首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
ABSTRACT: Nonpoint source (NPS) models and expert opinions are often used to prescribe best management practices (BMPs) for controlling NPS pollution. An optimization algorithm (e.g., a genetic algorithm, or GA) linked with a NPS model (e.g., Annualized AGricultural Nonpoint Source pollution model, or AnnAGNPS), can be used to more objectively prescribe BMPs and to optimize NPS pollution control measures by maximizing pollutant reduction and net monetary return from a watershed. Pollutant loads from design storms and annual loads from a continuous simulation can both be used for optimizing BMP schemes. However, which strategy results in a better solution (in terms of providing water quality protection) for a watershed is not clear. The specific objective of the study was to determine the differences in watershed pollutant loads, in an experimental watershed in Pennsylvania, resulting from optimization analyses performed using pollutant loads from a series of five 2‐yr 24‐hr storm events, a series of five 5‐yr 24‐hr storm events, and cumulative pollutant loads from a continuous simulation of five years of weather data. For each of these three different event alternatives, 100 near optimal solutions (BMP schemes) were generated. Sediment (Sed), sediment nitrogen (SedN), dissolved N (SolN), sediment organic carbon (SedOC), and sediment phosphorus (SedP) loads from a different five‐year period (an evaluation period) suggest that the optimal BMP schemes resulting from the use of annual cumulative pollutant loads from a continuous simulation of five years of weather data provide smaller cumulative NPS pollutant loads at the watershed outlet.  相似文献   

2.
Nonpoint source (NPS) pollutants such as phosphorus, nitrogen, sediment, and pesticides are the foremost sources of water contamination in many of the water bodies in the Midwestern agricultural watersheds. This problem is expected to increase in the future with the increasing demand to provide corn as grain or stover for biofuel production. Best management practices (BMPs) have been proven to effectively reduce the NPS pollutant loads from agricultural areas. However, in a watershed with multiple farms and multiple BMPs feasible for implementation, it becomes a daunting task to choose a right combination of BMPs that provide maximum pollution reduction for least implementation costs. Multi-objective algorithms capable of searching from a large number of solutions are required to meet the given watershed management objectives. Genetic algorithms have been the most popular optimization algorithms for the BMP selection and placement. However, previous BMP optimization models did not study pesticide which is very commonly used in corn areas. Also, with corn stover being projected as a viable alternative for biofuel production there might be unintended consequences of the reduced residue in the corn fields on water quality. Therefore, there is a need to study the impact of different levels of residue management in combination with other BMPs at a watershed scale. In this research the following BMPs were selected for placement in the watershed: (a) residue management, (b) filter strips, (c) parallel terraces, (d) contour farming, and (e) tillage. We present a novel method of combing different NPS pollutants into a single objective function, which, along with the net costs, were used as the two objective functions during optimization. In this study we used BMP tool, a database that contains the pollution reduction and cost information of different BMPs under consideration which provides pollutant loads during optimization. The BMP optimization was performed using a NSGA-II based search method. The model was tested for the selection and placement of BMPs in Wildcat Creek Watershed, a corn dominated watershed located in northcentral Indiana, to reduce nitrogen, phosphorus, sediment, and pesticide losses from the watershed. The Pareto optimal fronts (plotted as spider plots) generated between the optimized objective functions can be used to make management decisions to achieve desired water quality goals with minimum BMP implementation and maintenance cost for the watershed. Also these solutions were geographically mapped to show the locations where various BMPs should be implemented. The solutions with larger pollution reduction consisted of buffer filter strips that lead to larger pollution reduction with greater costs compared to other alternatives.  相似文献   

