首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We review published stratigraphic, archaeological and pedosedimentary evidence in order to reconstruct the history of soil erosion in China. Documentary evidence of climatic and flood events of the Yellow River and modern hydrological and meteorological data are synthesised to analyse the history of past human activity and its effects on soil erosion intensity during four nested periods of time during the Quaternary. The most intensive period of erosion during the Quaternary was in the Holocene. During the Holocene, intervals of intensive soil erosion occurred at 7500–7000 BP, 200 BCE–0 CE, 1000–1600 CE (Christian era) and during the 1930s, 1950s and the later part of the 1960s of the last century. Large-scale human activity including warfare during early Chinese history, population migration, the inner wars in 1930s, the Cultural Revolution and the recent national campaign to aid soil and water conservation are all closely related to the rate of soil erosion on the Loess Plateau and to sediment loads in the Yellow River. Overall, soil erosion during the transition from dry-cool to wet-warm climates was more intense than during wet-warm and cool-dry climatic episodes, but serious accelerated soil erosion has occurred during the last 2,500 years because of man-induced devastation of vegetation and other anthropogenic disturbance of the environment. Modern rates of soil erosion on the Loess Plateau are a combination of both intensive natural and human-induced erosions and are some four times greater than occurred in the geological past. The recent implementation of soil and water conservation measures has decreased sediment load in the Yellow River by 25%.  相似文献   

2.
The undulating loess Kanczuga Plateau, 250–270 m a.s.l., is located in the temperate climatic zone of Central Europe, within the northern foreland of the Carpathians. It is dissected by a network of valleys 30–60 m deep, infilled with several metres of complex minerogenic and organic deposits which started to accumulate during the early Holocene. The southern side of one of these valleys is dissected by several dry valleys. The mouth sections of these valleys have buried surface comprising peat and/or organic silts, overlain by sandy–silty alluvium. 14C dates indicate that the alluviation of these valley floors, which proceeded from the headwaters to the mouth sections, began in the 1100 ad. The gradual intensification of soil erosion in the upper part of the catchment and associated sedimentation probably encompassed only a few centuries, with greatest alluviation during the Little Ice Age. This plateau, which is under the influence of more continental climatic conditions than the low-mountain and upland regions of Western Europe, features more climatic contrasts. Here environmental changes triggered by land use were superimposed on climatic change. The most intensive processes of soil erosion and sediment transfer as well as alluviation, coincided with the first phase of cooling during the Little Ice Age. It was the final stage of the intensification of these processes, probably more intensive than its initial phase in the eleventh century, caused primarily by deforestation resulting from the development of agriculture.  相似文献   

3.
Geographic information system (GIS), remote sensing (RS), gradient analysis, and landscape pattern metrics were coupled to quantitatively characterize the spatiotemporal change of land use and landscape pattern over the period 1988–2007 in a coastal gulf region, southeast China. The results obtained show an increase in cropland, buildup land, and aquiculture area and decrease in orchard, woodland, and beach area during 1988–2007. Landscape fragmented processes were strengthened and landscape pattern structure became more complicated in the last two decades in Luoyuan gulf region. The dynamics intensity of landscape pattern is stronger during 2002–2007 than that during 1988–2002. Spatial difference of urban–rural landscape pattern can be detected distinctively in two transects in terms of landscape metrics. Urbanization processes and the policy developed to transfer seawater into buildup land are two driving forces leading to the spatiotemporal change of landscape pattern in Luoyuan gulf region in the last two decades.  相似文献   

4.
Contemporary changes in open water surface area of Lake Inle, Myanmar   总被引:1,自引:0,他引:1  
From 1935 to 2000, the net open water area of Inle Lake in Central Shan State, Myanmar decreased from 69.10 to 46.69 km2, a loss of 32.4% during this 65-year period. Local beliefs are that losses in lake area have been even greater within the last 100–200 years. Various activities, including timber removal, shifting agriculture in the uplands by various ethnic groups, and unsustainable cultivation practices on the low- and mid-level hillslopes around the lake, have been blamed for both historical and ongoing sedimentation. We take issue with attributing loss of lake area to these activities, and propose instead that ongoing “in-lake” and “near-lake” agricultural practices are the main sources of contemporary sediment and loss of open water area. About 93% (i.e., 20.84 km2) of the recent loss in open water area of the lake is due to the development of floating garden agriculture, largely along the west side of the lake. Direct environmental impacts associated with this practice and with other agriculture activities within the wetlands and margins of the lake include sedimentation, eutrophication, and pollution. Whilst the sustainability of hillslope agriculture and past forestry practices can indeed be questioned, a more urgent need is to address these "in-lake" and "near-lake" practices.  相似文献   

