首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 194 毫秒
1.
利用HYSPLIT后向轨迹模式和NCEP的GDAS气象数据(2014年5月1日~2015年4月30日),对抵达北京城区的逐小时3日气流后向轨迹按季节聚类,并结合PM_(2.5)质量浓度地基观测数据,分析不同输送途径的空间特征及其对北京城区PM_(2.5)聚集的贡献.利用潜在源贡献作用(PSCF)和浓度权重轨迹(CWT)分析方法,揭示研究期内北京城区不同季节PM_(2.5)的潜在源区分布及其贡献特性.结果表明:北京城区PM_(2.5)输送途径的季节特征明显,不同输送途径对北京城区PM_(2.5)的贡献差异显著.春季贡献源区主要位于中国西部地区、华北及黄淮平原,夏季贡献源区主要位于山东、苏北及黄海地区,秋季主要位于冀南、鲁西、鲁中及苏鲁豫皖交界地区,冬季主要位于冀南、鲁西北、晋北、陕西、内蒙中部及蒙古国南部.来自山东与冀南的气流轨迹四季均对应PM_(2.5)高值;冬春两季来自西北的气流轨迹也对应较高PM_(2.5)值.  相似文献   

2.
利用2014年12月至2015年11月常州市区6个国控监测站空气污染物浓度逐时数据,分析了PM_(2.5)浓度季节变化特征,采用增强回归树模拟分析了PM10、4种气态污染物和7个气象因子对ρ(PM_(2.5))日变化的贡献.结果表明,常州市区PM_(2.5)污染季节差异明显,冬季污染严重且持续时间长,夏季污染较轻.四季ρ(PM_(2.5))空间分布特征存在一定差异,但各季内不同监测站差异较小.增强回归树对ρ(PM_(2.5))日均值进行模拟和验证得到,训练数据的相关性为0.981,交叉验证的相关性为0.957.此外,模拟值与实测值的标准化平均偏差为1.80%,标准化平均误差为10.41%,可见模型拟合效果较好.PM10、气态污染物、气象因子和区域输送及扩散这4种影响类型对全年ρ(PM_(2.5))日均值差异的贡献率分别为23.4%、28%、36.2%和12.6%,表明在对ρ(PM_(2.5))日均值差异的影响上,气象因子二次形成一次源区域输送及扩散.在对ρ(PM_(2.5))日均值差异贡献率大于5%的因子中,ρ(PM_(2.5))日均值与PM10、相对湿度、CO和O3正相关,与温度、SO2和混合层高度负相关,与大气压和NO2关系较复杂.区域输送及扩散方面,东南风向、偏西风向和偏北风向等上风向周边城市的污染物输送对常州市区PM_(2.5)污染存在较大的负面影响.  相似文献   

3.
川南自贡市大气颗粒物污染特征及传输路径与潜在源分析   总被引:5,自引:5,他引:0  
川南自贡市大气颗粒物污染比较严重, 2015~2018年PM_(10)和PM_(2.5)平均浓度分别为(95.42±9.53)μg·m~(-3)和(65.95±6.98)μg·m~(-3),并有明显的下降趋势,冬季PM_(10)和PM_(2.5)浓度远高于其它季节, 1月平均浓度最高,分别为(138.08±52.29)μg·m~(-3)和(108.50±18.05)μg·m~(-3),夏季平均浓度最低.PM_(2.5)与PM_(10)的平均比值为69.12%,冬季比值约为夏季的1.17倍,空气污染以PM_(2.5)为主.采用拉格朗日混合单粒子轨迹模型(HYSPLIT)和全球资料同化系统的GDAS气象数据,对自贡市细颗粒物(PM_(2.5))浓度和逐日72 h后向轨迹进行计算和聚类研究,利用潜在源贡献分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨不同季节影响自贡市PM_(2.5)浓度的潜在源区以及不同源区的污染贡献.结果表明,自贡市近地面四季多受东南风、偏西风和西北风控制,高浓度PM_(2.5)多出现在0~2 m·s~(-1)的低风速区;不同季节、不同输送路径对自贡PM_(2.5)污染影响的差异显著,春季主要受到来自偏西和偏北方向短距离输送气流的影响,夏季污染轨迹主要来自短距离输送的东南气流,秋季主要受来自资阳,经遂宁、重庆和内江的短距离输送气流的影响,冬季除受到资阳、遂宁和内江等周边城市的影响外,还受到来自西藏中部的远距离输送气流影响;除夏季外,自贡市潜在源区主要位于重庆西部与川南交界区域,冬季的主要贡献区范围最广、贡献程度最大,夏季潜在源区范围最小且贡献程度最弱.  相似文献   