3.
Several environmental protection policies have been implemented to prevent soil erosion and nonpoint source (NPS) pollutions in China. After severe Yangtze River floods, the “conversion cropland to forest policy” (CCFP) was carried out throughout China, especially in the middle and upper reaches of Yangtze River. The research area of the current study is located in Bazhong City, Sichuan Province in Yangtze River watershed, where soil erosion and NPS pollution are serious concerns. Major NPS pollutants include nitrogen (N) and phosphorus (P). The objective of this study is to evaluate the long-term impact of implementation of the CCFP on stream flow, sediment yields, and the main NPS pollutant loading at watershed level. The Soil and Water Assessment Tool (SWAT) is a watershed environmental model and is applied here to simulate and quantify the impacts. Four scenarios are constructed representing different patterns of conversion from cropland to forest under various conditions set by the CCFP. Scenario A represented the baseline, i.e., the cropland and forest area conditions before the implementation of CCFP. Scenario B represents the condition under which all hillside cropland with slope larger than 25° was converted into forest. In scenario C and D, hillside cropland with slope larger than 15° and 7.5° was substituted by forest, respectively. Under the various scenarios, the NPS pollution reduction due to CCFP implementation from 1996–2005 is estimated by SWAT. The results are presented as percentage change of water flow, sediment, organic N, and organic P at watershed level. Furthermore, a regression analysis is conducted between forest area ratio and ten years’ average NPS load estimations, which confirmed the benefits of implementing CCFP in reducing nonpoint source pollution by increasing forest area in mountainous areas. The reduction of organic N and organic P is significant (decrease 42.1% and 62.7%, respectively) at watershed level. In addition, this study also proves that SWAT modeling approach can be used to estimate NPS pollutants’ impacts of land use conversions in large watershed.  相似文献   

4.
Land-use change, dominated by an increase in urban/impervious areas, has a significant impact on water resources. This includes impacts on nonpoint source (NPS) pollution, which is the leading cause of degraded water quality in the United States. Traditional hydrologic models focus on estimating peak discharges and NPS pollution from high-magnitude, episodic storms and successfully address short-term, local-scale surface water management issues. However, runoff from small, low-frequency storms dominates long-term hydrologic impacts, and existing hydrologic models are usually of limited use in assessing the long-term impacts of land-use change. A long-term hydrologic impact assessment (L-THIA) model has been developed using the curve number (CN) method. Long-term climatic records are used in combination with soils and land-use information to calculate average annual runoff and NPS pollution at a watershed scale. The model is linked to a geographic information system (GIS) for convenient generation and management of model input and output data, and advanced visualization of model results. The L-THIA/NPS GIS model was applied to the Little Eagle Creek (LEC) watershed near Indianapolis, Indiana, USA. Historical land-use scenarios for 1973, 1984, and 1991 were analyzed to track land-use change in the watershed and to assess impacts on annual average runoff and NPS pollution from the watershed and its five subbasins. For the entire watershed between 1973 and 1991, an 18% increase in urban or impervious areas resulted in an estimated 80% increase in annual average runoff volume and estimated increases of more than 50% in annual average loads for lead, copper, and zinc. Estimated nutrient (nitrogen and phosphorus) loads decreased by 15% mainly because of loss of agricultural areas. The L-THIA/NPS GIS model is a powerful tool for identifying environmentally sensitive areas in terms of NPS pollution potential and for evaluating alternative land use scenarios for NPS pollution management.  相似文献   

5.
We present a conceptual framework that relates agricultural best management practice (BMP) effectiveness with dominant hydrological flow paths to improve nonpoint source (NPS) pollution management. We use the framework to analyze plot, field and watershed scale published studies on BMP effectiveness to develop transferable recommendations for BMP selection and placement at the watershed scale. The framework is based on the location of the restrictive layer in the soil profile and distinguishes three hydrologic land types. Hydrologic land type A has the restrictive layer at the surface and BMPs that increase infiltration are effective. In land type B1, the surface soil has an infiltration rate greater than the prevailing precipitation intensity, but there is a shallow restrictive layer causing lateral flow and saturation excess overland flow. Few structural practices are effective for these land types, but pollutant source management plans can significantly reduce pollutant loading. Hydrologic land type B2 has deep, well‐draining soils without restrictive layers that transport pollutants to groundwater via percolation. Practices that increased pollutant residence time in the mixing layer or increased plant water uptake were found as the most effective BMPs in B2 land types. Matching BMPs to the appropriate land type allows for better targeting of hydrologically sensitive areas within a watershed, and potentially more significant reductions of NPS pollutant loading.  相似文献   