5.
Soil erosion in many parts of the developing world poses a threat to rural livelihoods, to the sustainbility of the agricultural sector, and to the environment. Most erosion prediction models are mechanistic and unsuited to quantify the severity of soil erosion in a data-limited developing world context. The model developed in this paper for Negros Island, in the central Philippines, is based on the Revised Universal Soil Loss Equation, but contains important innovations such as the movement of eroded soil over the landscape, simulating deposition on lower slopes and in waterways. It also includes a term describing farmer strategies to reduce soil erosion, which are typically ignored in erosion prediction models. A two-sample t-test found that model-predicted sediment loading values were not significantly different from field-measured sediment loading values when corrected for watershed size (P = 0.857). The model predicts an annual loss of 2.7 million cubic meters of sediment to waterways such that by 2050 more than 416,000 ha of agricultural land will be rendered unproductive due to erosion. Farmer behavior conserves soil, but on the steepest slopes soil conservation practices are not adequate to prevent erosion. Of two proposed strategies to control soil erosion in the rural Philippines, the model suggests that a complete switch to tree crops would conserve more soil than universal terrace adoption. However, even under these conservation scenarios, erosion threatens the areal extent of upland agriculture on Negros, and hence the sustainability of the island’s food supply.
Laura K. SchmittEmail:
  相似文献   

6.
The HBV-N model was used for a scenario analysis of changes in nitrogen retention and transport caused by alterations of wetness due to land drainage, lowering of lakes, building of dams and climatic variability in a river basin in south-central Sweden (1885–1994). In general, dams were situated in locations more favourable for retention, compared to the lowered lakes. Rather modest conversions of water bodies only changed nitrogen transport by about 3%. The 180-times-larger increase of (mainly) tile-drained agricultural land had, according to simulations, increased the nitrogen transport by 17%, due to reduced retention. However, compared to human-induced alteration of the landscape N retention, the choice of 10-year periods of climatological data had the overriding effect on the calculated nitrogen transport. Weather-induced variations resulted in a 13% difference in nitrogen retention between various 10-year periods. When the model was driven by climatological data from the driest 10-year period (1905–1914), the estimated average annual load was only half of that obtained with climatological data from the wettest 10-year period (1975–1984). Electronic Publication  相似文献   

7.
The limnological record of human impact on catchment land cover and on lake sedimentation during the historical period has been established for Pinto Lake in Central Coastal California. In addition, the sedimentary record of the ‘pre-impact’ condition preserves evidence of a climatic control on the nature of lake sedimentation. Chronological marker horizons have been determined using pollen data in combination with the documented land-use history and introductions of exotic species. Further chronological data have been determined using 14C and 137Cs. The impact of Mexican and Euro-American immigrants and their ‘imported’ land-use practices is clearly reflected in an order of magnitude increase in the rate of lake sedimentation to c. 9 kg m−2 year−1 (c. 2 cm year−1) between 1770 and 1850. Here, the occurrence of exotic plant species indicates disturbance as early as c. 1769–1797, whilst redwood deforestation between 1844 and 1860 represents the most significant human impact. Changes in the nature of sedimentation prior to this reveal a high degree of sensitivity to changes in precipitation where subtle decreases in lake level and the supply of runoff-derived mineral matter have resulted in two periods of organic lake sedimentation c. 650–900 and 1275–1750. Set against this background condition of high sensitivity, the dramatic impacts of Euro-American settlement are unsurprising. An erratum to this article can be found at  相似文献   

8.
The use of quantitative data for constructing prognostic maps of the dynamics of ecosystem degradation and restoration by nonlinear simulation methods is a topical field of landscape ecology. This method of dynamic cartography is based on fiberwise comparison of data on the state of Chernye Zemli (the Kalmyk Republic, Russia) in different years and the detailed analysis of the period on which the prognosis was based. For this purpose, materials of repeated aerial and satellite photography obtained during a long period (1954–1993) were used. Comparison of maps characterizing the dynamics of Chernye Zemli between 1958 and 1993 allows prognostic electronic maps for the next 10–15 years (with a five-year interval) to be drawn and land prognosis for the next 20–30 years (1998–2023) to be obtained. Deceased  相似文献   

