首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
环保管理   8篇
综合类   2篇
  2012年   1篇
  2008年   1篇
  2007年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  1991年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
Pyrolysis of crop biomass generates a by-product, biochar, which can be recycled to sustain nutrient and organic C concentrations in biomass production fields. We evaluated effects of biochar rate and application method on soil properties, nutrient balance, biomass production, and water quality. Three replications of eight sorghum [ (L.) Moench] treatments were installed in box lysimeters under greenhouse conditions. Treatments comprised increasing rates (0, 1.5, and 3.0 Mg ha) of topdressed or incorporated biochar supplemented with N fertilizer or N, P, and K fertilizer. Simulated rain was applied at 21 and 34 d after planting, and mass runoff loss of N, P, and K was measured. A mass balance of total N, P, and K was performed after 45 d. Returning 3.0 Mg ha of biochar did not affect sorghum biomass, soil total, or Mehlich-3-extractable nutrients compared to control soil. Yet, biochar contributed to increased concentration of dissolved reactive phosphorus (DRP) and mass loss of total phosphorus (TP) in simulated runoff, especially if topdressed. It was estimated that up to 20% of TP in topdressed biochar was lost in surface runoff after two rain events. Poor recovery of nutrients during pyrolysis and excessive runoff loss of nutrients for topdressed biochar, especially K, resulted in negative nutrient balances. Efforts to conserve nutrients during pyrolysis and incorporation of biochar at rates derived from annual biomass yields will be necessary for biochar use in sustainable energy crop production.  相似文献   
2.
A best management practice (BMP) for exporting manure phosphorus (P) in turfgrass sod from the North Bosque River (NBR) watershed in central Texas was assessed using a geographic information system (GIS). The NBR watershed has a mandate to reduce the total annual P load to the NBR by 50% as a result of total maximum daily load regulation. Since dairy waste applications to fields are identified as the major nonpoint source of P to the river, innovative BMPs, such as export of manure P in turfgrass, will be needed to achieve the 50% reduction. However, methods are needed to evaluate the feasibility of these innovative management practices prior to their implementation. A geospatial database of suitable turfgrass production sites was developed for Erath County using GIS. Erath County largely encompasses the upper portion of the NBR watershed. Information from field experiments, production practices, and ground-truthing was used to search, analyze, and verify a geospatial database developed from national and regional sources. The integration and analyses of large databases supports the search by turf producers for sites suitable for turfgrass sod production in Erath County. In addition, GIS enables researchers and regulators to estimate manure P exports and reduced P loading due to implementation of the manure export BMP on a county scale. Under optimal conditions 198,000 kg manure P yr(-1) could be used and 114,840 kg manure P yr(-1) exported from the NBR watershed through implementation of a system using dairy manure to produce turfgrass sod. This is the equivalent of the manure P applied from 10,032 dairy cows yr(-1) and exported from 5808 dairy cows yr(-1). Application of GIS to large-scale planning and decision-making transcends traditional field-scale applications in precision agriculture.  相似文献   
3.
The disposal of manure on agricultural land has caused water quality concerns in many rural watersheds, sometimes requiring state environmental agencies to conduct total maximum daily load (TMDL) assessments of stream nutrients, such as nitrogen (N) and phosphorus (P). A best management practice (BMP) has been developed in response to a TMDL that mandates a 50% reduction of annual P load to the North Bosque River (NBR) in central Texas. This BMP exports composted dairy manure P through turfgrass sod from the NBR watershed to urban watersheds. The manure-grown sod releases P slowly and would not require additional P fertilizer for up to 20 years in the receiving watershed. This would eliminate P application to the sod and improve the water quality of urban streams. The soil and water assessment tool (SWAT) was used to model a typical suburban watershed that would receive the sod grown with composted dairy manure to assess water quality changes due to this BMP. The SWAT model was calibrated to simulate historical flow and estimated sediment and nutrient loading to Mary's Creek near Fort Worth, Texas. The total P stream loading to Mary's Creek was lower when manure-grown sod was transplanted instead of sod grown with inorganic fertilizers. Flow, sediment and total N yield were the same for both cases at the watershed outlet. The SWAT simulations indicated that the turfgrass BMP can be used effectively to import manure P into an urban watershed and reduce in-stream P levels when compared to sod grown with inorganic fertilizers.  相似文献   
4.