6.
Watershed models often estimate annual nitrogen (N) or phosphorus (P) pollutant loads in rural areas with export coefficient (EC) (kg/ha/yr) values based on land cover, and in urban areas as the product of spatially uniform event mean concentration (EMC) (mg/L) values and runoff volume. Actual N and P nonpoint source (NPS) pollutant loading has more spatial complexity due to watershed variation in runoff likelihood and buffering likelihood along surface and subsurface pathways, which can be represented in a contributing area dispersal area (CADA) NPS model. This research develops a CADA NPS model to simulate how watershed properties of elevation, land cover, and soils upslope and downslope of each watershed pixel influence nutrient loading. The model uses both surface and subsurface runoff indices (RI), and surface and subsurface buffer indices (BI), to quantify the runoff and buffering likelihood for each watershed pixel, and generate maps of weighted EC and EMC values that identify NPS pollutant loading hotspots. The research illustrates how CADA NPS model maps and pixel loading values are sensitive to the spatial resolution and accuracy of elevation and land cover data, and model predictions can represent the lower and upper bounds of NPS loading. The model provides managers with a tool to rapidly visualize, rank, and investigate likely areas of high nutrient export.  相似文献   

7.
Quantification of the effects of management programs on water quality is critical to agencies responsible for water resource protection. This research documents reductions in stream water phosphorus (P) loads resulting from agricultural best management practices (BMPs) implemented as part of an effort to control eutrophication of Cannonsville Reservoir, a drinking water supply for New York City. Dairy farms in the upstate New York reservoir basin were the target of BMPs designed to reduce P losses. A paired watershed study was established on one of these farms in 1993 to evaluate changes in P loading attributable to implementation of BMPs that included manure management, rotational grazing, and improved infrastructure. Intensive stream water monitoring provided data to calculate P loads from the 160-ha farm watershed for all runoff events during a two-year pre-treatment period and a four-year post-treatment period. Statistical control for inter-annual climatic variability was provided by matched P loads from a nearby 86-ha forested watershed, and by several event flow variables measured at the farm. A sophisticated multivariate analysis of covariance (ANCOVA) provided estimates of both seasonal and overall load reductions. Statistical power and the minimum detectable treatment effect (MDTE) were also calculated. The results demonstrated overall event load reductions of 43% for total dissolved phosphorus (TDP) and 29% for particulate phosphorus (PP). Changes in farm management practices and physical infrastructure clearly produced decreases in event P losses measurable at the small watershed scale.  相似文献   

8.
n integrated approach coupling water quality computer simulation modeling with a geographic information system (GIS) was used to delineate critical areas of nonpoint source (NPS) pollution at the watershed level. Two simplified pollutant export models were integrated with the Virginia Geographic Information System (VirGIS) to estimate soil erosion, sediment yield, and phosphorus (P) loading from the Nomini Creek watershed located in Westmoreland County, Virginia. On the basis of selected criteria for soil erosion rate, sediment yield, and P loading, model outputs were used to identily watershed areas which exhibit three categories (low, medium, high) of non-point source pollution potentials. The percentage of the watershed area in each category, and the land area with critical pollution problems were also identified. For the 1505-ha Nomini Creek watershed, about 15, 16, and 21 percent of the watershed area were delineated as sources of critical soil erosion, sediment, and phosphorus pollution problems, respectively. In general, the study demonstrated the usefulness of integrating GIS with simulation modeling for nonpoint source pollution control and planning. Such techniques can facilitate making priorities and targeting nonpoint source pollution control programs.  相似文献   

9.
ABSTRACT: Anthropogenic phosphorus loading, mainly from the Everglades Agricultural Area (EAA), is believed to be the primary cause of eutrophication in the Everglades. The state of Florida has adopted a plan for addressing Everglades eutrophication problems by reducing anthropogenic phosphorus loads through the implementation of Best Management Practices (BMPs) in agricultural watersheds and the construction of stormwater treatment areas (STAs). Optimizing the effectiveness of these STAs for reducing phosphorus concentrations from agricultural runoff is a critical component of the District's comprehensive Everglades protection effort. Therefore, the objective of this study was to develop a simple tool that can be used to estimate STAs’performance and evaluate management alternatives considered in the Everglades restoration efforts. The model was tested at two south Florida wetland sites and then was used to simulate several management alternatives and predict ecosystem responses to reduced external phosphorus (P) loadings. Good agreement between model predictions at the two wetland sites and actual observations indicated that the model can be used as a management tool to predict wetlands’response to reductions in external phosphorus load and long-term P levels in aquatic ecosystems. Model results showed that lowering P content of the Everglades Protection Area (EPA) depends on reducing P loads originating from EAA discharges, not from rainfall. Assuming no action is taken (e.g., no BMPs or STAs implemented), the steady state model predicted that the average concentration within the modeled area of the marsh would reach 20 μg L?1 within five years. With an 85 percent reduction in P loading, the steady-state model predicted that Water Conservation Area 2A (WCA-2A) P concentration will equilibrate at approximately 10 μ L?1, while elimination of all loadings is projected to further reduce marsh P to values less than 10 μg L?1.  相似文献   

