首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recognition of the significance of the residential environment in contributing to non-point source (NPS) pollution and the inherently dispersed nature of NPS pollution itself that presents significant challenges to effective regulation has led to the creation and dissemination of best management practices (BMPs) that can reduce the impacts of NPS pollution (Environmental Protection Agency US, Protecting water quality from urban runoff, http://www.epa.gov/npdes/pubs/nps_urban-facts_final.pdf, 2003). However, very few studies have examined the factors that influence the adoption of BMPs by residential homeowners, despite the fact that residential environments have been identified as one of the most significant contributors to NPS pollution. Given this need, the purpose of this project was to explore how demographic and knowledge-based factors predict adoption of residential BMPs in an urbanizing watershed in Northern Illinois using statistical analyses of survey data collected as part of a watershed planning process. The findings indicate that broad knowledge of BMPs is the strongest predictor of use for a specific BMP. Knowledge of BMPs is strongly correlated with their use, which reinforces the need for educational programs, even among those assumed to be knowledgeable about BMPs.  相似文献   

2.
In phosphorus-limited freshwater systems, small increases in phosphorus (P) concentrations can lead to eutrophication. To reduce P inputs to these systems, various environmental and agricultural agencies provide producers with incentives to implement best management practices (BMPs). In this study, we examine both the water quality and economic consequences of systematically protecting saturated, runoff-generating areas from active agriculture with selected BMPs. We also examine the joint water quality/economic impacts of these BMPs-specifically BMPs focusing on barnyards and buffer areas. Using the Variable Source Loading Function model (a modified Generalized Watershed Loading Function model) and net present value analysis (NPV), the results indicate that converting runoff-prone agricultural land to buffers and installing barnyard BMPs are both highly effective in decreasing dissolved P loss from a single-farm watershed, but are also costly for the producer. On average, including barnyard BMPs decreases the nutrient loading by about 5.5% compared with only implementing buffers. The annualized NPV for installing both buffers on only the wettest areas of the landscape and implementing barnyard BMPs becomes positive only if the BMPs lifetime exceeds 15 yr. The spatial location of the BMPs in relation to runoff producing areas, the time frame over which the BMPs are implemented, and the marginal costs of increasing buffer size were found to be the most critical considerations for water quality and profitability. The framework presented here incorporates estimations of nutrient loading reductions in the economic analysis, and is applicable to farms facing BMP adoption decisions.  相似文献   

3.
Although water quality problems associated with agricultural nonpoint source (NPS) pollution have prompted the rapid and widespread adoption of a variety of so called "best management practices" (BMPs), there have been few realistic efforts to assess their combined effectiveness in reducing NPS pollution. This study used the Variable Source Loading Function (VSLF) model, a distributed watershed model, to simulate phosphorus (P) loading from an upstate New York dairy farm before and after the implementation of a suite of BMPs. With minimal calibration, the model calculates the dissolved P (DP) losses from impervious surfaces (e.g., barnyards), the plant/soil complex, field-applied manure, and loads associated with baseflow conditions. The simulated DP loads agreed well with measured loads for both the pre-BMP and post-BMP periods. More importantly, results showed that BMPs reduced DP loads by 35%, which is over half of the expected reduction if all manure was removed from the watershed, i.e., approximately 50% reduction. The model results indicate that had no BMPs been installed DP loads would be approximately 37% greater than observed at the watershed outlet. The most effective BMPs were those that disassociated pollutant loading areas from areas prone to generating runoff, i.e., hydrologically sensitive areas. By contrast, attempts to reduce P content in manure were somewhat less effective. This study demonstrates that a combination of distributed, mechanistic modeling and long-term monitoring provides better insights into the effectiveness of water quality protection efforts than either individually.  相似文献   

4.
A qualitative analysis of in-depth interviews with 92 farmers and 42 policy managers in Wuxi County, the Three Gorges Reservoir Region, was conducted to identify stakeholder preferences for alternative best management practices (BMPs) and to determine the factors that affect their acceptance. Policy manager support for most of the practices was relatively stronger than support by farmers, except for the grade stabilization structure (GSS), hillside ditch (HD) and constructed wetland alternative, owing to their perceptions of soil benefits, economic advantages and environmental advantages. Farmers opposed those practices that occupied cultivated lands or changed the conventional planting methods, such as field border, conservation tillage (CT) and contour buffer strips. They tended to accept the BMPs with off-farm pollution reduction, such as GSS, riparian forest buffer and HD, and the BMPs associated with soil benefits, such as nutrient management and Terrace. The result that almost all respondents did not accept CT differed from reports in the existing literature. There is a significant correlation between the acceptance of some BMPs and the townships where the farmers lived (P ≤ 0.05). The environmental conditions and social factors would affect farmer support for BMPs, including local soil conditions, farming methods, economic income, education level and age. The economic advantages of the BMPs were the main motivation for farmers to accept the practices. Furthermore, intensive education efforts, financial incentives or economic subsidies may promote the adoption of the BMPs in our study area.  相似文献   

