首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Huang HL  Lee WM 《Chemosphere》2001,44(5):963-972
Surfactants can increase the solubility of non-polar compounds, and have been applied in areas such as soil washing and treatment of non-aqueous phase liquids (NAPLs). This investigation explored the feasibility of removing vapor phase polycyclic aromatic hydrocarbon (PAH) from gases using an anionic surfactant. The solubility of vapor phase naphthalene was measured herein using gas chromatograph (GC) with a photon ionization detector (PID). The measurement results indicated that surfactant molecules were not favorable to micelle formation when temperatures increased from 25 degrees C to 50 degrees C. Regardless of whether solutions were quiescent or agitated, equilibrium naphthalene apparent solubility increased linearly with surfactant concentrations exceeding critical micelle concentration (CMC). The pH effects on naphthalene apparent solubility were small. Agitation increased naphthalene apparent solubility and lumped mass transfer coefficients. Furthermore, lumped mass transfer coefficients decreased with increasing surfactant concentration owing to increase in interfacial resistance and viscosity and decreased spherical micelle diffusion coefficients. Finally, the net absorption rate increased because the solubilization effects of micelles exceeded the reduction effects of mass transfer coefficient above the CMC. The enhanced naphthalene apparent solubility from the addition of surfactant can be expressed by an enrichment factor (EF). The EF value of naphthalene for the surfactant solution at 0.1 M with agitation at 270 rpm relative to quiescent water could reach 18.6. This work confirms that anionic surfactant can improve the removal efficiency of hydrophobic organic compound (HOC) from the gas phase.  相似文献   

2.
The Ostwald solubility coefficient, L of 17 volatile organic compounds (VOCs) from the gas phase into water and dilute aqueous ammonia solutions was determined by the equilibrium partitioning in closed system-solid phase micro extraction (EPICS-SPME) method at 303 K and at 0-2.5 mol dm(-3) ammonia concentrations. Ammonia increased the solubility of all VOCs nearly linearly, but to a different extent. The difference in the solubility values in aqueous ammonia solutions (Lmix) compared to pure water (L) is explained on the basis of a Linear Solvation Energy Relationship (LSER) equation made applicable for solvent mixtures, logLmix - logL = x((sNH3 - sH2O)pi2H + (aNH3 - aH2O)Sigma2H + (bNH3 - bH2O)Sigmabeta2H + (vNH3 - VH2O)Vx). sNH3 - sH2O, aNH3 - aH2O, bNH3 - bH2O, vNH3 - vH2O are the differences of solvent parameters, x is the mole fraction, pi2H is the solute dipolarity-polarizability, Sigmaalpha2H is the effective hydrogen bond acidity of the solute, Sigmabeta2H is the effective hydrogen bond basicity of the solute and Vx, the McGowan characteristic volume. The most significant term was v, the phase hydrophobicity. The solubility behavior was explained by the change in structure of the aqueous solution: the presence of ammonia reduces the cavity effect. These findings show that the presence of compounds such as ammonia, frequently observed in environmental waters, especially wastewaters, affect the fugacity of VOCs, having consequences for the environmental partitioning of VOCs and having technical consequences towards wastewater treatment technologies.  相似文献   

3.
Effect of a cationic surfactant on the volatilization of PAHs from soil   总被引:1,自引:0,他引:1  

Purpose

Cationic surfactants are common in soils because of their use in daily cosmetic and cleaning products, and their use as a soil amendment for the mitigation and remediation of organic contaminated soils has been proposed. Such surfactant may affect the transfer and fate of organic contaminants in the environment. This study investigated the effect of a cationic surfactant, dodecylpyridinium bromide (DDPB), on the volatilization of polycyclic aromatic hydrocarbons (PAHs) from a paddy soil.

Materials and methods

The volatilization of PAHs from moist soil amended with different concentrations of DDPB was tested in an open system. The specific effects of DDPB on the liquid?Cvapor and solid?Cvapor equilibriums of PAHs were separately investigated in closed systems by headspace analysis.

Results and discussion

DDPB affects both liquid?Cvapor and solid?Cvapor processes of PAHs in soil. At DDPB concentrations below the critical micelle concentration (CMC), movement of PAHs from the bulk solution to the gas?Cliquid interface appeared to be facilitated by interaction between PAHs and the surfactant monomers adsorbed at the gas?Cliquid interface, promoting the volatilization of PAHs from solution. However, when DDPB was greater than the CMC, volatilization was inhibited due to the solubilization of PAHs by micelles. On the other hand, the formation of sorbed surfactant significantly inhibited the solid?Cvapor volatilization of PAHs.