10.
ABSTRACT: Driven by increasing concerns about bacterial pollution from agricultural sources, states such as Virginia have initiated cost sharing programs that encourage the use of animal waste best management practices (BMPs) to control this pollution. Although a few studies have shown that waste management BMPs are effective at the field scale, their effectiveness at the watershed scale and over the long term is unknown. The focus of this research was to evaluate the effectiveness of BMPs in reducing bacterial pollution at the watershed scale and over the long term. To accomplish this goal, a 1,163 ha watershed located in the Piedmont region of Virginia was monitored over a ten‐year period. Fecal coliforms (FC) and fecal streptococci (FS) were measured as indicators of bacterial pollution. A pre‐BMP versus post‐BMP design was adopted. Major BMPs implemented were manure storage facilities, stream fencing, water troughs, and nutrient management. Seasonal Kendall trend analysis revealed a significant decreasing trend during the post‐BMP period for FC concentrations at the watershed outlet, but not at the subwatershed level. Implementation of BMPs also resulted in a significant reduction in the geometric mean of FS concentrations. FC concentrations in streamflow at the watershed outlet exceeded the Virginia primary standard 86 and 74 percent of the time during pre‐BMP and post‐BMP periods, respectively. Corresponding exceedances for the secondary standard were 50 and 41 percent. Violations decreased only slightly during the post‐BMP period. The findings of this study suggest that although BMP implementation can be expected to accomplish some improvement in water quality, BMP implementation alone may not ensure compliance with current water quality standards.  相似文献   

11.
Agricultural non–point source (NPS) pollution poses a severe threat to water quality and aquatic ecosystems. In response, tremendous efforts have been directed toward reducing these pollution inputs by implementing agricultural conservation practices. Although conservation practices reduce pollution inputs from individual fields, scaling pollution control benefits up to the watershed level (i.e., improvements in stream water quality) has been a difficult challenge. This difficulty highlights the need for NPS reduction programs that focus efforts within target watersheds and at specific locations within target watersheds, with the ultimate goal of improving stream water quality. Fundamental program design features for NPS control programs—i.e., number of watersheds in the program, total watershed area, and level of effort expended within watersheds—have not been considered in any sort of formal analysis. Here, we present an optimization model that explores the programmatic and environmental trade-offs between these design choices. Across a series of annual program budgets ranging from $2 to $200 million, the optimal number of watersheds ranged from 3 to 27; optimal watershed area ranged from 29 to 214 km2; and optimal expenditure ranged from $21,000 to $35,000/km2. The optimal program configuration was highly dependent on total program budget. Based on our general findings, we delineated hydrologically complete and spatially independent watersheds ranging in area from 20 to 100 km2. These watersheds are designed to serve as implementation units for a targeted NPS pollution control program currently being developed in Wisconsin.  相似文献   

12.
The recognition of the significance of the residential environment in contributing to non-point source (NPS) pollution and the inherently dispersed nature of NPS pollution itself that presents significant challenges to effective regulation has led to the creation and dissemination of best management practices (BMPs) that can reduce the impacts of NPS pollution (Environmental Protection Agency US, Protecting water quality from urban runoff, http://www.epa.gov/npdes/pubs/nps_urban-facts_final.pdf, 2003). However, very few studies have examined the factors that influence the adoption of BMPs by residential homeowners, despite the fact that residential environments have been identified as one of the most significant contributors to NPS pollution. Given this need, the purpose of this project was to explore how demographic and knowledge-based factors predict adoption of residential BMPs in an urbanizing watershed in Northern Illinois using statistical analyses of survey data collected as part of a watershed planning process. The findings indicate that broad knowledge of BMPs is the strongest predictor of use for a specific BMP. Knowledge of BMPs is strongly correlated with their use, which reinforces the need for educational programs, even among those assumed to be knowledgeable about BMPs.  相似文献   