对环境监测布点采样中的QC/QA以及由采样引起的误差来源做了简要分析,并对监测采样过程中QC/QA的操作提出了一些设想。  相似文献   
5.
The study of the fetal platelet count and size can, according to the literature, be used for the prenatal diagnosis of the Wiskott-Aldrich syndrome (WAS). So far, no affected fetuses have been identified by this method. All pregnancies in which this method had been applied to resulted, as correctly predicted, in the birth of normal children. Here we report on a familial case of WAS where the haematological parameters failed to reveal the affected second child. Hence we assume that the platelet count and size of platelets remain normal in fetuses with WAS to the gestational age of 22 weeks and cannot be used for prenatal diagnosis.  相似文献   
6.
Nutrient loading on impaired watersheds can be reduced through export of sod grown with manure and export of composted manure for turf production on other watersheds. Effects of the sod and manure exports on receiving watersheds were evaluated through monitoring of total dissolved phosphorus (TDP) and N concentrations and losses in runoff from establishing turf. Three replications of seven treatments were established on an 8.5% slope of a Booneville soil (loamy-skeletal, mixed, superactive Pachic Argicryolls). Three treatments comprised imported 'Tifway' bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy) sod grown with composted dairy manure (382 or 191 kg P ha(-1)) or fertilizer (50 kg P ha(-1)). Three treatments were sprigged with Tifway and top-dressed with either composted manure (92 or 184 kg P ha(-1)) or fertilizer (100 kg P ha(-1)). The control was established bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon]. During eight fall rain events, mean TDP concentration in runoff (7.8 mg L(-1)) from sprigged Tifway top-dressed with manure (84 kg P ha(-1)) was 1.6 times greater than sod imported with 129 kg manure P ha(-1). During the first fall event, mass losses of TDP (232 mg m(-2)) and total Kjeldahl nitrogen (TKN) (317 mg m(-2)) from sprigged treatments top-dressed with manure or fertilizer were nearly three times greater than manure-grown sod. Percentages of manure P lost as TDP in runoff from imported sod were 33% of percentages lost from sprigged treatments top-dressed with manure. Sod grown with manure P rates of 190 kg P ha(-1) can be imported without increasing runoff losses of TDP compared with conventional fertilization of establishing turfgrass.  相似文献   
7.
Municipal programs for turfgrass establishment recommend large volume-based application rates of composted municipal biosolids (CMB). This study compared runoff water quality among combinations of two common turfgrass establishment practices and two CMB sources. Bryan- or Austin-CMB were incorporated into 5 cm of soil at a rate of 12.5 or 25% by volume (v/v) on an 8.5% slope. Tifway bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis Burtt-Davy, var. Tifway] sprigs were planted and established; sod, produced at a separate site using either CMB amendment at the 25% v/v rate, was transplanted to the runoff plots on the same day. A mature stand of bermudagrass was used as a control. Runoff water was collected after each of eight natural rain events during the sampling period. Total runoff water loss (mm) was similar for the CMB-amended sprigged and transplanted sod stands. The concentration of total dissolved P (TDP) in runoff water was greatest from the transplanted sod in the first seven rain events (4.1 to 7.5 mg L(-1)). The concentration of TDP in runoff water was similar at both the 12.5 and 25% v/v incorporation rates. Regression analysis indicated Mehlich-3-extractable soil test P concentrations in soil amended with CMB were positively correlated to concentration and mass loss of dissolved P in runoff. At similar application rates, dissolved P loss in runoff water was reduced by incorporating CMB into the soil on site rather than transplanting sod produced with CMB.  相似文献   
8.
