首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
In the northern hemisphere, summer low flows are a key attribute defining both quantity and quality of aquatic habitat. I developed one set of models for New England streams/rivers predicting July/August median flows averaged across 1985–2015 as a function of weather, slope, % imperviousness, watershed storage, glacial geology, and soils. These models performed better than most United States Geological Survey models for summer flows developed at a statewide scale. I developed a second set of models predicting interannual differences in summer flows as a function of differences in air temperature, precipitation, the North Atlantic Oscillation (NAO) index, and lagged NAO. Use of difference equations eliminated the need for transformations and accounted for serial autocorrelations at lag 1. The models were used in sequence to estimate time series for monthly low flows and for two derived flow metrics (tenth percentile [Q10] and minimum 3‐in‐5 year average flows). The first metric is commonly used in assessing risk to low‐flow conditions over time, while the second has been correlated with increased probability of localized extinctions for brook trout. The flow metrics showed increasing trends across most of New England for 1985–2015. However, application of summer flow models with average and extreme climate projections to the Taunton River, Massachusetts, a sensitive watershed undergoing rapid development, projected that low‐flow metrics will decrease over the next 50 years.  相似文献   

2.
Headwater streams have a significant nexus or physical, chemical, and/or biological connection to downstream reaches. Generally, defined as 1st‐3rd order with ephemeral, intermittent, or perennial flow regimes, these streams account for a substantial portion of the total stream network particularly in mountainous terrain. Due to their often remote locations, small size, and large numbers, conducting field inventories of headwater streams is challenging. A means of estimating headwater stream location and extent according to flow regime type using publicly available spatial data is needed to simplify this complex process. Using field‐collected headwater point of origin data from three control watersheds, streams were characterized according to a set of spatial parameters related to topography, geology, and soils. These parameters were (1) compared to field‐collected point of origin data listed in three nearby Jurisdictional Determinations, (2) used to develop a geographic information system (GIS)‐based stream network for identifying ephemeral, intermittent, and perennial streams, and (3) applied to a larger watershed and compared to values obtained using the high‐resolution National Hydrography Dataset (NHD). The parameters drainage area and local valley slope were the most reliable predictors of flow regime type. Results showed the high‐resolution NHD identified no ephemeral streams and 9 and 65% fewer intermittent and perennial streams, respectively, than the GIS model.  相似文献   

3.
ABSTRACT: Stationarity of rainfall statistical parameters is a fundamental assumption in hydraulic infrastructure design that may not be valid in an era of changing climate. This study develops a framework for examining the potential impacts of future increases in short duration rainfall intensity on urban infrastructure and natural ecosystems of small watersheds and demonstrates this approach for the Mission/Wagg Creek watershed in British Columbia, Canada. Nonstationarities in rainfall records are first analyzed with linear regression analysis, and the detected trends are extrapolated to build potential future rainfall scenarios. The Storm Water Management Model (SWMM) is used to analyze the effects of increased rainfall intensity on design peak flows and to assess future drainage infrastructure capacity according to the derived scenarios. While the framework provided herein may be modified for cases in which more complex distributions for rainfall intensity are needed and more sophisticated stormwater management models are available, linear regressions and SWMM are commonly used in practice and are applicable for the Mission/Wagg Creek watershed. Potential future impacts on stream health are assessed using methods based on equivalent total impervious area. In terms of impacts on the drainage infrastructure, the results of this study indicate that increases in short duration rainfall intensity may be expected in the future but that they would not create severe impacts in the Mission/Wagg Creek system. The equivalent levels of imperviousness, however, suggest that the impacts on stream health could be far more damaging.  相似文献   

4.
ABSTRACT: Based on field surveys and analysis of road networks using a geographic information system (GIS), we assessed the hydrologic integration of an extensive logging-road network with the stream network in two adjacent 62 and 119 km2 basins in the western Cascades of Oregon. Detailed surveys of road drainage for 20 percent of the 350 km road network revealed two hydrologic flow paths that link roads to stream channels: roadside ditches draining to streams (35 percent of the 436 culverts examined), and roadside ditches draining to culverts with gullies incised below their outlets (23 percent of culverts). Gully incision is significantly more likely below culverts on steep (< 40 percent) slopes with longer than average contributing ditch length. Fifty-seven percent of the surveyed road length is connected to the stream network by these surface flowpaths, increasing drainage density by 21 to 50 percent, depending on which road segments are assumed to be connected to streams. We propose a conceptual model to describe the hydrologic function of roads based on two effects: (1) a volumetric effect, increasing the volume of water available for quickflow and (2) a timing effect, altering flow-routing efficiency through extensions to the drainage network. This study examines the second of these two effects. Future work must quantify discharge along road segments connected to the stream network in order to more fully explain road impacts on basin hydrology.  相似文献   