9.
Council Regulations (EC) No 1257/1999 and the EU Soil Thematic Strategy give great importance to soil and land conservation to develop knowledge driven governance for rural development. In the hilly areas of Italy cultivated intensively, and especially in the ones devoted to viticulture, agricultural practices determine high loss of soil with consequent degradation of the soil resource. In addition to it, offsite effects of soil erosion can be unsustainable, due to sediment transfer to the channel network and infrastructures. In order to achieve a sustainable rural development there is a need for tools and instruments to allow European regional administrations, to develop, implement, manage and monitor rural development plans. To counteract the environmental threats intensified by agricultural activity, the environmental functions “soil erosion control” and “water runoff control” were investigated in the Chianti area by using GIS. To determine the EMR (Environmental Minimum Requirements) values for soil erosion the “regeneration” capability of soils was considered, and the value of estimated soil loss was compared with the value of soil reformation. A scenario analysis was also performed to evaluate the effectiveness of the agroenvironmental measure “grass cover” in reducing erosion. The concept of tolerable erosion based on soil productivity and soil reformation rate only is reductive and off-site effects of soil erosion should be also taken into account. For this reason, it was proposed to extend the concept of hydrogeological risk to soil erosion by implementing the notion of soil erosion tolerance (T) with the new concept of environmental risk of soil erosion (ERSE). The new ERSE index takes into account all the in- and off-farm externalities of soil erosion. For this reason, it can be considered an aggregated environmental indicator that enables policy makers to evaluate the impacts of soil erosion by following an holistic approach.  相似文献   

10.
The Holocene evolution of vegetation in the high-plain territory of the northwestern Volga Upland has been shown to have certain specific features. Based on analysis of spore–pollen assemblages from peat deposits, the onset of bog formation has been dated to the late Boreal period (about 8500 yr BP); the pine–birch phase in the development of forests, to the early Atlantic period (8000?6000 yr BP); the appearance and peak development of the zonal broadleaf species complex, to the late Atlantic period (6000?4500 yr BP); and early anthropogenic changes in the vegetation, to about 3000 yr BP.  相似文献   

11.
Anthropogenic impacts on suspended sediment load in the Upper Yangtze river   总被引:1,自引:0,他引:1  
Climate change and human disturbance drive catchment erosion and increase riverine sediment load sensitively in small and medium-sized watersheds. This is not always true in large basins, where aggregation and buffering effects have dampen the ability to determine the driving forces of sedimentation. Even though there are significant responses to sedimentation in large river basins, it is difficult to get a precise quantitative assessment of specific drivers. This paper develops a methodology to identify driving forces that change suspended sediment load in the Upper Yangtze river. Annual runoff and sediment load data from 1954 to 2005 at the Yichang gauging station in the Upper Yangtze basin, daily precipitation data from 60 meteorological stations, and survey data on reservoir sediment were collected for the study. Sediment load/rainfall erosivity (S/R), is a new proxy indicator introduced to reflect human activities. Since the mid-1980s, S/R in the Upper Yangtze has dramatically declined from 0.21 to 0.03 (×1010 t ha h MJ−1 mm−1), indicating that human activity has played a key role in the decline of the suspended sediment load. Before the mid-1980s, a higher average S/R is attributed to large-scale deforestation and land reclamation. A significant sediment decrease occurred from 1959 to 1961 during an extreme drought condition, and an increase in sedimentation in 1998 coincided with an extreme flood event, which was well recorded in the S/R curve. This indicates that the S/R proxy is able to distinguish anthropogenic from climate impacts on suspended sediment load, but is not necessarily indicatory in extreme climate events. In addition, typical drivers of riverine sediment load variation including soil conservation projects, reservoirs construction, and land use/cover change are discussed.  相似文献   