4.
利用LUR模型模拟杭州市PM2.5质量浓度空间分布   总被引:2,自引:0,他引:2  
汉瑞英  陈健  王彬 《环境科学学报》2016,36(9):3379-3385
模拟城市大气污染物浓度空间分布对研究城市空气质量及人体健康至关重要.本研究利用土地利用回归模型(Land Use Regression,LUR),提取包括污染点源因子、交通因子、人口因子、土地利用因子和气象因子等60个预测因子,基于地理加权算法(GWR)建立春、夏、秋、冬四个季节的模型,实现对杭州地区近地表PM_(2.5)质量浓度空间分布的预测.结果表明:基于地理加权回归算法时,检验模型的R2值分别达到0.76(春季)、0.70(夏季)、0.73(秋季)、0.76(冬季),模型能够解释PM_(2.5)浓度值80%以上的变异.每个季度杭州地区PM_(2.5)浓度变化不尽相同,但总体以杭州中部最高,西南部偏低.研究说明基于LUR模型模拟大尺度地区PM_(2.5)质量浓度空间分布是可行的.  相似文献   

5.
镇江市四季PM2.5污染特征与潜在源区分析   总被引:1,自引:1,他引:0       下载免费PDF全文
利用2017年3月1日—2018年2月28日镇江市环境监测站提供的逐时数据,对镇江市PM_(2. 5)污染特征进行分析,并结合HYSPLIT-后向轨迹模型,综合运用轨迹聚类及PSCF、CWT分析方法,计算了不同季节影响镇江城区PM_(2. 5)的主要气流输送路径及镇江市PM_(2. 5)的主要潜在源区。结果表明:镇江市PM_(2. 5)浓度季节分布特征明显,冬季PM_(2. 5)浓度最高,夏季最低。四季PM_(2. 5)浓度日变化均呈两峰一谷型分布,且夜间普遍高于白天,周末高于工作日。四季PM_(2. 5)浓度与NO_2、CO相关系数较高,表明工业排放与交通源可能是镇江市PM_(2. 5)的主要来源。镇江地区气流输送存在显著的季节变化特征:春季西北偏西及东北方向气流轨迹占主要优势;夏季气流主要来自东北、东南及西南方向;秋季以东北及偏东气流为主;冬季西北气流轨迹占绝对优势。镇江四季PM_(2. 5)浓度受本地及周边城市的局地污染输送影响较大,主要潜在源区集中分布在江苏本地及其周边的山东、安徽、浙江、上海等地。春、夏、秋季这些地区对镇江PM_(2. 5)浓度贡献值基本为35~75μg/m~3;冬季该贡献值较大,均在75μg/m~3以上,最高值可达到150μg/m~3以上;同时,冬季受北方污染输送影响,河北、京津冀等地也是主要潜在源区,贡献值为35~75μg/m~3。  相似文献   

6.
北京市PM2.5时空分布特征及其与PM10关系的时空变异特征   总被引:1,自引:0,他引:1  
PM_(2.5)时空分布特征及其与其它污染物的相关关系是PM_(2.5)时空统计分析的主要研究内容.然而,现有的方法直接从监测站点的角度对时空分布特征进行分析,难以有效地揭示PM_(2.5)浓度的聚集分布特征;同时,常用的地理加权回归在对PM_(2.5)与其它污染物间关系进行建模的过程中,缺乏同时考虑时间异质性与空间异质性,从而不能准确地描述依赖关系的时空变异特征.为此,首先借助于空间聚类分析技术,对北京市2014年PM_(2.5)浓度的聚集结构进行探测,在此基础上,通过聚集结构来分析PM_(2.5)季节性时空分布特征.然后,利用地理时空加权回归对北京市PM_(2.5)与PM_(10)季节平均浓度间关系进行建模,依据回归结果分析PM_(2.5)-PM_(10)间关系的时空变异特征.实验结果表明,春夏季节PM_(2.5)污染程度及空间变异程度均低于秋冬季节,各季节PM_(2.5)浓度均表现为北部浓度低、南部浓度高的空间分布特征;地理时空加权回归具有更好的拟合效果,由回归系数进一步可发现,春夏季PM_(2.5)-PM_(10)相关性低于秋冬季PM_(2.5)-PM_(10)相关性;各季节均表现为西北部PM_(2.5)-PM_(10)的相关性高于东南部PM_(2.5)-PM_(10)的相关性.  相似文献   