5.
ABSTRACT: Stream channels are known to change their form as a result of watershed urbanization, but do they restabilize under subsequent conditions of constant urban land use? Streams in seven developed and developing watersheds (drainage areas 5–35 km2) in the Puget Sound lowlands were evaluated for their channel stability and degree of urbanization, using field and historical data. Protocols for determining channel stability by visual assessment, calculated bed mobility at bankfull flows, and resurveyed cross‐sections were compared and yielded nearly identical results. We found that channel restabilization generally does occur within one or two decades of constant watershed land use, but it is not universal. When (or if) an individual stream will restabilize depends on specific hydrologic and geomorphic characteristics of the channel and its watershed; observed stability is not well predicted by simply the magnitude of urban development or the rate of ongoing land‐use change. The tendency for channel restabilization suggests that management efforts focused primarily on maintaining stability, particularly in a still‐urbanizing watershed, may not always be necessary. Yet physical stability alone is not a sufficient condition for a biologically healthy stream, and additional rehabilitation measures will almost certainly be required to restore biological conditions in urban systems.  相似文献   

6.
ABSTRACT: The performance of two popular watershed scale simulation models — HSPF and SWAT — were evaluated for simulating the hydrology of the 5,568 km2 Iroquois River watershed in Illinois and Indiana. This large, tile drained agricultural watershed provides distinctly different conditions for model comparison in contrast to previous studies. Both models were calibrated for a nine‐year period (1987 through 1995) and verified using an independent 15‐year period (1972 through 1986) by comparing simulated and observed daily, monthly, and annual streamflow. The characteristics of simulated flows from both models are mostly similar to each other and to observed flows, particularly for the calibration results. SWAT predicts flows slightly better than HSPF for the verification period, with the primary advantage being better simulation of low flows. A noticeable difference in the models' hydrologic simulation relates to the estimation of potential evapotranspiration (PET). Comparatively low PET values provided as input to HSPF from the BASINS 3.0 database may be a factor in HSPF's overestimation of low flows. Another factor affecting baseflow simulation is the presence of tile drains in the watershed. HSPF parameters can be adjusted to indirectly account for the faster subsurface flow associated with tile drains, but there is no specific tile drainage component in HSPF as there is in SWAT. Continued comparative studies such as this, under a variety of hydrologic conditions and watershed scales, provide needed guidance to potential users in model selection and application.  相似文献   

7.
ABSTRACT: A geographic information system (GIS) was used to determine the relation between the stream-water quality and underlying geology in Roberts Creek watershed, Clayton County, Iowa, for base-flow conditions during the spring and summer of 1988–90. Geologic, stream, basin and subbasin boundaries, and water-quality sampling-site coverages were created by digitizing available maps. A contour coverage was created from digital line-graph data. The areal extent of geologic units subcropping in each subbasin was quantified with GIS, and the results then were output and joined with the discharge and water-quality data for statistical analyses. Illustrations showing the geology of the study area and the results of the study were prepared using GIS. By using GIS and a statistical software package, a weak but statistically significant relation was found between the water temperature, pH, and nitrogen concentrations in Roberts Creek and the underlying geology during base-flow conditions.  相似文献   

8.
ABSTRACT: Spatial variation of five water quality variables were analyzed using composite water samples collected periodically from eight small watersheds (11.4–71.6 km2) in forested East Texas during 1977 through 1980. Based on 31 observations during the four-year period the average yield of nitrate-nitrite nitrogen (NNN), total kjeldahl nitrogen (TKN), total phosphorus (PO4), chloride (CHL), and total suspended sediment (TSS) were 1.43, 21.96, 3.09, 50.11, and 90.39 ka/ha/yr, respectively. Compared to the water quality standards of the U.S. Environmental Protection Agency (1976) and the Texas Department of Water Resources (1976) for CHL, TSS, and NNN, none of the observations exceeded the limits for public water supplies. The study showed that forested watersheds normally yielded stream flow with better quality than that from agricultural watersheds. Watersheds of greater percent of pasture area, mean slope, stream segment frequency, and drainage density produced greater concentrations for these five chemical parameters in water samples. Meaningful equations were developed for estimating mean average yields for each chemical parameter for each watershed with R2 ranging from 0.77 to 0.96 and standard error of estimates from 17 to 33 percent of the observed means.  相似文献   