12.
This article examines the changes in land-use/cover types in the Irangi Hills, central Tanzania during the last 45 years and how such changes have influenced environmental and agricultural sustainability in the area. The spatial and temporal changes of land-use/cover were analysed through aerial photographs interpretation. Local perceptions and experiences of changes were addressed through household interviews and field observations. Results from this study show that during the last 45 years open and wooded grasslands, and other tree-cover types covered about 40% of the land area, ranging from 29% in 1960 to 43–45% between 1977 and 1992. Also, during the same period both the total area and spatial distribution of cultivated fields varied greatly. The cultivated area increased from 31% in 1977 to 35% in 1992, mainly due to agricultural expansion into areas formerly used for grazing and in sandy watercourses that shrunk by 55% between 1977 and 1992. The spatial distribution of the different land-use/cover types is influenced by variations in the scale of soil erosion and soil-conservation initiatives implemented in the Irangi Hills since the early 1970s. However, with increasing pressure on the land, and the declining capacity of the soil conservation authority, sustaining agricultural production in the area remains a major challenge.  相似文献   

13.
Urban development has important implications for farmland preservation and natural resource management in local peri-urban communities. Social science research on recent changes in rural landscape of mega-cities tends to be limited to case studies in Latin-American nations. This study analyses the socioecomic dynamics of farming land use and the interactions between multiple cultural variables and the environment. Fieldwork was carried out during the 2002–2003 period in rural livelihoods of the five high mountain towns of south Mexico City. Data obtained from participatory survey and ethnographic techniques were integrated to assess changes in rural landscape and resource management and how urbanization, deforestation and market oriented agricultural production result in different livelihoods within a similar urban fringe context. The dynamic of mixture of urban and rural landscapes is based on farm productivity and social capital factors. The study concludes that policy support for regional agricultural production systems through enhancing ecosystems services, environmental protection and economic development is needed for sustainable development of local communities. Readers should send their comments on this paper to BhaskarNath@aol.com within 3 months of publication of this issue  相似文献   

14.
The Nile delta sedimentation constitutes a continuous high-resolution record of Ethiopian African monsoon (EAM) regime intensity. Multi-proxy analyses performed on hemipelagic sediments deposited on the Nile deep-sea fan allow the quantification of the Saharan aeolian dust and the Blue/White Nile River suspended matter frequency fluctuations during the last 21,000 years. The radiogenic strontium and neodymium isotopes, clay mineralogy, elemental composition and preliminary palynological analyses reveal large changes in source components, oscillating between a dominant aeolian Saharan contribution during the Last Glacial Maximum (LGM) and the late Holocene (~4,000–2,000 years), a dominant Blue/Atbara Nile River contribution during the early Holocene (15,000–8,000 years) and a probable White Nile River contribution during the middle Holocene (8,000–4,000 years). The following main features are highlighted: (1) The rapid shift from the LGM arid conditions to the African Humid Period (AHP) started at about 15,000 years. The AHP extends until 8,000 years, and we suggest that the EAM maximum between 15,000 and 8,000 years is responsible for a larger Blue/Atbara Nile sediment load and freshwater input into the eastern Mediterranean Sea. (2) The transition between the AHP and the arid late Holocene is gradual and occurs in two main phases between 8,400–6,500 years and 6,500–3,200 years. We suggest that the main rain belt shifted southward from 8,000 to ~4,000 years and was responsible for progressively reduced sediment load and freshwater input into the eastern Mediterranean Sea. (3) The aridification along the Nile catchments occurred from ~4,000 to 2,000 years. This dry period, which culminates at 3,200 year, seems to coincide with a re-establishment of increased oceanic primary productivity in the western Mediterranean Sea. Such a pattern imposes a large and rapid northward shift of the rain belt over the Ethiopian highlands (5–15°N) since 15,000 years. Precipitation over Ethiopia increased from 15,000 to 8,000 years. It was followed by a gradual southward shift of the rain belt over the equator from 8,000 to 4,000 years and finally a large shift of the rain belt south the equator between 4,000 and 2,000 years inducing North African aridification. We postulate that the decrease in thermohaline water Mediterranean circulation could be part of a response to huge volumes of freshwater delivered principally by the Nile River from 15,000 to 8,000 years in the eastern Mediterranean.  相似文献   

