首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Seed dispersal is a crucial component of plant population dynamics. Human landscape modifications, such as habitat destruction and fragmentation, can alter the abundance of fruiting plants and animal dispersers, foraging rates, vector movement, and the composition of the disperser community, all of which can singly or in concert affect seed dispersal. Here, we quantify and tease apart the effects of landscape configuration, namely, fragmentation of primary forest and the composition of the surrounding forest matrix, on individual components of seed dispersal of Heliconia acuminata, an Amazonian understory herb. First we identified the effects of landscape configuration on the abundance of fruiting plants and six bird disperser species. Although highly variable in space and time, densities of fruiting plants were similar in continuous forest and fragments. However, the two largest-bodied avian dispersers were less common or absent in small fragments. Second, we determined whether fragmentation affected foraging rates. Fruit removal rates were similar and very high across the landscape, suggesting that Heliconia fruits are a key resource for small frugivores in this landscape. Third, we used radiotelemetry and statistical models to quantify how landscape configuration influences vector movement patterns. Bird dispersers flew farther and faster, and perched longer in primary relative to secondary forests. One species also altered its movement direction in response to habitat boundaries between primary and secondary forests. Finally, we parameterized a simulation model linking data on fruit density and disperser abundance and behavior with empirical estimates of seed retention times to generate seed dispersal patterns in two hypothetical landscapes. Despite clear changes in bird movement in response to landscape configuration, our simulations demonstrate that these differences had negligible effects on dispersal distances. However, small fragments had reduced densities of Turdus albicollis, the largest-bodied disperser and the only one to both regurgitate and defecate seeds. This change in Turdus abundance acted together with lower numbers of fruiting plants in small fragments to decrease the probability of long-distance dispersal events from small patches. These findings emphasize the importance of foraging style for seed dispersal and highlight the primacy of habitat size relative to spatial configuration in preserving biotic interactions.  相似文献   

2.
Native plant species that have lost their mutualist partners may require non‐native pollinators or seed dispersers to maintain reproduction. When natives are highly specialized, however, it appears doubtful that introduced generalists will partner effectively with them. We used visitation observations and pollination treatments (experimental manipulations of pollen transfer) to examine relationships between the introduced, generalist Japanese White‐eye (Zosterops japonicus) and 3 endemic Hawaiian plant species (Clermontia parviflora, C. montis‐loa, and C. hawaiiensis). These plants are characterized by curved, tubular flowers, apparently adapted for pollination by curve‐billed Hawaiian honeycreepers. Z. japonicus were responsible for over 80% of visits to flowers of the small‐flowered C. parviflora and the midsize‐flowered C. montis‐loa. Z. japonicus‐visited flowers set significantly more seed than did bagged flowers. Z. japonicus also demonstrated the potential to act as an occasional Clermontia seed disperser, although ground‐based frugivory by non‐native mammals likely dominates seed dispersal. The large‐flowered C. hawaiiensis received no visitation by any birds during observations. Unmanipulated and bagged C. hawaiiensis flowers set similar numbers of seeds. Direct examination of Z. japonicus and Clermontia morphologies suggests a mismatch between Z. japonicus bill morphology and C. hawaiiensis flower morphology. In combination, our results suggest that Z. japonicus has established an effective pollination relationship with C. parviflora and C. montis‐loa and that the large flowers of C. hawaiiensis preclude effective visitation by Z. japonicus. Remplazo Imperfecto de Especies Nativas por Especies No‐Nativas como Polinizadores de Plantas Endémicas de Hawaii  相似文献   