7.
利用2012年全年北京市SO_2、NO_x、O_3、CO和PM_(2.5)监测数据,分析了其季节变化及日变化的差异,讨论PM_(2.5)与气态前体物的相关性及其来源。结果表明:PM_(2.5)质量浓度的频率分布在不同季节有显著差异,但总体趋势均为PM_(2.5)出现频率随着污染的加剧而逐渐降低;除春季CO与PM_(2.5)的相关性略低于夏季外,各气态前体物与PM_(2.5)的相关性均为冬季最为显著,其次为秋季,春季次之,夏季基本未表现出明显相关关系;冬季,PM_(2.5)和SO_2的相关性受相对湿度影响显著;北京本地的污染受局地源排放和污染远距离输送的共同作用,污染性的气团主要来自偏南方向,秋季污染远距离输送对北京本地污染的贡献最为显著,冬季本地排放是PM_(2.5)的主要来源;春、秋、冬季均表现出一定的周末效应。  相似文献   

8.
重庆市主城区PM2.5时空分布特征   总被引:6,自引:3,他引:3  
利用2014年6月1日至2015年5月31日重庆市主城区17个国控空气质量监测站24 h自动连续采样的PM_(2.5)浓度数据,探讨了重庆市主城区PM_(2.5)时空分布特征.结果表明:1重庆市主城区PM_(2.5)季节浓度由高到低依次为冬季(100.2μg·m~(-3))、秋季(66.1μg·m~(-3))、春季(45.9μg·m~(-3))和夏季(33.4μg·m~(-3))(P0.05).2重庆市主城区PM_(2.5)月均浓度变化呈单峰单谷型,1月PM_(2.5)月均浓度最高(P0.05),达到120.8μg·m-3.3逐日变化,国控17个空气质量监测站PM_(2.5)日均浓度曲线都呈现出尖峰和深谷交替变化的锯齿状.4重庆市主城区16个国控监测点(除缙云山对照点)PM_(2.5)浓度日变化在全年、春季、秋季和冬季都呈现明显的双峰双谷型.5PM_(2.5)与SO_2、NO_2和CO都呈显著正相关(P0.01),表明SO_2、NO_2和CO的二次转化对PM_(2.5)浓度具有显著影响.  相似文献   

9.
《环境科学与技术》2021,44(5):162-170
该文采用空气质量指数(AQI)分析了2015-2019年哈尔滨市不同季节首要污染物的污染特征,利用HYSPLIT后向轨迹模式对近5年四季逐日72 h后向轨迹气流进行聚类分析,结合AQI数据,揭示哈尔滨市大气污染物传输路径及潜在源贡献因子和浓度权重轨迹的季节差异。结果表明:哈尔滨市优良天数占比从2015年的66%上升到2019年的83%,5年中2015年为大气污染较为严重的一年,5年来空气质量呈明显好转趋势。哈尔滨市大气污染呈现出不同的季节特征:优良天数平均值占比从高到低依次为夏季(94.6%)秋季(84.4%)春季(80%)冬季(53%),O3和PM2.5分别为空气质量最优的夏季与最差的冬季的首要污染物,春季和秋季首要污染物表现为由NO2和PM2.5复合型污染向以O3为主导的气态型污染转变。各季节轨迹分布与其所处的地理位置和季风气候密切相关,春季来自山东东部、渤海、辽宁、吉林到达哈尔滨的轨迹污染率最高;夏季污染率较高的气流轨迹均来自南部方向,主要传输方向自渤海越过山东东部到达青岛地区,经辽宁、吉林汇入哈尔滨;秋季污染率较高的轨迹分布最为分散,主要以近距离输送轨迹为主;冬季AQI值显著高于其他季节,可能与北方冬季进入燃煤采暖期,污染物排放增多有关,主要集中分布于西北方向输送进入哈尔滨,呈现出输送轨迹越短,污染率越高的特点,其中来自吉林的最短转向路径挟带的污染物浓度最高,其次为由俄罗斯东南部经内蒙古过吉林到达哈尔滨,说明吉林是影响哈尔滨市冬季大气污染物浓度偏高的主要地区。  相似文献   