13.
ABSTRACT: Recent federal legislation strengthened nonpoint source pollution regulations and helped to support and standardize pollution control efforts. A comprehensive review of current state and federal programs for forest areas reveals a substantial increase in agency water quality protection activities. These new efforts emphasize monitoring to assess the use and effectiveness of best management practices (BMPs). Recent monitoring reveals that BMP use is increasing and that such use typically maintains water quality within standards. However, information is generally lacking about the cost effectiveness of BMP programs. Carefully designed and executed monitoring is the key to better specification of BMPs and more cost effective water quality protection. (KEY TERMS: water quality; nonpoint source pollution; water law; watershed management; forestry; best management practices.)  相似文献   

14.
Nonpoint source (NPS) pollution has emerged as the largest threat to water quality in the United States, influencing policy makers and resource managers to direct more attention toward NPS prevention and remediation. In response, the United States Environmental Protection Agency (USEPA) spent more than $204 million in fiscal year (FY) 2006 on the Clean Water Act’s Section 319 program to combat NPS pollution, much of it on the development and implementation of watershed-based plans. State governments have also increasingly allocated financial and technical resources to collaborative watershed efforts within their own borders to fight NPS pollution. With increased collaboration among the federal government, states, and citizens to combat NPS pollution, more information is needed to understand how public resources are being used, by whom, and for what, and what policy changes might improve effectiveness. Analysis from a 50-state study suggests that, in addition to the average 35% of all Section 319 funds per state that are passed on to collaborative watershed groups, 35 states have provided financial assistance beyond Section 319 funding to support collaborative watershed initiatives. State programs frequently provide technical assistance and training, in addition to financial resources, to encourage collaborative partnerships. Such assistance is typically granted in exchange for requirements to generate a watershed action plan and/or follow a mutually agreed upon work plan to address NPS pollution. Program managers indicated a need for greater fiscal resources and flexibility to achieve water quality goals.  相似文献   

15.
ABSTRACT: To quantify the effectiveness of best management practice (BMP) implementation on runoff, sediment, and nutrient yields from a watershed, the Nomini Creek watershed and water quality monitoring project was initiated in 1985, in Westmoreland County, Virginia. The changes in nonpoint source (NPS) loadings resulting from BMPs were evaluated by comparing selected parameters from data series obtained before, during, and after periods of BMP implementation. The results indicated that the watershed-averaged curve number, sediment, and nutrient (N and P) concentrations were reduced by approximately 5, 20, and 40 percent, respectively, due to BMP implementation. The nutrient yield model developed by Frere et al. (1980) was applied to the water quality parameters from 175 storms, but it failed to adequately describe the observed phenomena. Seasonal changes in nutrient availability factors were not consistent with field conditions, nor were they significantly different in the pm- and post-BMP periods. An extended period of monitoring, with intensive BMP implementation over a larger portion of the watershed, is required to identify BMP effectiveness.  相似文献   

16.
A best management practice (BMP) for exporting manure phosphorus (P) in turfgrass sod from the North Bosque River (NBR) watershed in central Texas was assessed using a geographic information system (GIS). The NBR watershed has a mandate to reduce the total annual P load to the NBR by 50% as a result of total maximum daily load regulation. Since dairy waste applications to fields are identified as the major nonpoint source of P to the river, innovative BMPs, such as export of manure P in turfgrass, will be needed to achieve the 50% reduction. However, methods are needed to evaluate the feasibility of these innovative management practices prior to their implementation. A geospatial database of suitable turfgrass production sites was developed for Erath County using GIS. Erath County largely encompasses the upper portion of the NBR watershed. Information from field experiments, production practices, and ground-truthing was used to search, analyze, and verify a geospatial database developed from national and regional sources. The integration and analyses of large databases supports the search by turf producers for sites suitable for turfgrass sod production in Erath County. In addition, GIS enables researchers and regulators to estimate manure P exports and reduced P loading due to implementation of the manure export BMP on a county scale. Under optimal conditions 198,000 kg manure P yr(-1) could be used and 114,840 kg manure P yr(-1) exported from the NBR watershed through implementation of a system using dairy manure to produce turfgrass sod. This is the equivalent of the manure P applied from 10,032 dairy cows yr(-1) and exported from 5808 dairy cows yr(-1). Application of GIS to large-scale planning and decision-making transcends traditional field-scale applications in precision agriculture.  相似文献   

