时间变化来看,求索溪4月份的水质最差,5月份次之,4、5月份所有监测点的水质都劣于V类且黑臭;8月份水质最好,水质为Ⅳ类;从空间分布来看,8个监测点综合水质标识指数均超过6.0,水质为劣V类,其中6号监测点的水质相对最好,监测点3号的水质相对最差;对应分析法得出求索溪的整体水体污染程度受总氮因子的影响最大,其次为总磷.该研究拟为求索溪及类似校园河道的水环境治理研究提供基础依据和参考.  相似文献   

20.
In this study an effort has been made to use plant polyphenol oxidases; potato (Solanum tuberosum) and brinjal (Solanum melongena), for the treatment of various important dyes used in textile and other industries. The ammonium sulphate fractionated enzyme preparations were used to treat a number of dyes under various experimental conditions. Majority of the treated dyes were maximally decolorized at pH 3.0. Some of the dyes were quickly decolorized whereas others were marginally decolorized. The initial first hour was sufficient for the maximum decolorization of dyes. The rate of decolorization was quite slow on long treatment of dyes. Enhancement in the dye decolorization was noticed on increasing the concentration of enzymes. The complex mixtures of dyes were treated with both preparations of polyphenol oxidases in the buffers of varying pH values. Potato polyphenol oxidase was significantly more effective in decolorizing the dyes to higher extent as compared to the enzyme obtained from brinjal polyphenol oxidase. Decolorization of dyes and their mixtures, followed by the formation of an insoluble precipitate, which could be easily removed simply by centrifugation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号