10.
于文金  于步云  谢涛  苏荣 《环境科学学报》2016,36(10):3535-3542
基于GIS技术和岭回归分析方法,采用苏锡常地区的MODIS高分辨率气溶胶光学厚度资料、PM_(2.5)浓度观测资料和苏锡常及周边地区的气象观测资料,构建了基于气溶胶光学厚度和气象要素的PM_(2.5)地面浓度分布估算模型,模拟了2013年春季苏锡常地区PM_(2.5)的空间分布状况,并将此模型与气象要素多元回归模型、气溶胶光学厚度直接回归模型进行比较.结果表明:该模型将遥感观测资料与地面气象观测资料相结合,能够有效地模拟PM_(2.5)的空间分布状况;2013年春季苏锡常地区PM_(2.5)的空间分布具有整体上西北高、东南低,中心城区高、城郊区低的趋势,局部高浓度区域可能与工业生产、交通等人为因素有关;该模型能够在保持较高精度的前提下,有效地突出局部地区的变化特征,体现出更强的空间分异性,对于研究PM_(2.5)的空间分布规律具有一定的实际应用价值.  相似文献   

11.
Trajectory clustering, potential source contribution function (PSCF) and concentration-weighted trajectory (CWT) methods were applied to investigate the transport pathways and identify potential sources of PM2.5 and PM10 in different seasons from June 2014 to May 2015 in Beijing. The cluster analyses showed that Beijing was affected by trajectories from the south and southeast in summer and autumn. In winter and spring, Beijing was not only affected by the trajectories from the south and southeast, but was also affected by trajectories from the north and northwest. In addition, the analyses of the pressure profile of backward trajectories showed that backward trajectories, which have important influence on Beijing, were mainly distributed above 970 hPa in summer and autumn and below 950 hPa in spring and winter. This indicates that PM2.5 and PM10 were strongly affected by the near surface air masses in summer and autumn and by high altitude air masses in winter and spring. Results of PSCF and CWT analyses showed that the largest potential source areas were identified in spring, followed by winter and autumn, then summer. In addition, potential source regions of PM10 were similar to those of PM2.5. There were a clear seasonal and spatial variation of the potential source areas of Beijing and the airflow in the horizontal and vertical directions. Therefore, more effective regional emission reduction measures in Beijing''s surrounding provinces should be implemented to reduce emissions of regional sources in different seasons.  相似文献   

12.
天津市多发生以PM2.5为首要污染物的重污染事件,明确ρ(PM2.5)时空分布特征及重污染过程来源对PM2.5的综合治理意义深远.利用天津市2014-2017年环境资料和2016年气象资料,结合WRF-Chem模式研究了天津市ρ(PM2.5)时空分布特征及重污染过程来源.结果表明:①自2014年以来,天津市ρ(PM2.5)呈逐年下降趋势.②ρ(PM2.5)月变化曲线呈"U"型分布,呈冬春季高、夏秋季低的季节性特征;ρ(PM2.5)日变化呈双峰型分布,主峰值出现在08:00-09:00,次峰值出现在21:00-翌日00:00.③各季节天津市ρ(PM2.5)空间分布不同,春季、夏季、秋季和冬季高值中心分别位于天津市西南部的静海区、中心城区北部的北辰区、西部的武清区及北部的蓟州区.④WRF-Chem模式模拟的天津市秋冬季污染物来源结果表明,本地源贡献率为56%,外来源输送贡献率为44%,其中以河北省和山东省的输送为主.2016年12月16-22日天津市一次重污染过程的模拟结果表明,天津市本地源贡献率为49.6%,河北省、北京市和山东省的外来源输送贡献率分别为32.2%、7.0%和2.2%.污染前期,不利气象条件和外来源输送造成天津市ρ(PM2.5)聚集并形成重度污染;污染持续过程中,本地源贡献率逐渐增大并占主导地位.研究显示,近年来天津市ρ(PM2.5)呈下降趋势,并有明显的空间分布特征.   相似文献   