5.
This paper investigates farmers' willingness to participate in Best Management Practices (BMPs) through a proposed Water quality trading (WQT) program in Kentucky. This analysis includes two parts: the first part is to investigate the factors influencing farmers' current usage of BMPs; the second part is to estimate farmers' willingness to implement BMPs given different levels of compensation given in a survey. The results show that farmers who participate in the conservation programs are more likely to use BMPs, but these farmers may not accept the offer to implement additional BMPs. Farmers' experiences about BMPs are more likely to persuade them to adopt additional BMPs than the level of compensation. The results find that using riparian buffers, fencing off animals and building up waste storage facilities are responsive to the levels of compensation offered.  相似文献   

6.
Planners advocate best management practices (BMPs) to reduce loss of sediment and nutrients in agricultural areas. However, the scientific community lacks tools that use readily available data to investigate the relationships between BMPs and their spatial locations and water quality. In rural, humid regions where runoff is associated with saturation-excess processes from variable source areas (VSAs), BMPs are potentially most effective when they are located in areas that produce the majority of the runoff. Thus, two critical elements necessary to predict the water quality impact of BMPs include correct identification of VSAs and accurate predictions of nutrient reduction due to particular BMPs. The objective of this research was to determine the effectiveness of BMPs using the Variable Source Loading Function (VSLF) model, which captures the spatial and temporal evolutions of VSAs in the landscape. Data from a long-term monitoring campaign on a 164-ha farm in the New York City source watersheds in the Catskills Mountains of New York state were used to evaluate the effectiveness of a range of BMPs. The data spanned an 11-year period over which a suite of BMPs, including a nutrient management plan, riparian buffers, filter strips and fencing, was installed to reduce phosphorus (P) loading. Despite its simplicity, VSLF predicted the spatial distribution of runoff producing areas well. Dissolved P reductions were simulated well by using calibrated reduction factors for various BMPs in the VSLF model. Total P losses decreased only after cattle crossings were installed in the creek. The results demonstrated that BMPs, when sited with respect to VSAs, reduce P loss from agricultural watersheds, providing useful information for targeted water quality management.  相似文献   

7.
ABSTRACT: The effectiveness of urban Best Management Practices (BMPs) in achieving the No-Net-Increase Policy (NNTP), a policy designed to limit nonpoint nitrogen loading to Long Island Sound (US), is analyzed. A unit loading model is used to simulate annual nitrogen exported from the Norwalk River watershed (Connecticut) under current and future conditions. A probabilistic uncertainty analysis is used to incorporate uncertainty in nitrogen export coefficients and BMP nitrogen removal effectiveness. The inclusion of uncertainty in BMP effectiveness and nitrogen export coefficients implies that additional BMPs, or BMPs with a greater effectiveness in nitrogen removal, will be required to achieve the NNIP. Even though including uncertainty leads to an increase in BMP implementation rates or BMP effectiveness, this type of analysis provides the decision maker with a more realistic assessment of the likelihood that implementing BMPs as a management strategy will be successful. Monte Carlo simulation results indicate that applying BMPs to new urban developments alone will not be sufficient to achieve the NNIP since BMPs are not 100 percent effective in removing the increase in nitrogen caused by urbanization. BMPs must also be applied to selected existing urban areas. BMPs with a nitrogen removal effectiveness of 40–60 percent, probably the highest level of removal that can be expected over an entire watershed, must be applied to at least 75 percent of the existing urban area to achieve the NNIP This high rate of application is not likely to be achieved in urbanized watersheds in the LIS watershed; therefore, additional point source control will be necessary to achieve the NNIP  相似文献   