9.
ABSTRACT: Along a drainage network, there is a systematic variation of average flow parameters (width, depth, and velocity) at flows having the same flow duration. Hydraulic geometry equations mathematically express this interdependent relationship of stream-flow characteristics for a basin for annual flow durations varying from 10 to 90 percent. However, the equations proposed so far have had rather poor predictive performance for low flows. An independent investigation of the variation of discharge with drainage area and annual flow duration demonstrates a consistent relationship between these parameters. The relationship for the high to median-flow range differs, however, from that for the median— to low-flow range. The proposed equations provide a better predictive performance for low flows than previous formulations and a versatile means of estimating flow parameters for streams throughout a basin. The improved basin hydraulic geometry equations have a wide range of applications in areas such as stream habitat assessment, water quality modeling, channel design, and stream restoration projects.  相似文献   

10.
ABSTRACT: The purpose of this study was to determine the relationships between precipitation at the seasonal and annual scale and water discharge per surface area for seven contiguous first - and second-order tributaries of the Rhode River, a small tidal tributary to Chesapeake Bay, Maryland, USA. The goal was to quantify the effects of a wide range of precipitation, representative of inter-annual variations in weather in this region. The discharges measured included both overland storm flows and groundwater, since the aquifers were perched on a clay aquiclude. Precipitation varied from 824 to 1684 mm/yr and area-weighted Rhode River watershed discharge varied from 130 to 669 mm/yr with an average of 332 mm/yr or 29.1 percent of average precipitation. Average annual dis. charges from three first-order watersheds were significantly lower per surface area and varied from 16.0 to 21.9 percent of precipitation. Winter season precipitation varied from 125 to 541 mm. Area-weighted Rhode River winter discharge varied from 26.3 to 230 mm with an average of 115 mm or 43.9 percent of average precipitation. Spring season precipitation varied from 124 to 510 mm and watershed discharge varied from 40.0 to 321 mm with an average of 138 mm or 46.9 percent of average precipitation. In the summer and fall seasons, watershed discharge averaged 40.6 and 40.9 mm or 13.5 and 14.3 percent of average precipitation, respectively. Except in winter, the proportion of precipitation discharged in the streams increased rapidly with increasing volume of precipitation. Stream order showed a higher correlation with volume of discharge than vegetative cover on the watershed.  相似文献   

11.
ABSTRACT: We compared watershed land‐use and fish community data between the 1970s and 1990s in 47 small streams in southeastern Wisconsin. Our goal was to quantify effects of increasing urbanization on stream fishes in what had been a predominantly agricultural region. In the 43 test watersheds, mean surface coverage by agricultural lands decreased from 54 percent to 43 percent and urban lands increased from 24 percent to 31 percent between 1970 and 1990. Agriculture dominated the four reference watersheds, but neither agriculture (65–59 percent) nor urban (4.4–4.8 percent) land‐uses changed significantly in those watersheds during the study period. From the 1970s to the 1990s the mean number of fish species for the test stream sites decreased 15 percent, fish density decreased 41 percent, and the index of biotic integrity (IBI) score dropped 32 percent. Fish community attributes at the four reference sites did not change significantly during the same period, although density was substantially lower in the 1990s. For both the 1970s and 1990s test sites, numbers of fish species and IBI scores were positively correlated with watershed percent agricultural land coverage and negatively correlated with watershed urban land uses, as indexed by percent effective connected imperviousness. Numbers of fish species per site and IBI scores were highly variable below 10 percent imperviousness, but consistently low above 10 percent. Sites that had less than 10 percent imperviousness and fewer than 10 fish species in the 1970s suffered the greatest relative increase in imperviousness and decline in species number over the study period. Our findings are consistent with previous studies that have found strong negative effects of urban land uses on stream ecosystems and a threshold of environmental damage at about 10 percent imperviousness. We conclude that although agricultural land uses often degrade stream fish communities, agricultural land impacts are generally less severe than those from urbanization on a per‐unit‐area basis.  相似文献   

12.
The Jack Creek watershed, a 133 km2 (51.5 mi2) drainage in southwestern Montana, was impacted by a mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic in 1975–1977 which killed an estimated 35 percent of its total timber. Analyses of USGS streamflow data for four years prior to and five years after mortality suggest a 15 percent post-epidemic increase in annual water yield, a two-to three-week advance in the annual hydrograph, a 10 percent increase in low flows and little increase of peak runoff.  相似文献   