3.
Abstract:  In the Neotropics ongoing deforestation is producing open and heavily fragmented landscapes dominated by agriculture, mostly plantations and cattle pastures. After some time agriculture often becomes uneconomical and land is abandoned. Subsequent habitat regeneration may be slow because seed inputs are restricted by a lack of incentives—such as suitable roost sites—for seed dispersers to enter deforested areas. Increasing environmental awareness has fostered growing efforts to promote reforestation. Practical and cost-efficient methods for kick-starting forest regeneration are, however, lacking. We investigated whether artificial bat roosts for frugivorous bat species can attract these key seed dispersers to deforested areas, thereby increasing seed rain. We installed artificial bat roosts in a forest-pasture mosaic in the Costa Rican Atlantic lowlands and monitored bat colonization and seed dispersal. Colonization occurred within a few weeks of installation, and 10 species of bats occupied the artificial roosts. Five species of frugivorous or nectarivorous bats colonized artificial roosts permanently in both primary habitat and in deforested areas, in numbers similar to those found in natural roosts. Seed input around artificial roosts increased significantly. Sixty-nine different seed types, mostly of early-successional plant species, were transported by bats to artificial roosts in disturbed habitats. The installation of artificial bat roosts thus successfully attracted frugivorous bats and increased seed inputs into degraded sites. This method is likely to speed up early-vegetation succession, which in turn will attract additional seed dispersers, such as birds, and provide a microhabitat for seeds of mid- and late-successional plants. As well as supporting natural forest regeneration and bat conservation, this cost-efficient method can also increase environmental awareness among landowners.  相似文献   

4.
Abstract: Bats are abundant and effective seed dispersers inside the forest, but what happens when a forest is fragmented and transformed into pasture? The landscape at Los Tuxtlas, Mexico, originally rainforest, is greatly fragmented and covered with pastures. We analyzed the seed rains produced by frugivorous bats and birds under isolated trees in pastures in the fragmented landscape and the contribution of this process to vegetational recovery. We surveyed bats and obtained fecal samples under isolated trees in pastures. We also collected seed rain below the canopy of 10 isolated Ficus trees, separating nocturnally dispersed seeds from diurnally dispersed seeds. We caught 652 bats of 20 species; 83% of captures were frugivores. The most abundant species were Sturnira lilium (48%), Artibeus jamaicensis (18%), Carollia perspicillata (12%), and Dermanura tolteca (11%). Fecal samples contained seeds of 19 species in several families: Piperaceae (50%), Moraceae (25%), Solanaceae (12%), Cecropiaceae (10%), and others (3%). Sturnira lilium was the most important disperser bat in pastures. Seed rain was dominated by zoochorous species (89%). We found seed diversity between day and night seed captures to be comparable, but we found a significant interaction of disperser type (  bird or bat) with season. Seven plant species accounted for 79% of the seed rain: Piper auritum (23%), Ficus (  hemiepiphytic-strangler tree) spp. (17%), Cecropia obtusifolia (10%), P. amalago (10%), Ficus (  free-standing tree) spp. (8%), P. yzabalanum (6%), and Solanum rudepanum (5%). Bats and birds are important seed dispersers in pastures because they disperse seeds of pioneer and primary species (trees, shrubs, herbs, and epiphytes), connect forest fragments, and maintain plant diversity. Consequently, they might contribute to the recovery of woody vegetation in disturbed areas in tropical humid forests.  相似文献   

5.
The endozoochorous dispersal of seeds by mammals and birds between distinct vegetation communities was assessed to determine the importance of these processes in coastal dune field management. Isolated pockets of thicket vegetation (bush-pockets) within a large coastal dune field provided the opportunity to study vertebrate seed dispersal and its contribution to their origin and maintenance. Mammalian and avian faeces were collected for the quantification of seeds dispersed via endozoochory. Birds and mammals showed considerable overlap, dispersing intact seeds of 17 and 29 plant species, respectively, but mammals dispersed a greater diversity and size range than birds. Extrapolation of mammalian faecal data indicates an annual input of 23 million intact seeds to the dune field. Significantly more seeds are deposited by mammals and birds in the bush-pockets than on open sand, and birds deposited greater numbers of seeds nearer the seed source. Zoochory appears to be critical for the maintenance of the bush-pocket habitats through the dispersal of climax woody plant species into the dune field. Directional dispersal by birds and mammals to the bush-pockets is considered to be responsible for the maintenance and possible origin of these bush-pockets. The high number of exotic plant propagules dispersed by both avian and mammalian zoochory highlights the importance of management of the Alexandria Coastal Dunefield (ACD) beyond the reserve boundaries. In a dynamic system such as the ACD which is within a declared nature reserve, the continued existence of the bush-pockets may depend on the maintenance, beyond the reserve boundaries, of a reservoir of not only plant material but vertebrate dispersers as well.  相似文献   