Conclusions

The overall effect of the two simultaneous effects of DDPB on liquid?Cvapor and solid?Cvapor processes was a decreased volatilization loss of PAHs from soil. Inhibition of PAH volatilization was more significant for the soil with a lower moisture content.  相似文献   

4.
Previous research has demonstrated that an anionic surfactant can increase the solubility of the vapor phases of both naphthalene and sulfur dioxide in water. This study examines the feasibility of removing polycyclic aromatic hydrocarbons (PAHs) during gas absorption by adding the polyoxyethylenated nonionic surfactants tetraethylene glycol monodecyl ether (C10E4), octaethylene glycol monodecyl ether (C10E8), and octaethylene glycol monotetradecyl ether (C14E8), to water. The apparent solubility and absorption rates of naphthalene in surfactant solution were slightly higher than in pure water at a concentration lower than the critical micelle concentration (CMC). However, the apparent equilibrium naphthalene solubility increased linearly in proportion to the concentrations of nonionic surfactants because of the solubilization effect of micelles at concentrations above the CMC. The solubilization effect exceeded that of the reduced mass transfer coefficient, increasing the rate of absorption of vaporous naphthalene. For the four surfactants, the capacity to solubilize naphthalene was in the order C10E4 > C14E8 > C10E8 > sodium dodecyl sulfate (SDS) and was related to the hydrophile-lipophile balance values of the surfactants. The enrichment factors, which can express the degree of naphthalene solubility in solution, were 6.09-14.2 at a surfactant concentration of 0.01 M for the three polyoxyethylenated nonionic surfactants. Empirical findings confirm that adding nonionic surfactants increases the absorption efficiency of hydrophobic organic compounds (HOCs) using spray or packed tower.  相似文献   

5.
A novel process for degradation of toluene in the gas-phase using heterogeneous gas-liquid photocatalytic oxidation has been developed. The degradation of toluene gas by photo-Fenton reaction in the liquid-phase has experimentally examined. The photo-Fenton reaction in the liquid-phase could improve the overall toluene absorption rate by increasing the driving force for mass transfer and as a result enhance the removal of toluene in the exhaust gas. The toluene concentrations in the inlet gas were varied in the range from 0.0968 to 8.69gm(-3) with initial hydrogen peroxide concentration of 400mgl(-1) and Fe dose of 5.0mgl(-1). It was found that toluene in the inlet gas was almost completely dissolved into water and degraded in the liquid-phase for the inlet toluene gas concentration of less than 0.42gm(-3). The dynamic process of toluene gas degradation by the photo-Fenton reaction providing information for reaction kinetics and mass transfer rate was examined. Toluene removal kinetic analysis indicated that photo-Fenton degradation was significantly affected by H(2)O(2) concentration. The experimental results were satisfactorily described by the predictions simulated using the simplified tanks-in-series model combined with toluene removal kinetic analysis. The present results showed that the proposed chemical absorption process using the photo-Fenton heterogeneous gas-liquid photocatalytic oxidation is very effective for degradation of volatile organic gases.  相似文献   

6.
Li CW  Liu CK  Yen WS 《Chemosphere》2006,63(2):353-358
A nonionic surfactant, polyoxyethylene Octyl phenyl ether (Triton-X), is added to a micellar-enhanced ultrafiltration process to lower the critical micellar concentration (CMC) of an anionic surfactant, sodium dodecyl sulfate (SDS). The effects of adding Triton-X on the copper removal efficiency, the permeate SDS concentration, the copper binding capacity of SDS micelles, and membrane fouling are investigated. Our results show that the addition of Triton-X at concentrations greater than its CMC can reduce the SDS dosage required for effective Cu removal, and at the same time, minimize the permeate SDS concentration. Although, no adverse effect on the copper binding capacity of SDS micelle is observed by the addition of Triton-X, the membrane fouling is worsen. Cleaning the membrane with DI water allowed restoring the membrane flux, indicating that the fouling caused by Triton-X was reversible.  相似文献   