15.
兰州与江汉平原有机碳同位素的古气候指示意义对比研究   总被引:1,自引:0,他引:1  
选择以干冷气候为主的兰州和温暖湿润的江汉平原作为研究区域,结合其他多种指标和研究区的岩性特征,对有机碳同位素δ13Corg的古气候指示意义进行了初步探讨。结果表明,在兰州地区,δ13Corg值波动反映C3/C4植物比例的改变,指示温度变化。δ13Corg值偏正时,表明C4植物含量较大,反映温度较高,而δ13Corg值偏负时,表明气候较冷;江汉平原δ13Corg值主要反映降水信息, δ13Corg值偏负时指示相对暖湿气候,δ13Corg值偏正反映气候偏干。δ13Corg等指标同时还揭示了末次盛冰期以来两地古气候类同特征:即12.0 ka BP之前气候相对偏干;在全新世晚期,气候波动中转暖。不同之处表现为:约在12.0~10.0 ka BP,当兰州气候还很干冷时,江汉平原已进入暖湿的冰后期;而在全新世早中期,当兰州气候转为暖湿时,江汉平原气候则表现为略偏干。  相似文献   

16.
Water resources and soil erosion are the most important environmental concerns on the Chinese Loess Plateau, where soil erosion and sediment yield are closely related to rainfall erosivity. Daily rainfall data from 60 meteorological stations were used to investigate the spatiotemporal variations in annual rainfall, annual erosive rainfall and annual rainfall erosivity on the Chinese Loess Plateau during the period 1956–2008. The annual rainfall, erosive rainfall and rainfall erosivity decreased over the past five decades, as determined by the Mann–Kendall test. A comparison of the annual averaged rainfall, erosive rainfall and rainfall erosivity from 1980 to 2008 with that from 1956 to 1979 revealed a remarkable spatial difference in the rainfall trends on the Loess Plateau. Regions of the plateau with major decreases in rainfall were primarily in the Hekouzhen-Longmen section of the middle Yellow River, especially in the Wuding River basin, the Fenhe basin and the northern-central Shanxi province, where the annual rainfall and erosive rainfall decreased by more than 10% and the annual rainfall erosivity decreased by more than 15%. The rainfall erosivity also decreased more than the annual rainfall. Because the annual rainfall has decreased significantly on the Chinese Loess Plateau over the past 50 years, it is important to better understand the ecological and hydrological processes affected by this climate change.  相似文献   

17.
This study presents a reconstruction of the fire activity of the last ~14,200 cal. years BP (before AD 1950) from Gooches Crater Right, located on the Newnes Plateau, approximately 150 km to the west of Sydney (~33°27′S, 150°16′E) within the Blue Mountains National Park. Charcoal analysis and palynology were undertaken with the aim of untangling any inter-relationship between climate, humans and fire. A chronology of the site was provided by radiocarbon dating. The dominant control on fire in this environment during the Holocene appears to be climate. Periods of climate change, identified in previous studies, are associated with higher levels of fire activity. Fire was less ubiquitous between ~9,000 and 6,000 years BP, a period normally described as having a higher effective moisture in south-eastern Australia. The mid-Holocene fluctuations in charcoal may reflect anthropogenic fire, climate forcing or alternatively human responses to any climate change. Coeval changes in palaeoclimatic sequences elsewhere and palynology at the site support a climatic explanation or that Aboriginal people used fire within a climatic framework.  相似文献   

18.
土地利用变化的水文效应是当前人类活动环境影响的研究热点.柑橘果园扩张是近20年来寻乌水流域最主要的土地利用变化.利用寻乌水流域3个时期的土地利用数据,设定不同土地利用情景,以SWAT模型模拟不同土地利用情景下的径流与输沙,并结合2000年以来柑橘果园扩张的遥感制图成果和寻乌水径流和泥沙观测资料,分析柑橘果园扩张对流域径流和输沙的影响.研究表明:SWAT模型模拟径流的效果较好(Re =-0.05;R2 = 0.79;Ens = 0.72),输沙模拟效果也在合理范围(Re = 0.75;R2 = 0.8;Ens = 0.71);1990~2015年间,寻乌水流域林地面积减少36.83%,果园面积增加42.48%,径流与输沙变化率分别为2.57%和4.27%;新垦果园面积与河道输沙量的关系不显著,这是因为河道输沙不仅与土壤侵蚀有关,同时也与土壤侵蚀地块与河道之间的区位关系有关,同时,在反坡水平阶等水保措施的作用下,果园水土流失得到有效控制.  相似文献   