6.
Animal‐mediated seed dispersal is important for sustaining biological diversity in forest ecosystems, particularly in the tropics. Forest fragmentation, hunting, and selective logging modify forests in myriad ways and their effects on animal‐mediated seed dispersal have been examined in many case studies. However, the overall effects of different types of human disturbance on animal‐mediated seed dispersal are still unknown. We identified 35 articles that provided 83 comparisons of animal‐mediated seed dispersal between disturbed and undisturbed forests; all comparisons except one were conducted in tropical or subtropical ecosystems. We assessed the effects of forest fragmentation, hunting, and selective logging on seed dispersal of fleshy‐fruited tree species. We carried out a meta‐analysis to test whether forest fragmentation, hunting, and selective logging affected 3 components of animal‐mediated seed dispersal: frugivore visitation rate, number of seeds removed, and distance of seed dispersal. Forest fragmentation, hunting, and selective logging did not affect visitation rate and were marginally associated with a reduction in seed‐dispersal distance. Hunting and selective logging, but not fragmentation, were associated with a large reduction in the number of seeds removed. Fewer seeds of large‐seeded than of small‐seeded tree species were removed in hunted or selectively logged forests. A plausible explanation for the consistently negative effects of hunting and selective logging on large‐seeded plant species is that large frugivores, as the predominant seed dispersers for large‐seeded plant species, are the first animals to be extirpated from hunted or logged forests. The reduction in forest area after fragmentation appeared to have weaker effects on frugivore communities and animal‐mediated seed dispersal than hunting and selective logging. The differential effects of hunting and selective logging on large‐ and small‐seeded tree species underpinned case studies that showed disrupted plant‐frugivore interactions could trigger a homogenization of seed traits in tree communities in hunted or logged tropical forests. Meta Análisis de los Efectos de la Perturbación Humana sobre la Dispersión de Semillas por Animales  相似文献   

7.
We measured spatial and temporal patterns of seed dispersal and seedling recruitment for 58 species in a grassland community to test whether seed dispersal could predict patterns of invasion after disturbance. For the 12 most abundant grasses, recruitment of native species was dependent on the propagule supply of both native and exotic species. Variability in seed rain on small spatial (1-10 m) and temporal (within season) scales led to qualitative differences in the outcome of disturbance colonization such that native species dominated disturbances when exotic seed supply was low but failed to establish when exotic seed supply was high. Local dispersal and spatial heterogeneity in species composition promoted coexistence of native and exotic species by creating refuges from high exotic seed supply within native dominated patches. Despite this, copious exotic seed production strongly limited recruitment of native species in exotic dominated patches. Most grasslands in California are presently dominated by exotic species, suggesting that competition at the seedling stage is a major barrier to native species restoration.  相似文献   

8.
Abstract: Habitat fragmentation has reduced the richness of native species of forests in northeastern North America. Despite recent large-scale increases in forest cover, studies indicate that understory herbaceous plant communities may take many decades to recover. We studied recovery patterns of vegetation following up to 35 years of forest regeneration in restored former cottage and road sites at Point Pelée National Park, Ontario, Canada, to assess the vulnerability of the understory herbaceous species. Overall, there were no significant differences in the diversity of native species between restored and relatively undisturbed reference sites. There was, however, significant among-site variation in the composition of the native species component of these plant communities. When only restored sites were examined, variation in native species composition was associated with time since site restoration, soil moisture, canopy cover, and distance to continuous forest. Native species were assigned vulnerability rankings according to their relative occurrence in reference and restored sites. Spring-flowering herbs, with ant- or gravity-dispersed seeds, were absent from restored sites and were defined as highly vulnerable. In contrast, summer- and fall-flowering herbs, with vertebrate- and wind-dispersed seeds, dominated restored sites and were less vulnerable. Species of low and intermediate vulnerability had colonized restored sites successfully, and the latter should function as indicators of recovery. In contrast, species with high vulnerability rankings had not recovered at all and, because of their limited dispersal ranges, may recolonize restored sites only if they are actively reintroduced.  相似文献   