7.
Zhou W  Zhu L 《Chemosphere》2005,60(9):1237-1245
The effect of a nonionic surfactant, Triton X-100 (TX100), on the distribution of four representative polycyclic aromatic hydrocarbons (PAHs), phenanthrene, fluorene, acenaphthene and naphthalene, in soil-water system was studied on a natural soil. The apparent soil-water distribution coefficient with surfactant (Kd*) for these compounds increased when TX100 equilibrium concentration from zero to around the critical micelle concentration (CMC), followed by a decrease in Kd* at TX100 equilibrium concentration greater than CMC. This is a direct result of surfactant sorption onto soil followed by PAHs partitioning to the sorbed surfactant. The values of carbon-normalized solute distribution coefficient (Kss) with the sorbed TX100 are greater than the corresponding partition coefficients with soil organic matter (Koc), which indicates the soil-sorbed nonionic surfactant is more effective per unit mass as a partitioning medium than the native soil organic matter for PAHs. When Kd* = Kd the corresponding initial concentration of surfactant was defined as critical washing concentration (CWC). Depending on the surfactant initial concentration below or above the CWC, the addition of nonionic surfactant can enhance the retardation of soil for PAHs or promote the removal of PAHs from soil, respectively. The values of Kd* and CWC can be predicted by a model, which correlates them with the compounds' octanol-water partition coefficients (Kow), soil property and the amount of soil-sorbed surfactant.  相似文献   

8.
A study was conducted to determine the potential of a two-phase partitioning bioreactor (TPPB) for the treatment of a poorly soluble compound, anthracene, by the enzyme manganese peroxidase (MnP) from the fungus Bjerkandera sp. BOS55. Silicone oil was used as the immiscible solvent, which contained anthracene at high concentrations. The optimization of the oxidation process was conducted taking into account the factors which may directly affect the MnP catalytic cycle (the concentration of H(2)O(2) and malonic acid) and those that affect the mass transfer of anthracene between the organic and the aqueous phase (solvent and agitation speed). The main objective was carried out in terms of improved efficiency, i.e., maximizing the anthracene oxidized per unit of enzyme used. The TPPB reached nearly complete oxidation of anthracene at a conversion rate of 1.8mgl(-1)h(-1) in 56h, which suggests the application of enzymatic TPPBs for the removal of poorly soluble compounds.  相似文献   

9.
Shen X  Huang W  Yao C  Ying S 《Chemosphere》2007,67(10):1927-1932
Heavy metals and surfactants have a significant effect on the sorption of organic contaminants. In this study, batch equilibrium experiments were carried out to investigate the influence of Pb(NO(3))(2) on the sorption of p-nitrophenol (PNP) onto sediments in the presence of cationic surfactant cetylpyridinium chloride (CPC). Results indicated that in the complex system containing PNP, Pb(NO(3))(2) and CPC, the sorption of PNP decreased with increasing concentration of Pb(NO(3))(2) due primarily to competing for adsorption sites. Likewise, partitioning of PNP in adsorbed surfactant layers and micelles decreased with increasing level of Pb(NO(3))(2). Moreover, the influence of different metal ions (Pb(2+), Cd(2+), Zn(2+)) was examined and results indicated that the presence of heavy metals inhibited the sorption of PNP in the order: Pb(2+)>Cd(2+)>Zn(2+). The competitive effect of the heavy metals was in agreement with the hydration energy and hydrated radius. The results are believed to provide a useful insight into describing the transport and fate of PNP in natural environments.  相似文献   

10.
Chu W  Choy WK 《Chemosphere》2000,41(8):1199-1204
The photodegradation of trichloroethene (TCE) in surfactant micelles was investigated. The decay of TCE was studied in the Rayonet RPR-200 merry-go-round photoreactor, at 253.7 nm monochromatic ultraviolet (UV) lamps, in the presence of surfactants. Surfactants are used as additional hydrogen sources to improve the photodegradation rates of TCE. About three times the rate increment is observed in the presence of Brij 35 surfactant micelles than in water alone. The increasing concentrations of H+ and Cl- indicate that they are the final products of TCE photodegradation (i.e. photodechlorination is the dominant mechanism in this system). A lag phase is observed at the beginning of the degradation, but the duration of the lag phase is apparently reduced as the initial pH increases. Because the overall decay of TCE is also found faster at higher pH levels, it is suggested that the free radical reaction is dominant at high pH levels, and the formation of lag phases is mainly due to the deficiency of free radicals at lower pH levels. The photodecomposition of TCE in surfactant micelles is also proven to be a clean and effective process. It generates no chlorinated by-products or intermediates during the process, and TCE is fully decomposed within a reasonable time.  相似文献   