13.
2015—2017年天水市大气污染物变化特征及来源分析   总被引:1,自引:0,他引:1  
据天水市2015-2017年大气污染物(SO2、NO2、CO、O3、PM2.5和PM10)的监测数据及气象资料,分析了天水市大气污染物的浓度变化特征,并利用排放源清单和HYSPLIT模型对污染物来源进行了解析.结果表明:①天水市空气质量有所下降,总体优良率达84.9%.SO2、NO2、CO均达标,污染物以颗粒物和O3为主.②一次污染物SO2、NO2、CO、PM2.5和PM10浓度具有相似的季节变化和日变化特征,冬季最高,夏季最低,日变化呈早晚双峰型.二次污染物O3夏季浓度最高,冬季最低,日变化呈单峰型.③天水市空气质量主要受污染物的本地排放和外来输送的影响,本地民用和工业部门对SO2、CO、PM2.5和PM10的贡献最大,交通和工业部门对NOx的分担率最高,民用部门是CO的最大排放源;西北和东部气流是污染物外来的最主要输送路径.此外,污染物在城市大气中的稀释、扩散和转移也受当地气象因素(气温、降水、风向等)的影响.  相似文献   

14.
以大气污染物协同控制与精准治理的需求为导向,开展湖北省荆州市大气污染物的来源分析.基于FLEXPART-WRF模式揭示了2008—2017年荆州市PM2.5周边源"影响域"的季节气候特征,估算了大气污染物区域传输和局地排放的相对贡献,确定出不同季节的大气污染物主要传输通道.结果表明,荆州地区PM2.5主要"影响域"为湖北、湖南、河南和安徽省.不同季节湖北省外源传输对荆州PM2.5"影响域"的贡献率分别为春季50.4%、夏季33.9%、秋季42.6%、冬季43.0%和年均45.1%.春季3条区域传输通道分别为北通道(沿南阳盆地-荆州)、东通道(沿长江航道-荆州)以及南通道(沿雪峰山-荆州);夏季主要为南通道;秋、冬季分别为北通道、东北通道(沿大别山低山丘陵-荆州)及东通道.针对荆州主要3类重污染天气型的典型个例"影响域"分析表明,高压静稳型PM2.5污染主要来源于本地排放,省内贡献率达87.8%;低压倒槽型PM2.5污染主要来源于偏南输送和本地累积,省内贡献率达55.0%;冷锋输送型PM2.5污染主要来源于北路区域传输,省外贡献率达77.2%.对于冬季重污染期间,建议重点围绕荆州本地与省内荆门、襄阳、孝感、天门、潜江、武汉、随州、宜昌及省外常德、南阳、信阳等地开展协作,加强区域间大气污染联防联控.该项研究可为区域大气污染精细化管控与靶向治理提供科学依据.  相似文献   

15.
基于CAMx的徐州市2016年冬季PM2.5污染过程及来源分析   总被引:1,自引:0,他引:1  
徐州地处江苏西北部、华北平原的东南部,为内陆资源型工业城市,近几年来环境监测数据显示,徐州地区大气复合污染问题日益突出,准确模拟大气污染物状况及来源对于空气污染的防治十分关键.2016年1月,徐州市出现了多次持续的重污染天气,研究中以此次污染事件为例,首先基于WRF-CAMx空气质量模型系统对这次细颗粒物污染过程进行全面的模拟与分析,其次利用CAMx-PSAT系统模拟和分析本次污染的区域传输过程.研究结果显示:此次细颗粒物污染中,PM2.5组成成分以硫酸盐、元素碳、硝酸盐和铵盐为主,分别占月平均浓度的29%、15%、14%、14%;PM2.5的区域传输贡献中,长距离传输所占比重最大,月平均贡献率达46%,其次为本地源排放,平均贡献率为39%;重污染天气期间,PM2.5污染主要从西北方向输入,此时长距离传输的影响明显增大.  相似文献   

16.
2013年12月上海市PM2.5重污染过程数值模拟研究   总被引:1,自引:0,他引:1  
基于2013年11月30日-12月13日上海一次PM2.5重污染过程,利用Model-3/CMAQ模式及过程分析技术,定量评估不同时段各大气过程对上海PM2.5浓度变化的影响.结果表明:Model-3/CMAQ模式系统能较好的模拟出实况PM2.5的浓度变化趋势与特点.研究期间,白天源排放的增强和大气传输的影响、加上较强的气溶胶和云过程生成贡献,是造成上海PM2.5浓度上升至重污染的主要原因.不同污染时段对PM2.5浓度上升贡献率最大的过程均为输送,其中,西北部点位(青浦淀山湖和虹口凉城输送)的贡献率最大,且重污染时段输送的贡献率明显高于非重污染时段.  相似文献   