9.
Abstract: Habitat fragmentation increases seed dispersal limitation across the landscape and may also affect subsequent demographic stages such as seedling establishment. Thus, the development of adequate plans for forest restoration requires an understanding of mechanisms by which fragmentation hampers seed delivery to deforested areas and knowledge of how fragmentation affects the relationship between seed‐deposition patterns and seedling establishment. We evaluated the dispersal and recruitment of two bird‐dispersed, fleshy‐fruited tree species (Crataegus monogyna and Ilex aquifolium) in fragmented secondary forests of northern Spain. Forest fragmentation reduced the probability of seed deposition for both trees because of decreased availability of woody perches and fruit‐rich neighborhoods for seed dispersers, rather than because of reductions in tree cover by itself. The effects of fragmentation went beyond effects on the dispersal stage in Crataegus because seedling establishment was proportional to the quantities of bird‐dispersed seeds arriving at microsites. In contrast, postdispersal mortality in Ilex was so high that it obscured the seed‐to‐seedling transition. These results suggest that the effects of fragmentation are not necessarily consistent across stages of recruitment across species. Habitat management seeking to overcome barriers to forest recovery must include the preservation, and even the planting, of fleshy‐fruited trees in the unforested matrix as a measure to encourage frugivorous birds to enter into open and degraded areas. An integrative management strategy should also explicitly consider seed‐survival expectancies at microhabitats to preserve plant‐population dynamics and community structure in fragmented landscapes.  相似文献   

10.
Abstract:  Identification of factors that drive changes in plant community structure and contribute to decline and endangerment of native plant species is essential to the development of appropriate management strategies. Introduced species are assumed to be driving causes of shifts in native plant communities, but unequivocal evidence supporting this view is frequently lacking. We measured native vegetation, non-native earthworm biomass, and leaf-litter volume in 15 forests in the presence and absence of 3 non-native plant species ( Microstegium vimineum, Alliaria petiolata, Berberis thunbergii ) to assess the general impact of non-native plant and earthworm invasions on native plant communities in northeastern United States. Non-native plant cover was positively correlated with total native plant cover and non-native earthworm biomass. Earthworm biomass was negatively associated with cover of native woody and most herbaceous plants and with litter volume. Graminoid cover was positively associated with non-native earthworm biomass and non-native plant cover. These earthworm-associated responses were detected at all sites despite differences in earthworm species and abundance, composition of the native plant community, identity of invasive plant species, and geographic region. These patterns suggest earthworm invasion, rather than non-native plant invasion, is the driving force behind changes in forest plant communities in northeastern North America, including declines in native plant species, and earthworm invasions appear to facilitate plant invasions in these forests. Thus, a focus on management of invasive plant species may be insufficient to protect northeastern forest understory species.  相似文献   

11.
森林土壤种子库研究进展   总被引:1,自引:0,他引:1  
杜有新  曾平生 《生态环境》2007,16(5):1557-1563
土壤种子库与物种多样性存在密切相关性,森林土壤种子库是植被天然更新的物质基础。文章阐述了森林土壤种子库的内涵、森林生态系统土壤种子库的基本特征及其主要研究方法,探讨了影响种子库的基本因素及当前极为关注的热点问题。在受损森林生态系统目标树种培养、植被群落快速恢复和生态系统科学管理等领域仍存在一些理论和实践急待解决的问题,如随着群落进展演替土壤种子库种子数量在增加而质量却在逐渐下降,面临如何解决生态系统健康稳定发育和物种多样性长期维持问题。文章认为今后应加强土壤种子库与生物多样性保护、防止外来物种入侵乡土物种利用及对全球变化的响应等领域的研究工作,以期为从事森林土壤种子库研究和退化森林植被群落恢复实践提供理论指导。  相似文献   