11.
Ryba SA  Burgess RM 《Chemosphere》2002,48(1):139-147
The elemental composition of marine sediment provides useful information for the study of environmental processes including biogeochemical cycling and contaminant partitioning. It is common practice to acidify marine sediment samples to remove carbonate before measuring the concentrations of organic carbon (C). To date, however the effects of acidification on the concentrations of hydrogen (H), nitrogen (N), sulfur (S) and oxygen (O) in marine sediments have not been explicitly addressed. Acidification may contaminate or alter the sediment samples and create experimental artifacts affecting the validity of resulting H/C, C/N and O/C ratios. The objective of this study was to quantify how various preparation techniques affect the measured concentrations of C, H, N, S and O in marine sediments. Effects of four different pretreatments: unacidified (whole), acidification by HCl vapor, acidification by direct addition of HCl, and combustion were evaluated using five marine sediments and a standard reference material. The magnitude of carbonate loss between the vapor and direct acidification treatments was evaluated using stable C isotope analysis. Carbonates were most effectively removed by direct addition of HCl; and our results agree with findings of other studies which found direct addition of HCl to be the most accurate method for measuring organic C. However, the acid treatments elevated the apparent concentration of H and O; and in a few cases concentrations of N and S were significantly affected by acidification. In general, combustion significantly reduced all elemental concentrations compared to the whole sample. Based on these results, we recommend analysis of the untreated whole sediment for determining N, H, O, and S.  相似文献   

12.
Li Z 《Chemosphere》2004,54(3):419-423
Oxidative dechlorination of chlorinated solvents by permanganate is an emerging technology for remediation of groundwater contaminated with dissolved chlorinated contaminants. In this study, the enhancement of trichloroethylene (TCE) degradation by permanganate in aqueous solution in the presence of surfactant was evaluated through a continuous stir batch reactor system with the presence of permanganate as the limiting reagent and free phase TCE. The TCE degradation was determined by continuous monitoring the amount of chloride produced, which was then reverted to the rate of permanganate consumption. It was found that the chloride production, an indication of TCE degradation, followed a pseudo-first-order reaction kinetics with respect to KMnO(4) in the presence of free phase TCE. When no surfactants were present, the observed pseudo-first-order rate constant (k(obs)) was 0.08-0.19 min(-1) and the half-life (t(1/2)) was 4-9 min for MnO(4)(-). When the surfactant concentration was less than its critical micelle concentration (CMC), the k(obs) values increased to 0.42-0.46 min(-1) and the t(1/2) reduced to 1.5-1.7 min for MnO(4)(-). As the surfactant concentration was greater than the CMC, the k(obs) values increased to 0.56-0.58 min(-1) and the t(1/2) reduced to 1.2-1.3 min. The preliminary results showed that combination of permanganate with a proper type of surfactant can speed up contaminant removal.  相似文献   