8.
Best management practices (BMPs) play an important role in improving impaired water quality from conventional row crop agriculture. In addition to reducing nutrient and sediment loads, BMPs such as fertilizer management, reduced tillage, and cover crops could alter the hydrology of agricultural systems and reduce surface water runoff. While attention is devoted to the water quality benefits of BMPs, the potential co‐benefits of flood loss reduction are often overlooked. This study quantifies the effects of selected commonly applied BMPs on expected flood loss to agricultural and urban areas in four Iowa watersheds. The analysis combines a watershed hydrologic model, hydraulic model outputs, and a loss estimation model to determine relationships between hydrologic changes from BMP implementations and annual economic flood loss. The results indicate a modest reduction in peak discharge and economic loss, although loss reduction is substantial when urban centers or other high‐value assets are located downstream in the watershed. Among the BMPs, wetlands, and cover crops reduce losses the most. The research demonstrates that watershed‐scale implementation of agricultural BMPs could provide benefits of flood loss reduction in addition to water quality improvements.  相似文献   

9.
This meta-analysis of both published and unpublished studies assesses factors believed to influence adoption of agricultural Best Management Practices in the United States. Using an established statistical technique to summarize the adoption literature in the United States, we identified the following variables as having the largest impact on adoption: access to and quality of information, financial capacity, and being connected to agency or local networks of farmers or watershed groups. This study shows that various approaches to data collection affect the results and comparability of adoption studies. In particular, environmental awareness and farmer attitudes have been inconsistently used and measured across the literature. This meta-analysis concludes with suggestions regarding the future direction of adoption studies, along with guidelines for how data should be presented to enhance the adoption of conservation practices and guide research.  相似文献   

10.
The effects of increases in effective impervious area (EIA) and the implementation of water quality protection designed detention pond best management practices (BMPs) on storm runoff and stormwater quality were assessed in Gwinnett County, Georgia, for the period 2001‐2008. Trends among eight small watersheds were compared, using a time trend study design. Significant trends were detected in three storm hydrologic metrics and in five water quality constituents that were adjusted for variability in storm characteristics and climate. Trends in EIA ranged from 0.10 to 1.35, and changes in EIA treated by BMPs ranged from 0.19 to 1.32; both expressed in units of percentage of drainage area per year. Trend relations indicated that for every 1% increase in watershed EIA, about 2.6, 1.1, and 1.5% increases in EIA treated by BMPs would be required to counteract the effects of EIA added to the watersheds on peak streamflow, stormwater yield, and storm streamflow runoff, respectively. Relations between trends in EIA, BMP implementation, and water quality were counterintuitive. This may be the result of (1) changes in constituent inputs in the watersheds, especially downstream of areas treated by BMPs; (2) BMPs may have increased the duration of stormflow that results in downstream channel erosion; and/or (3) spurious relationships between increases in EIA, BMP implementation, and constituent inputs with development rates.  相似文献   

11.
Distributed parameter watershed models are often used for evaluating the effectiveness of various best management practices (BMPs). Streamflow, sediment, and nutrient yield predictions of a watershed model can be affected by spatial resolution as dictated by watershed subdivision. The objectives of this paper are to show that evaluation of BMPs using a model is strongly linked to the level of watershed subdivision; to suggest a methodology for identifying an appropriate subdivision level; and to examine the efficacy of different BMPs at field and watershed scales. In this study, the Soil and Water Assessment Tool (SWAT) model was calibrated and validated for streamflow, sediment, and nutrient yields at the outlet of the Dreisbach (623 ha) and Smith Fry (730 ha) watersheds in Maumee River Basin, Indiana. Grassed waterways, grade stabilization structures, field borders, and parallel terraces are the BMPs that were installed in the study area in the 1970s. Sediment and nutrient outputs from the calibrated model were compared at various watershed subdivision levels, both with and without implementation of these BMPs. Results for the study watersheds indicated that evaluation of the impacts of these BMPs on sediment and nutrient yields was very sensitive to the level of subdivision that was implemented in SWAT. An optimal watershed subdivision level for representation of the BMPs was identified through numerical simulations. For the study watersheds, it would appear that the average subwatershed area corresponding to approximately 4 percent of total watershed area is needed to represent the influence of these BMPs when using the SWAT model.  相似文献   

12.
Mismanagement of urban runoff can result in inundation which causes serious problems in providing urban services. Best management practices (BMPs) are used for urban runoff management. In this study, a method is proposed to determine the robust optimal set of BMPs for runoff management in data-poor catchments in urban areas. This method includes five main steps: (1) Sensitivity analysis to determine effective parameters in rainfall-runoff simulation model, (2) Calibration of the rainfall-runoff model based on selected effective parameters, (3) Developing a multi-objective optimization model to obtain the optimal sets of BMPs, (4) Selecting the final solutions using the Nash approach for ranking, (5) Evaluation of the robustness of the selected solution using the Management Option Rank Equivalence method. The proposed method is examined in an urban basin located in the north of Tehran, Iran. The results show that the proposed approach provides reliable results for urban runoff management in data-poor areas.  相似文献   