12.
McConkey KR  Brockelman WY 《Ecology》2011,92(7):1492-1502
Plant species with generalized dispersal mutualisms are considered to be robust to local frugivore extinctions because of redundancy between dispersal agents. However, real redundancy can only occur if frugivores have similar foraging and ranging patterns and if fruit is a limiting resource. We evaluated the quantitative and qualitative contributions of seed dispersers for an endochorus mast-fruiting species, Prunus javanica (Rosaceae) in Khao Yai National Park, Thailand, to evaluate the potential redundancy of dispersers. Data were collected from tree watches, seed/fruit traps, and seed transects under and away from fruiting trees, feeding and seed deposition by gibbons (Hylobates lar), and evaluations of seed and first-year seedling survival. We identified three clusters of dispersers within the network. Most (>80%) frugivore species observed were small birds and squirrels that were not functional dispersers, dropping most seeds under or very near the tree crown, where seedling survival was ultimately nil. Monkeys (Macaca leonina) were low-quality, short-range dispersers, but they dispersed large numbers of seeds and were responsible for 67% of surviving first-year seedlings. Gibbons and Oriental Pied Hornbills (Anthracoceros albirostris) handled few fruits, but they provided the highest quality service by carrying most seeds away from the canopy to medium and long distances, respectively. Although there was overlap in the deposition patterns of the functional dispersers, they displayed complementary, rather than redundant, roles in seed dispersal. Satiation of all functional dispersers further limited their capacity to "replace" one another. Redundancy must be evaluated at the community level because each type of disperser may shift to different species in the non-masting years of P. javanica. Our results underscore the need for research on broader spatial and temporal scales, which combines studies of dispersal and plant recruitment, to better understand mechanisms that maintain network stability.  相似文献   

13.
Restorations commonly utilize seed addition to formerly arable lands where the development of native plant communities is severely dispersal limited. However, variation in seed addition practices may profoundly affect restoration outcomes. Theory and observations predict that species-rich seed mixtures and seeding at high densities should enhance native plant community establishment, minimize exotic species cover, and may promote resistance and resilience to, and recovery from, environmental perturbations. We studied the post-seeding establishment of native plant communities in large grassland restoration plots, which were sown at two densities crossed with two levels of species richness on formerly arable land in Nebraska, USA, and their responses to drought. To evaluate drought resistance, recovery, and resilience of restored plant communities, we erected rainfall manipulation structures and tracked the response of seeded species cover and total plant biomass during experimental drought relative to controls and in the post-drought growing season. High seed richness and high-density seeding treatments resulted in greater richness and cover of native, seeded species per 0.5 m2 compared to low-richness and low-density treatments. Cover differences in response to seed mixture richness were driven by native forbs. Richness and cover of exotic species were lowest in high-richness and high-density treatments. We found little evidence of differential drought resistance, recovery, and resilience among seeding treatments. Increases in exotic species across years were restricted to drought subplots, and were not affected by seeding treatments. Grassland restoration was generally enhanced and exotic cover reduced both by the use of high-richness seed mixtures and high-density seeding. Given the lack of restoration treatment effects on the resistance, recovery, or resilience of seeded species exposed to drought, and the increases in exotic species following drought, other forms of active management may be needed to produce restored plant communities that are robust to climate change.  相似文献   

14.
Summary. Three chemical viability tests were evaluated in the seed dispersal system of Rubia fruticosa, in which three main groups of dispersers participate: reptiles, birds and mammals. Tetrazolium chloride (TTC) and indigo carmine (IC) indicated a lower viability of seeds from droppings of introduced rabbits (Oryctolagus cuniculus) than of those from control plants and the native dispersers, lizards and gulls. In the rabbit seed treatment, significant differences were observed between results obtained with TTC and IC tests. Interpretation of these data, due to the presence of doubtful embryo staining, was more difficult using the IC test. Furthermore, some seeds that were clearly dead had been underestimated. In contrast with results obtained from the two staining methods, the EC test did not confirm that viability of control seeds and those seeds consumed by native dispersers were clearly higher than in seeds ingested by O. cuniculus. Further, compared to the other two tests, the EC method requires more careful handling of the embryo during the extraction process to avoid errors in viability estimation, since this method measures concentration of electrolytes that are released through cellular membranes. Thus, TTC was the most reliable test to assess seed viability in the seed dispersal system of R. fruticosa, and these results agree with those obtained in previous germination experiments made on the same set of seeds given the same treatments.  相似文献   