13.
Yu S  Lee B  Lee M  Cho IH  Chang SW 《Chemosphere》2008,71(11):2106-2112
There has been recent growing interest in the presence of antibiotics in different environmental sectors. One considerable concern is the potential development of antibiotic-resistant bacteria in the environment, even at low concentrations. Cefaclor, one of the beta-lactam antibiotics, is widely used as an antibiotic. Kinetic studies were conducted to evaluate the decomposition and mineralization of cefaclor using gamma radiation. Cefaclor, 30 mg/l, was completely degraded with 1,000 Gy of gamma radiation. At a concentration of 30 mg/l, the removal efficiency, represented by the G-value, decreased with increasing accumulated radiation dose. Batch kinetic experiments with initial aqueous concentrations of 8.9, 13.3, 20.0 and 30.0mg/l showed the decomposition of cefaclor using gamma radiation followed a pseudo first-order reaction, and the dose constant increased with lower initial concentrations. At a given radiation dose, the G-values increased with higher initial cefaclor concentrations. The experimental results using methanol and thiourea as radical scavengers indicated that ()OH radicals were more closely associated with the radiolytic decomposition of cefaclor than other radicals, such as e(aq)(-) or ()H. The radical scavenger effects were tested under O(2) and N(2)O saturations for the enhancement of the TOC percentage removal efficiencies in the radiolytic decomposition of cefaclor. Under O(2) saturation, 90% TOC removal was observed with 100,000 Gy. Oxygen is well known to play a considerable role in the degradation of organic substances with effective chain reaction pathways. According to the effective radical reactions, the enhanced TOC percentage removal efficiencies might be based on the fast conversion reactions of e(aq)(-) and ()H with O(2) into oxidizing radicals, such as O(2)(-) and HO(2)(), respectively. 100% TOC removal was obtained with N(2)O gas at 20,000 Gy, as reducing radicals, such as e(aq)(-) and ()H, are scavenged by N(2)O and converted into ()OH radicals, which have strong oxidative properties. The results of this study showed that gamma irradiation was very effective for the removal of cefaclor in aqueous solution. The use of O(2) or N(2)O, with radiation, shows promise as effective radical scavengers for enhancing the TOC or COD removal efficiencies in pharmaceutical wastewaters containing antibiotics. However, the biological toxicity and interactions between various chemicals during the radiolytic treatment, as well as treatments under conditions more representative of real wastewater will require further studies.  相似文献   

14.
The objective of this study was to investigate the influence of salinity on the effectiveness of surfactants in the remediation of sediments contaminated with phenanthrene (PHE). This is an example of a more general application of surfactants in removing hydrophobic organic compounds (HOCs) from contaminated soil/sediment in saline environments via in-situ enhanced sorption or ex-situ soil washing. Salinity effects on surfactant micelle formation and PHE partitioning into solution surfactant micelles and sorbed surfactant were investigated. The critical micelle concentration of surfactants decreased, and PHE partition between surfactant micelles and water increased with increasing salinity. Carbon-normalized partition coefficients (Kss) of PHE onto the sorbed cationic surfactant increased significantly with increasing salinity, which illustrates a more pronounced immobilization of PHE by cationic surfactant in a saline system. Reduction of PHE sorption by anionic surfactant was more pronounced in the saline system, indicating that the anionic surfactant has a higher soil washing effectiveness in saline systems.  相似文献   

15.
Zhu L  Feng S 《Chemosphere》2003,53(5):459-467
Water solubility enhancements of naphthalene (Naph), acenaphthylene (Acen), anthracene (An), phenanthrene (Phen) and pyrene (Py) by micellar solutions of single and mixed anionic-nonionic surfactants were measured and compared. Effects of typical inorganic ions, such as NH(4)(+), Na(+) and Mg(2+) coexisted with the organic pollutants (in soils) on water solubilities of polycyclic aromatic hydrocarbons (PAHs) in the presence of single and mixed surfactants were also investigated. Solubilities of PAHs in water are greatly enhanced in a linear fashion by each of Triton X-100 (TX100), Triton X-305 (TX305), Brij 35, and sodium dodecyl sulfate (SDS). Solubility enhancement efficiencies of surfactants above the critical micelle concentration (CMC) follow the order of TX100>Brij 35>TX305>SDS. PAHs are solubilized synergistically in mixed anionic-nonionic surfactant solutions, especially at low surfactant concentrations. The synergistic power of the mixed surfactants is SDS-TX305>SDS-Brij 35>SDS-TX100. Synergistic effect of a given mixed-surfactant solution on different PAHs also appears to be linearly related to the solute logK(ow). The noted synergism for the mixed surfactants is attributed to the formation of mixed micelles, the lower CMC of the mixed-surfactant solutions, and the increase of the solute's molar solubilization ratio or micellar partition coefficients (K(mc)) because of the lower polarity of the mixed micelles. Suitable quantity of inorganic cations can enhance the solubilization capacities of anionic-nonionic mixed surfactants, the effect being Mg(2+)>NH(4)(+)>Na(+). The water solubility of pyrene was slightly increased by anthracene and significantly increased by 1,2,3-TCB in the presence of SDS-Brij 35. Mixed surfactants may improve the performance of surfactant-enhanced remediation of soils and sediments by decreasing the applied surfactant level and thus the remediation cost.  相似文献   

16.
Lippold H  Gottschalch U  Kupsch H 《Chemosphere》2008,70(11):1979-1986
Mobilization of polycyclic aromatic hydrocarbons (PAH) by surfactants, present at contaminated sites or deliberately introduced for remediation purposes, is inevitably associated with the influence of humic substances, which are ubiquitous in natural systems. Therefore, the solubilizing effects of anthropogenic and natural amphiphiles must be considered in their combined action since synergistic or antagonistic effects may be expected, for instance, as a consequence of mixed micellization.