13.
ABSTRACT: In developing strategies for nonpoint pollution control in designated 208 areas, one of the issues facing planners is the relative emphasis which should be placed upon urban versus agricultural non-point control. Five criteria which should be considered in designing an appropriate BMP strategy mix are discussed: 1) BMP cost effectiveness; 2) information and administrative cost; 3) flexibility, which relates to the cost of reversibility given substantial uncertainties; 4) associated effects, both direct and indirect; and 5) acceptability to local jurisdictions and groups. Whatever an evaluation on the basis of the first four criteria may suggest, acceptance of agricultural BMPs will be difficult to achieve, thus favoring urban oriented strategies, unless local revenue sources are developed to offer payments to farmers for BMP adoption.  相似文献   

14.
Best management practices (BMPs) are widely used to mitigate impacts of increased impervious surfaces on stormwater runoff. However, there is limited detailed and up‐to‐date information available on the cost of designing, constructing, and maintaining BMPs over their lifetime. The objective of this study is to analyze BMPs recently constructed by the Virginia Department of Transportation (VDOT) to quantify their total cost per pound of phosphorus removed annually. A motivating factor for the study is recent changes to regulatory guidelines in Virginia which allow for full or partial substitution of purchased nutrient credits in lieu of constructing onsite BMPs to achieve compliance with stormwater quality regulations. Results of the analysis of nine BMPs found their cost ranged from $20,100 to $74,900, in 2014 dollars, per pound ($44,313‐$165,126 per kg) of phosphorus removed. Based on these results and assuming current credit prices procured by VDOT, purchasing nutrient credits is a cost‐effective option for the agency, especially when factoring in the cost of additional right of way for the BMP. Based on this finding, we expect compliance with stormwater quality regulations through credit purchases to become more widely used in Virginia. Moving forward, we suggest more direct tracking of BMP costs to support comparisons between BMP costs across a range of types and conditions to credit purchases for meeting stormwater regulations.  相似文献   

15.
ABSTRACT: Controlling agricultural nonpoint source pollution from livestock grazing is a necessary step to improving the water quality of the nation's streams. The goal of enhanced stream water quality will most likely result from the implementation of an integrated system of best management practices (BMPs) linked with stream hydraulic and geomorphic characteristics. However, a grazing BMP system is often developed with the concept that BMPs will function independently from interactions among controls, climatic regions, and the multifaceted functions exhibited by streams. This paper examines the peer reviewed literature pertaining to grazing BMPs commonly implemented in the southern humid region of the United States to ascertain effects of BMPs on stream water quality. Results indicate that the most extensive BMP research efforts occurred in the western and midwestern U.S. While numerous studies documented the negative impacts of grazing on stream health, few actually examined the success of BMPs for mitigating these effects. Even fewer studies provided the necessary information to enable the reader to determine the efficacy of a comprehensive systems approach integrating multiple BMPs with pre‐BMP and post‐BMP geomorphic conditions. Perhaps grazing BMP research should begin incorporating geomorphic information about the streams with the goal of achieving sustainable stream water quality.  相似文献   

16.
ABSTRACT: A model was developed to evaluate the cost-effectiveness of alternative “best management practice” (BMP) implementation schemes on two agricultural basins in Florida. The model selectively applies BMPs throughout the basin on a field by field basis, estimates the associated costs, and predicts the relative water quality improvement (reductions in nitrogen and phosphorus). The water quality model links field scale simulation (for detailed BMP evaluation) with basin delivery and attenuation functions to predict the basin-wide effects of any combination of BMPs. Fifteen BMP scenarios were evaluated to aid in prioritizing BMPs for implementation in these basins. Applying the maximum level of BMPs is estimated to cost around $1.2 million (annually), while the four most cost-effective BMPs would cost only one quarter as much, yet are projected to provide approximately 90 percent of the water quality improvement.  相似文献   

17.
There is an increasing need to document the impacts of conservation‐related best management practices (BMPs) on water quality within a watershed. However, this impact analysis depends upon accurate geospatial locations of existing practices, which are difficult to obtain. This study demonstrates and evaluates three different methods for obtaining geospatial information for BMPs. This study was focused on the Eagle Creek Watershed, a mixed use watershed in central Indiana. We obtained geospatial information for BMPs through government records, producer interviews, and remote‐sensing aerial photo interpretation. Aerial photos were also used to validate the government records and producer interviews. This study shows the variation in results obtained from the three sources of information as well as the benefits and drawbacks of each method. Using only one method for obtaining BMP information can be incomplete, and this study demonstrates how multiple methods can be used for the most accurate picture.  相似文献   