15.
Urban areas often contain sizeable pockets of degraded land, such as inactive landfills, that could be reclaimed as wildlife habitat and as connecting links to enhance remnant natural areas. In the northeastern U.S., many such lands fail to undergo natural succession to woodland, instead retaining a weedy, herbaceous cover for many years. We hypothesize that seed dispersal is a limiting factor, and that a form of secondary succession could be stimulated by introducing clusters of trees and shrubs to attract avian seed dispersers. As a direct test, we censused a 1.5-ha experimental plantation on the Fresh Kills Landfill (Staten Island, New York) one year after installation, in search of evidence that the plantation was spreading or increasing in diversity. The 17 planted species, many from coastal scrub forests native to this region, were surviving well but contributed almost no seedlings to the area, in part because only 20% of the installed trees or shrubs were reproductive. Of the 1079 woody seedlings found, 95% came from sources outside the plantation; most (71%) were from fleshy-fruited, bird-dispersed plants from nearby woodland fringes. Although the restoration planting itself had not begun to produce seedlings, it did function as a site for attracting dispersers, who enriched the young community with 20 new species. One-fourth of all new recruits were from nine additional wind-dispersed species. Locations with a high ratio of trees to shrubs had proportionately more recruits, indicating that plant size contributed to disperser attraction. The density of new recruits of each species was dependent on distance from the nearest potential seed source. Introducing native species with the capacity to attract avian dispersers may be the key to success of many restoration programs.  相似文献   

16.
Abstract: Seed dispersal by animals is considered a pivotal ecosystem function that drives plant‐community dynamics in natural habitats and vegetation recovery in human‐altered landscapes. Nevertheless, there is a lack of suitable ecological knowledge to develop basic conservation and management guidelines for this ecosystem service. Essential questions, such as how well the abundance of frugivorous animals predicts seeding function in different ecosystems and how anthropogenic landscape heterogeneity conditions the role of dispersers, remain poorly answered. In three temperate ecosystems, we studied seed dispersal by frugivorous birds in landscape mosaics shaped by human disturbance. By applying a standardized design across systems, we related the frequency of occurrence of bird‐dispersed seeds throughout the landscape to the abundance of birds, the habitat features, and the abundance of fleshy fruits. Abundance of frugivorous birds in itself predicted the occurrence of dispersed seeds throughout the landscape in all ecosystems studied. Even those landscape patches impoverished due to anthropogenic disturbance received some dispersed seeds when visited intensively by birds. Nonetheless, human‐caused landscape degradation largely affected seed‐deposition patterns by decreasing cover of woody vegetation or availability of fruit resources that attracted birds and promoted seed dispersal. The relative role of woody cover and fruit availability in seed dispersal by birds differed among ecosystems. Our results suggest that to manage seed dispersal for temperate ecosystem preservation or restoration one should consider abundance of frugivorous birds as a surrogate of landscape‐scale seed dispersal and an indicator of patch quality for the dispersal function; woody cover and fruit resource availability as key landscape features that drive seedfall patterns; and birds as mobile links that connect landscape patches of different degrees of degradation and habitat quality via seed deposition.  相似文献   