13.
ABSTRACT: Measured stream discharge plus calculated ground water discharge (total measured runoff) were compared with runoff calculated by the unit-runoff method for the two largest watersheds of Mirror Lake for 1981–1983. Runoff calculated by the unit-runoff method, using Hubbard Brook watershed 3 as the index watershed, was greater than the total measured runoff into Mirror Lake during periods of high flow and slightly less than the total measured runoff into Mirror Lake during periods of low flow. Annual calculated unit runoff was 17 to 37 percent greater than total measured runoff. Differences in monthly runoff are far greater, ranging from 0 to greater than 100 percent. For high flows the calculated unit runoff is about 2 times greater than total measured runoff. For low flows the northwest basin of Mirror Lake has the greatest ground water contribution compared to the other two basins. In contrast, Hubbard Brook watershed 3 has the least ground water contribution.  相似文献   

14.
ABSTRACT: Valley Creek watershed is a small stream system that feeds the Schuylkill River near Philadelphia, Pennsylvania. The watershed is highly urbanized, including over 17 percent impervious surface cover (ISC) by area. Imperviousness in a watershed has been linked to fish community structure and integrity. Generally, above 10 to 12 percent ISC there is marked decline in fish assemblages with fish being absent above 25 percent ISC. This study quantifies the importance of ground water in maintaining fish species diversity in subbasins with over 30 percent ISC. Valley Creek contains an atypical fish assemblage in that the majority of the fish are warm‐water species, and the stream supports naturally reproducing brown trout, which were introduced and stocked from the early 1900s to 1985. Fish communities were quantified at 13 stations throughout the watershed, and Simpson's species diversity index was calculated. One hundred and nine springs were located, and their flow rates measured. A cross covariance analysis between Simpson's species diversity index and spring flow rates upstream of fish stations was performed to quantify the spatial correlation between these two variables. The correlation was found to be highest at lag distances up to about 400 m and drop off significantly beyond lag distances of about 800 m.  相似文献   

15.
ABSTRACT: An automated extraction of channel network and sub-watershed characteristics from digital elevation models (DEM) is performed by model DEDNM. This model can process DEM data of limited vertical resolution representing low relief terrain. Such representations often include ill-defined drainage boundaries and indeterminate flow paths. The application watershed is an 84 km2 low relief watershed in southwestern Oklahoma. The standard for validation is the network and subwatershed parameters defined by the blue line method on USGS 7.5–minute topographic maps. Evaluation of the generated and validation networks by visual comparisons shows a high degree of correlation. Comparison of selected network parameters (channel length, slope, drainage density, etc.) and of drainage network composition (bifurcation, length, slope, and area ratios) shows that, on the average, the generated parameters are within 5 percent of those derived from the validation network. The largest discrepancies were found for the channel slope values. The results of this application demonstrate that DEDNM effectively addresses network definition problems often encountered in low relief terrain and that it can generate accurate network and subwatershed parameters under those conditions.  相似文献   

16.
ABSTRACT: The Soil and Water Assessment Tool (SWAT) model, designed for use on rural ungaged basins and incorporating a GRASS GIS interface, was used to model the hydrologic response of the Ariel Creek watershed of northeastern Pennsylvania. Model evaluation of daily flow prior to calibration revealed a deviation of runoff volumes (Dv) of 68.3 percent and a Nash-Sutcliffe coefficient of-0.03. Model performance was affected by unusually large observed snowmelt events and the inability of the model to accurately simulate baseflow, which was influenced by the presence of fragipans. Seventy-five percent of the soils in the watershed contain fragipans. Model calibration yielded a Dv of 39.9 percent and a Nash-Sutcliffe coefficient of 0.04, when compared on a daily basis. Monthly comparisons yielded a Nash-Sutcliffe coefficient of 0.14. Snowmelt events in the springs of 1993 and 1994, which were unusually severe, were not adequately simulated. Neglecting these severe events, which produced the largest and third largest measured flows for the period of record, a Dv of 4.1 percent and Nash-Sutcliffe coefficient of 0.20 were calculated on a daily comparison, while on a monthly basis the Nash-Sutciffe coefficient was 0.55. These results suggest that the SWAT model is better suited to longer period simulations of hydrologic yields. Baseflow volumes were accurately simulated after calibration (Dv= -0.2 percent). Refinements made to the algorithms controlling subsurface hydrology and snowmelt, to better represent the presence of fragipans and snowmelt events, would likely improve model performance.  相似文献   