18.
ABSTRACT: We evaluated the effectiveness of watershed‐scale implementations of best‐management practices (BMPs) for improving habitat and fish attributes in two coldwater stream systems in Wisconsin. We sampled physical habitat, water temperature, and fish communities in multiple paired treatment and reference streams before and after upland (barnyard runoff controls, manure storage, contour plowing, reduced tillage) and riparian (stream bank fencing, sloping, limited rip‐rapping) BMP installation in the treatment subwatersheds. In Spring Creek, BMPs significantly improved overall stream habitat quality, bank stability, instream cover for fish, abundance of cool‐ and coldwater fishes, and abundance of all fishes. Improvements were most pronounced at sites with riparian BMPs. Water temperatures were consistently cold enough to support coldwater fishes such as trout (Salmonidae) and sculpins (Cottidae) even before BMP installation. We observed the first‐time occurrence of naturally reproduced brown trout (Salmo trutta) in Spring Creek, indicating that the stream condition had been improved to be able to partially sustain a trout population. In Eagle Creek and its tributary Joos Creek, limited riparian BMPs led to localized gains in overall habitat quality, bank stability, and water depth. However, because few upland BMPs were installed in the subwatershed there were no improvements in water temperature or the quality of the fish community. Temperatures remained marginal for coldwater fish throughout the study. Our results demonstrate that riparian BMPs can improve habitat conditions in Wisconsin streams, but cannot restore coldwater fish communities if there is insufficient upland BMP implementation. Our approach of studying multiple paired treatment and reference streams before and after BMP implementation proved effective in detecting the response of stream ecosystems to watershed management activities.  相似文献   

19.
ABSTRACT: This paper presents the results of an investigation of the effects of the Maryland Critical Area Act on generation of non-point source loads of phosphorus, nitrogen, and sediment to the Rhode River estuary. The Simple Method model, the Marcus and Kearney regression model, and the CREAMS model were used to estimate annual loads under: (1) present conditions, (2) maximum land use development allowable under the Act, and (3) two sets of future land use conditions that might occur if the Act were not in place. Results indicate that the Critical Area Act can reduce the present generation of nonpoint nutrient and sediment loadings 20–30 percent from the regulated area. These reductions can occur while preserving agricultural lands and allowing limited residential and urban development. The decrease in nutrient loadings is primarily dependent upon implementation and enforcement of agricultural best management practices (BMPs). The BMPs could reduce present agricultural nutrient loadings by 90 percent to a level comparable to loadings from residential areas. The estimated effectiveness of the Critical Area Act is even greater when compared to potential future nutrient loadings if development in the area remains unregulated. Unrestricted residential and urban development could increase nutrient loadings by 200 percent to 1000 percent as compared to controlled development under Critical Area Act guidelines. The Critical Area Act primarily prevents these future increases by severely limiting woodland cutting, with lesser results obtained by requiring urban BMPs.  相似文献   

20.
Woznicki, Sean A. and A. Pouyan Nejadhashemi, 2011. Sensitivity Analysis of Best Management Practices Under Climate Change Scenarios. Journal of the American Water Resources Association (JAWRA) 48(1): 90‐112. DOI: 10.1111/j.1752‐1688.2011.00598.x Abstract: Understanding the sensitivity of best management practices (BMPs) implementation as climate changes will be important for water resources management. The objective of this study was to determine how the sensitivity of BMPs performance vary due to changes in precipitation, temperature, and CO2 using the Soil and Water Assessment Tool. Sediment, total nitrogen, and total phosphorus loads on an annual and monthly basis were estimated before and after implementation of eight agricultural BMPs for different climate scenarios. Downscaled climate change data were obtained from the National Center for Atmospheric Research Community Climate System Model for the Tuttle Creek Lake watershed in Kansas and Nebraska. Using a relative sensitivity index, native grass, grazing management, and filter strips were determined to be the most sensitive for all climate change scenarios, whereas porous gully plugs, no‐tillage, and conservation tillage were the least sensitive on an annual basis. The monthly sensitivity analysis revealed that BMP sensitivity varies largely on a seasonal basis for all climate change scenarios. The results of this research suggest that the majority of agricultural BMPs tested in this study are significantly sensitive to climate change. Therefore, caution should be exercised in the decision‐making processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号