17.
The degree of interdependence and potential for shared coevolutionary history of frugivorous animals and fleshy-fruited plants are contentious topics. Recently, network analyses revealed that mutualistic relationships between fleshy-fruited plants and frugivores are mostly built upon generalized associations. However, little is known about the determinants of network structure, especially from tropical forests where plants' dependence on animal seed dispersal is particularly high. Here, we present an in-depth analysis of specialization and interaction strength in a plant-frugivore network from a Kenyan rain forest. We recorded fruit removal from 33 plant species in different forest strata (canopy, midstory, understory) and habitats (primary and secondary forest) with a standardized sampling design (3447 interactions in 924 observation hours). We classified the 88 frugivore species into guilds according to dietary specialization (14 obligate, 28 partial, 46 opportunistic frugivores) and forest dependence (50 forest species, 38 visitors). Overall, complementary specialization was similar to that in other plant-frugivore networks. However, the plant-frugivore interactions in the canopy stratum were less specialized than in the mid- and understory, whereas primary and secondary forest did not differ. Plant specialization on frugivores decreased with plant height, and obligate and partial frugivores were less specialized than opportunistic frugivores. The overall impact of a frugivore increased with the number of visits and the specialization on specific plants. Moreover, interaction strength of frugivores differed among forest strata. Obligate frugivores foraged in the canopy where fruit resources were abundant, whereas partial and opportunistic frugivores were more common on mid- and understory plants, respectively. We conclude that the vertical stratification of the frugivore community into obligate and opportunistic feeding guilds structures this plant-frugivore network. The canopy stratum comprises stronger links and generalized associations, whereas the lower strata are composed of weaker links and more specialized interactions. Our results suggest that seed-dispersal relationships of plants in lower forest strata are more prone to disruption than those of canopy trees.  相似文献   

18.
From 1988 to 1991, we studied the postfledging dispersal of 31 radio-tagged White-crowned Pigeons ( Columba leucocephala ) from three natal keys in Florida Bay. Immature birds dispersed from the natal keys at 26–45 days after batching, and most young dispersed more than 20 km during the first 10 days postdispersal. Dispersing birds flew either north to the Florida mainland or east to northeast to the mainline Florida Keys. On the mainland, immature birds fed nearly exclusively within Everglades National Park or an adjacent state wildlife management area. On the mainline keys, White-crowned Pigeons selectively used 5.01–20 ha forest fragments (p < 0.10) during the first 72 hours postdispersal. After this period, dispersing birds showed no preference among fragment size classes but used deciduous seasonal forests more frequently than suburban habitat(p < 0.10). The spatial pattern of dispersal on the mainline keys suggests that, during the first 72 hours postdispersal. White-crowned Pigeons are not able to reach northern Key Largo, where 69% of the deciduous seasonal forests are protected in state or federal ownership. Protection of large forest fragments, especially on southern Key Largo, should be a priority for maintaining populations of White-crowned Pigeons. These forests provide a series of "stepping stones" that enable dispersing immature White-crowned Pigeons to fly to more distant areas where habitat availability is less restricted. This species is threatened in Florida and may play an important role in maintaining plant species diversity in the seasonal deciduous forests of south Florida by dispersing seeds of at least 37 species of trees and shrubs. Protection of sufficient habitat to allow successful postfledging dispersal of this important seed disperser will also protect the ecosystem's biodiversity.  相似文献   

19.
There is current debate about the potential for secondary regrowth to rescue tropical forests from an otherwise inevitable cascade of biodiversity loss due to land clearing and scant evidence to test how well active restoration may accelerate recovery. We used site chronosequences to compare developmental trajectories of vegetation between self‐organized (i.e., spontaneous) forest regrowth and biodiversity plantings (established for ecological restoration, with many locally native tree species at high density) in the Australian wet tropics uplands. Across 28 regrowth sites aged 1–59 years, some structural attributes reached reference rainforest levels within 40 years, whereas wood volume and most tested components of native plant species richness (classified by species’ origins, family, and ecological functions) reached less than 50% of reference rainforest values. Development of native tree and shrub richness was particularly slow among species that were wind dispersed or animal dispersed with large (>10 mm) seeds. Many species with animal‐dispersed seeds were from near‐basal evolutionary lineages that contribute to recognized World Heritage values of the study region. Faster recovery was recorded in 25 biodiversity plantings of 1–25 years in which wood volume developed more rapidly; native woody plant species richness reached values similar to reference rainforest and was better represented across all dispersal modes; and species from near‐basal plant families were better (although incompletely) represented. Plantings and regrowth showed slow recovery in species richness of vines and epiphytes and in overall resemblance to forest in species composition. Our results can inform decision making about when and where to invest in active restoration and provide strong evidence that protecting old‐growth forest is crucially important for sustaining tropical biodiversity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号