17.
银川地区大气颗粒物输送路径及潜在源区分析   总被引:4,自引:0,他引:4  
利用Traj Stat软件和全球资料同化系统数据,计算了2014—2016年银川市逐日72 h气流后向轨迹,并采用聚类分析方法,结合银川市同期PM~(10)和PM~(2.5)质量浓度数据,分析了银川年及四季气流轨迹特征及其对银川颗粒物浓度的影响.同时,运用潜在源贡献因子分析法(PSCF)和浓度权重轨迹分析法(CWT),探讨了影响银川颗粒物质量浓度的潜在源区及不同源区对银川颗粒物质量浓度的贡献.结果表明,输送距离最长、高度最高、移速最快的西北气流轨迹占总轨迹的比例最高,达66.7%,且气团移动速度和高度与轨迹距离呈正比;输送高度较低、距离最短、移速最慢的北方气流轨迹占总轨迹数的24.3%;东南气团占总轨迹数的9%,输送距离和移速介于前两者之间,但输送高度较西北气流和北方气流低.四季各类气流轨迹变化特征与年变化特征基本一致,春、秋、冬三季,中、短距离西北气流占气流轨迹总数的比例最高,夏季东南气流占比最高,且夏季南方气流和北方气流占比较春、秋两季高,冬季未出现南方气流和北方气流,春季和冬季气流轨迹输送距离普遍比夏季和秋季长;春、夏、秋三季,偏南气流的输送高度均最低,四季长距离西北气流的输送高度均最高.年及四季都表现为西北气流轨迹对应的银川PM_(10)和PM_(2.5)平均浓度均较高,是影响银川颗粒物质量浓度的最重要输送路径,其次是东南气流轨迹,北方气流轨迹对银川颗粒物浓度影响较小.PSCF和CWT分析发现,位于新疆、甘肃、蒙古国、内蒙古、青海的西北源区及四川、陕西的东南源区是影响银川PM_(10)和PM_(2.5)浓度的两个主要潜在源区,各季节区域范围有所差异.  相似文献   

18.
陕西省PM2.5时空分布规律及其影响因素   总被引:2,自引:0,他引:2       下载免费PDF全文
PM2.5是导致中国多省市发生灰霾的罪魁祸首,明确其时空分布规律,厘清其影响因素对灰霾的综合治理意义深远.基于陕西省2015年50个监测站点的PM2.5浓度数据,采用空间数据统计方法、克里金插值法以及Morlet小波分析法对陕西省PM2.5浓度的时空分布规律进行研究,并运用灰色关联模型来探讨PM2.5浓度的影响因素.结果显示:①陕西省PM2.5浓度整体呈"冬高夏低、春秋居中"的季节性变化规律,"U型"起伏的月变化规律,周期性脉冲波动型的日变化规律以及"W型"起伏的时变化规律;②陕西省PM2.5浓度呈"北部低,中南部高"的空间分布特征,并且空间集聚性显著.不同季节的高值区均集聚于海拔相对较低的关中盆地内部城市.这与盆地内部空气不易扩散,静稳天气出现频率较高,易出现逆温现象密切相关;③影响陕西省PM2.5浓度最大的指标层是PM2.5污染来源(权重值为0.49),其次是城市化与土地利用(权重值为0.37),气象与地形因子影响最小(权重值为0.15).不同城市各指标层的综合关联度差异较大.④各指标因子与PM2.5浓度均为强度关联.降水量、机动车保有量、二氧化硫排放量、烟粉(尘)排放量、建成区面积、人口密度和人均GDP是影响陕西省PM2.5浓度的主要因子,影响各城市PM2.5浓度的主要因子具有一定的空间差异性.研究显示,人类活动对陕西省PM2.5的影响显著,尤其是城市化的快速推进,相关指标(如人口、机动车、能耗、工业总产值等)持续增长,将进一步加大PM2.5来源的多样性以及相关污染物的排放量.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号