19.
Climatic disaster-induced migration and its effects on land exploitation of new settlements is a crucial topic that needs to be researched to better understand the impact of climate change and human adaptation. This paper focuses on the process and mechanism of migrant–reclamation in Northeast China in response to climatic disasters over the past 300 years. The research used comparative analysis of key interlinked factors in this response involving drought/flood events, population, cropland area, farmer revolts, administrations establishment, and land reclamation policies. It draws the following conclusions: (1) seven peaks of migrants–reclamation in Northeast China were evident, most likely when frequent climatic disasters happened in North China, such as the drought–flood in 1851–1859, drought in 1875–1877, and drought 1927–1929; (2) six instances of policy transformation adopted to cope with extreme climatic events, including distinctive examples like changing to a firm policy prohibiting migration in 1740 and a subsequent lifting of that prohibition in 1860; and (3) the fast expansion of the northern agricultural boundary since the middle of the nineteenth century in this area benefited from a climate change trend from a cold period into a warm period. Altogether, over the past 300 years, extreme climatic disasters in North China have deepened the contradiction between the limited land resources and the rapidly increasing population and have resulted in migration and reclamation in Northeast China. Climate, policy, and reclamation constructed an organic chain of response that dominated the land use/cover change process of Northeast China.  相似文献   

20.
River deltas all over the world are sinking beneath sea-level rise, causing significant threats to natural and social systems. This is due to the combined effects of anthropogenic changes to sediment supply and river flow, subsidence, and sea-level rise, posing an immediate threat to the 500–1,000 million residents, many in megacities that live on deltaic coasts. The Mississippi River Deltaic Plain (MRDP) provides examples for many of the functions and feedbacks, regarding how human river management has impacted source-sink processes in coastal deltaic basins, resulting in human settlements more at risk to coastal storms. The survival of human settlement on the MRDP is arguably coupled to a shifting mass balance between a deltaic landscape occupied by either land built by the Mississippi River or water occupied by the Gulf of Mexico. We developed an approach to compare 50 % L:W isopleths (L:W is ratio of land to water) across the Atchafalaya and Terrebonne Basins to test landscape behavior over the last six decades to measure delta instability in coastal deltaic basins as a function of reduced sediment supply from river flooding. The Atchafalaya Basin, with continued sediment delivery, compared to Terrebonne Basin, with reduced river inputs, allow us to test assumptions of how coastal deltaic basins respond to river management over the last 75 years by analyzing landward migration rate of 50 % L:W isopleths between 1932 and 2010. The average landward migration for Terrebonne Basin was nearly 17,000 m (17 km) compared to only 22 m in Atchafalaya Basin over the last 78 years (p < 0.001), resulting in migration rates of 218 m/year (0.22 km/year) and <0.5 m/year, respectively. In addition, freshwater vegetation expanded in Atchafalaya Basin since 1949 compared to migration of intermediate and brackish marshes landward in the Terrebonne Basin. Changes in salt marsh vegetation patterns were very distinct in these two basins with gain of 25 % in the Terrebonne Basin compared to 90 % decrease in the Atchafalaya Basin since 1949. These shifts in vegetation types as L:W ratio decreases with reduced sediment input and increase in salinity also coincide with an increase in wind fetch in Terrebonne Bay. In the upper Terrebonne Bay, where the largest landward migration of the 50 % L:W ratio isopleth occurred, we estimate that the wave power has increased by 50–100 % from 1932 to 2010, as the bathymetric and topographic conditions changed, and increase in maximum storm-surge height also increased owing to the landward migration of the L:W ratio isopleth. We argue that this balance of land relative to water in this delta provides a much clearer understanding of increased flood risk from tropical cyclones rather than just estimates of areal land loss. We describe how coastal deltaic basins of the MRDP can be used as experimental landscapes to provide insights into how varying degrees of sediment delivery to coastal deltaic floodplains change flooding risks of a sinking delta using landward migrations of 50 % L:W isopleths. The nonlinear response of migrating L:W isopleths as wind fetch increases is a critical feedback effect that should influence human river-management decisions in deltaic coast. Changes in land area alone do not capture how corresponding landscape degradation and increased water area can lead to exponential increase in flood risk to human populations in low-lying coastal regions. Reduced land formation in coastal deltaic basins (measured by changes in the land:water ratio) can contribute significantly to increasing flood risks by removing the negative feedback of wetlands on wave and storm-surge that occur during extreme weather events. Increased flood risks will promote population migration as human risks associated with living in a deltaic landscape increase, as land is submerged and coastal inundation threats rise. These system linkages in dynamic deltaic coasts define a balance of river management and human settlement dependent on a certain level of land area within coastal deltaic basins (L).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号