17.
18.
ABSTRACT: The effectiveness of urban Best Management Practices (BMPs) in achieving the No-Net-Increase Policy (NNTP), a policy designed to limit nonpoint nitrogen loading to Long Island Sound (US), is analyzed. A unit loading model is used to simulate annual nitrogen exported from the Norwalk River watershed (Connecticut) under current and future conditions. A probabilistic uncertainty analysis is used to incorporate uncertainty in nitrogen export coefficients and BMP nitrogen removal effectiveness. The inclusion of uncertainty in BMP effectiveness and nitrogen export coefficients implies that additional BMPs, or BMPs with a greater effectiveness in nitrogen removal, will be required to achieve the NNIP. Even though including uncertainty leads to an increase in BMP implementation rates or BMP effectiveness, this type of analysis provides the decision maker with a more realistic assessment of the likelihood that implementing BMPs as a management strategy will be successful. Monte Carlo simulation results indicate that applying BMPs to new urban developments alone will not be sufficient to achieve the NNIP since BMPs are not 100 percent effective in removing the increase in nitrogen caused by urbanization. BMPs must also be applied to selected existing urban areas. BMPs with a nitrogen removal effectiveness of 40–60 percent, probably the highest level of removal that can be expected over an entire watershed, must be applied to at least 75 percent of the existing urban area to achieve the NNIP This high rate of application is not likely to be achieved in urbanized watersheds in the LIS watershed; therefore, additional point source control will be necessary to achieve the NNIP  相似文献   

19.
ABSTRACT: A significant portion of all pollutants entering surface waters (streams, lakes, estuaries, and wetlands) derives from non-point source (NPS) pollution and, in particular, agricultural activities. The first step in restoring a water resource is to focus on the primary water quality problem in the watershed. The most appropriate NPS control measures, which include best management practices (BMPs) and landscape features, such as wetlands and riparian areas, can then be selected and positioned to minimize or mitigate the identified pollutant(s). A computer-based decision sup. port and educational software system, WATERSHEDSS (WATER, Soil, and Hydro-Environmental Decision Support System), has been developed to aid managers in defining their water quality problems and selecting appropriate NPS control measures. The three primary objectives of WATERSHEDSS are (1) to transfer water quality and land treatment information to watershed managers in order to assist them with appropriate land management/land treatment decisions; (2) to assess NPS pollution in a watershed based on user-supplied information and decisions; and (3) to evaluate, through geographical information systems-assisted modeling, the water quality effects of alternative land treatment scenarios. WATERSHEDSS is available on the World Wide Web (Web) at http://h2osparc.wq.ncsu.edu .  相似文献   

20.
A systems approach was used to evaluate environmental loading of Cryptosporidium oocysts on five coastal dairies in California. One aspect of the study was to determine Cryptosporidium oocyst concentrations and loads for 350 storm runoff samples from dairy high use areas collected over two storm seasons. Selected farm factors and beneficial management practices (BMPs) associated with reducing the Cryptosporidium load in storm runoff were assessed. Using immunomagnetic separation (IMS) with direct fluorescent antibody (DFA) analysis, Cryptosporidium oocysts were detected on four of the five farms and in 21% of storm runoff samples overall. Oocysts were detected in 59% of runoff samples collected near cattle less than 2 mo old, while 10% of runoff samples collected near cattle over 6 mo old were positive. Factors associated with environmental loading of Cryptosporidium oocysts included cattle age class, 24 h precipitation, and cumulative seasonal precipitation, but not percent slope, lot acreage, cattle stocking number, or cattle density. Vegetated buffer strips and straw mulch application significantly reduced the protozoal concentrations and loads in storm runoff, while cattle exclusion and removal of manure did not. The study findings suggest that BMPs such as vegetated buffer strips and straw mulch application, especially when placed near calf areas, will reduce environmental loading of fecal protozoa and improve stormwater quality. These findings are assisting working dairies in their efforts to improve farm and ecosystem health along the California coast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号