17.
ABSTRACT: Regional hydrologic procedures such as generalized least squares regression and streamflow record augmentation have been advocated for obtaining estimates of both flood-flow and low-flow statistics at ungaged sites. While such procedures are extremely useful in regional flood-flow studies, no evaluation of their merit in regional low-flow estimation has been made using actual streamflow data. This study develops generalized regional regression equations for estimating the d-day, T-year low-flow discharge, Qd, t, at ungaged sites in Massachusetts where d = 3, 7, 14, and 30 days. A two-parameter lognormal distribution is fit to sequences of annual minimum d-day low-flows and the estimated parameters of the lognormal distribution are then related to two drainage basin characteristics: drainage area and relief. The resulting models are general, simple to use, and about as precise as most previous models that only provide estimates of a single statistic such as Q7,10. Comparisons are provided of the impact of using ordinary least squares regression, generalized least squares regression, and streamflow record augmentation procedures to fit regional low-flow frequency models in Massachusetts.  相似文献   

18.
Abstract: Mapping stream channels and their geomorphic attributes is an important step in many watershed research and management projects. Often insufficient field data exist to map hydromorphologic attributes across entire drainage basins, necessitating the application of hydrologic modeling tools to digital elevation models (DEMs) via a geographic information system (GIS). In this article, we demonstrate methods for deriving synthetic stream networks via GIS across large and diverse basins using drainage‐enforced DEMs, along with techniques for estimating channel widths and gradient on the reach scale. The two‐step drainage enforcement method we used produced synthetic stream networks that displayed a high degree of positional accuracy relative to the input streams. The accuracies of our estimated channel parameters were assessed with field data, and predictions of bankfull width, wetted width and gradient were strongly correlated with measured values (r2 = 0.92, r2 = 0.95, r2 = 0.88, respectively). Classification accuracies of binned channel attributes were also high. Our methodology allows for the relatively rapid mapping of stream channels and associated morphological attributes across large geographic areas. Although initially developed to provide salmon recovery planners with important salmon habitat information, we suggest these methodologies are relevant to a variety of research and management questions.  相似文献   

19.
ABSTRACT: Streamflow changes resulting from clearcut harvest of lodgepole pine (Pinus contorta) on a 2145 hectare drainage basin are evaluated by the paired watershed technique. Thirty years of continuous daily streamflow records were used in the analysis, including 10 pre-harvest and 20 post-harvest years of data. Regression analysis was used to estimate the effects of timber harvest on annual water yield and annual peak discharge. Removal of 14 million board feet of lodgepole pine (Pinus contorta) from about 526 hectares (25 percent of the basin) produced an average of 14.7 cm additional water yield per year, or an increase of 52 percent. Mean annual daily maximum discharge also increased by 1.6 cubic meters per second or 66 percent. Increases occurred primarily during the period of May through August with little or no change in wintertime streamflows. Results suggest that clearcutting conifers in relatively large watersheds (> 2000 ha) may produce significant increases in water yield and flooding. Implications of altered streamflow regimes are important for assessing the future ecological integrity of stream ecosystems subject to large-scale timber harvest and other disturbances that remove a substantial proportion of the forest cover.  相似文献   

20.
ABSTRACT: Long-term land use and reservoir sedimentation were quantified and linked in a small agricultural reservoir-watershed system without having historical data. Land use was determined from a time sequence of aerial photographs, and reservoir sedimentation was determined from cores with 137Cs dating techniques. They were linked by relating sediment deposition to potential sediment production which was determined by the Universal Soil Loss Equation and by SCS estimates for gullied land. Sediment cores were collected from Tecumseh Lake, a 55-ha reservoir with a 1,189-ha agricultural watershed, constructed in 1934 in central Oklahoma. Reservoir sediment deposition decreased from an average of 5,933 Mg/yr from 1934 to 1954, to 3,179 Mg/yr from 1954 to 1962, and finally to 1,017 Mg/yr from 1962 to 1987. Potential sediment production decreased from an average of 29,892 to 11,122 and then to 3,589 Mg/yr for the same time periods as above, respectively. Reductions in deposition and sediment production corresponded to reductions in cultivated and abandoned cropland which became perennial pasture. Together, cultivated and abandoned cropland accounted for 59 percent of the watershed in 1937, 24 percent in 1954, and 10 percent in 1962. Roadway erosion, stream bank erosion, stored stream channel sediment, and long-term precipitation were considered, but none seemed to play a significant role in changing sediment deposition rates. Instead, the dominant factor was the conversion of fields to perennial pastures. The effect of conservation measures on reservoir sedimentation can now be quantified for many reservoirs where historical data is not available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号