Response of turf and quality of water runoff to manure and fertilizer   总被引:1,自引:0,他引:1  
Manure applications can benefit turfgrass production and unused nutrients in manure residues can be exported through sod harvests. Yet, nutrients near the soil surface could be transported in surface runoff. Our research objective was to evaluate responses of bermudagrass [Cynodon dactylon (L.) Pers. var. Guymon] turf and volumes and P and N concentrations of surface runoff after fertilizer or composted manure applications. Three replications of five treatments were established on a Boonville fine sandy loam (fine, smectitic, thermic Vertic Albaqualf) that was excavated to create an 8.5% slope. Manure rates of 50 and 100 kg P ha(-1) at the start of two monitoring periods were compared with P fertilizer rates of 25 and 50 kg ha(-1) and an unfertilized control. Compared with initial soil tests, nitrate concentrations decreased and P concentrations increased after two manure or fertilizer applications and eight rain events over the two monitoring periods. The fertilizer sources of P and N produced 19% more dry weight and 21% larger N concentrations in grass clippings than manure sources. Yet, runoff volumes were similar between manure and fertilizer sources of P. Dissolved P concentration (30 mg L(-1)) in runoff during a rain event 3 d after application of 50 kg P ha(-1) was five times greater for fertilizer than for manure P. Observations during both monitoring periods indicated that total P and N losses in runoff were no greater for composted manure than for fertilizer sources of P at relatively large P rates on a steep slope of turfgrass.  相似文献   
9.
Regulatory mandates have increased demand for best management practices (BMPs) that will reduce nutrient loading on watersheds impaired by excess manure P and N. Export of manure P and N in turfgrass sod harvests is one BMP under consideration. This study quantified amounts and percentages of P and N removed in a sod harvest for different rates of manure and inorganic P and N. Six treatments comprised an unfertilized control, two manure rates with and without supplemental inorganic N, and inorganic P and N only. The treatments were applied to 'Tifway' bermudagrass (Cynodon dactylon L. x C. transvaalensis Burtt-Davey), '609' buffalograss [Buchloe dactyloides (Nutt.) Engelm.], and 'Reveille' bluegrass (Poa arachnifera Torr. x P. pratensis L.) under field conditions. Comparisons among treatments revealed small variations of P and N content in clippings and the plant component of sod, but large variations in the soil component of sod for each turf species. In addition, 2 to 10 times more P and 1.3 to 5 times more N was removed in soil than in plant components of sod for the two manure rates with and without added inorganic N. Percentages of applied P and N in harvested sod were similar for the two manure rates with and without added N for each species, but differed among turf species for each P (46 to 77%) and N (36 to 47%). The large amounts and percentages of manure P and N removed by sod harvest support the feasibility of this BMP in efforts to reduce nutrient loads on watersheds.  相似文献   
10.
Large and repeated manure applications can exceed the P sorption capacity of soil and increase P leaching and losses through subsurface drainage. The objective of this study was to evaluate the fate of P applied with increasing N rates in dairy wastewater or poultry litter on grassland during a 4-yr period. In addition to P recovery in forage, soil-test phosphorus (STP) was monitored at depths to 180 cm in a Darco loamy sand (loamy, siliceous, semiactive, thermic Grossarenic Paleudults) twice annually. A split-plot arrangement of a randomized complete block design comprised four annual N rates (0, 250, 500, and 1000 kg ha(-1)) for each nutrient source on coastal bermudagrass [Cynodon dactylon (L.) Pers.] over-seeded with ryegrass (Lolium multiflorum L. cv. TAM90). Increasing annual rates of N and P in wastewater and poultry litter increased P removal in forage (P = 0.001). At the highest N rate of each nutrient source, less than 13% of applied P was recovered in forage. The highest N rates delivered 8 times more P in wastewater or 15 times more P in poultry litter than was removed in forage harvests during an average year. Compared with controls, annual P rates up to 188 kg ha(-1) in dairy wastewater did not increase STP concentrations at depths below 30 cm. In contrast, the highest annual P rate (590 kg ha(-1)) in poultry litter increased STP above that of controls at depth intervals to 120 cm during the first year of sampling. Increases in STP at depths below 30 cm in the Darco soil were indicative of excessive P rates that could contribute to nonpoint-source pollution in outflows from subsoil through subsurface drainage.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号