In this paper, solubilization of 14C-labeled pyrene in single-component and mixed solutions of surfactants and humic acid (coal-derived) was investigated up to the micellar concentration range. At low concentrations, antagonistic effects were observed for systems with cationic as well as anionic surfactants. Solubility enhancements in the presence of humic acid were canceled on addition of a cationic surfactant (DTAB) since charge compensation at humic colloids entailed precipitation. Solubility was also found to be decreased in the presence of an anionic surfactant (SDS), which was attributed to a competitive effect in respect of pyrene–humic interaction. This explanation is based on octanol–water partitioning experiments with radiolabeled humic acid, yielding evidence of different interaction modes between humic colloids and cationic/anionic surfactants. At higher concentrations, the effects of humic acid and SDS were found to be additive. Thus, a formation of mixed micelles is very unlikely, which was confirmed by size exclusion chromatography of mixed systems. It can be concluded that remediation measures on the basis of micellar solubilization are not significantly affected by the presence of natural amphiphilic compounds.  相似文献   


17.
Adsorption at the air–water interface and soil sorption from aqueous solution have been investigated for a group of ethylene oxide (EO)–propylene oxide (PO) block copolymeric surfactants. The group which have a common structural formula of EOm POn EOm is distinguished by the fact that they have large critical micelle concentration (CMC) values and therefore do not readily form micelles at common environmental concentrations and temperatures. Adsorption at the air–water interface is readily shown to be driven by the size of the hydrophobic PO block. The size of the reduction in surface tension produced by a common concentration of 10−5 mol dm−3 linearly increases with the size of the PO block as does the efficiency of adsorption at the air–water interface as measured by pC20 – the negative logarithm of the surfactant concentration that produces a reduction in surface tension of 20 mN m−1. Soil sorption data have also been captured for these compounds and the data are readily fitted to the Freundlich adsorption isotherm. However soil sorption is shown to be inversely related to the molecular mass of the molecules and appears to be related to the size of the hydrophilic EO blocks in the molecule.  相似文献   

18.
胶团强化超滤法(MEUF)去除废水中氯苯的研究   总被引:1,自引:0,他引:1  
研究了3种单一表面活性剂十二烷基硫酸钠(SDS)、十六烷基三甲基溴化铵(CTMAB)、聚氧乙烯失水山梨脂肪酸酯醇醚(TW80)和混合表面活性剂TW80-SDS对氯苯(CB)的强化超滤,以期为有机废水胶团强化超滤技术提供参考。结果表明,进料液静置时间对去除率无显著影响,而振荡时间在1 h后对去除率影响不大。氯苯的去除率随进料液中表面活性剂浓度的增大而增大,单一的表面活性剂对氯苯的去除效果顺序为TW80CTMABSDS,且表面活性剂对氯苯的去除效果与表面活性剂的临界胶束浓度值(CMC)、亲水-亲油平衡值(HLB)呈负相关。阴-非混合表面活性剂TW80-SDS对氯苯的去除效果明显强于单一的SDS,且去除率随着非离子表面活性剂质量分数的增加而增加。渗透通量随着进料液中表面活性剂浓度的增加而下降,单一表面活性剂种类对渗透通量的影响顺序为SDSTW80CTMAB,混合表面活性剂中随着非离子表面活性剂质量分数的增加而渗透液的渗透通量越低。  相似文献   

19.
In the present work changes in the adsorption of the pesticide chlorpyrifos-methyl (CLP-m) on soil colloids induced by application of surfactants were determined using a batch equilibrium method. The surfactants used were sodium dodecyl sulphate (SDS), Tween 20, and dihexadecyldimethylammonium bromide (DHAB). The adsorption isotherms of CLP-m in aqueous medium and in surfactant solutions at concentration equal to the critical micelle concentration (CMC) fitted the Freunlich adsorption equation generally with R2 values greater than 0.96. While the addition of SDS and DHAB decreased the pesticide adsorption, the addition of Tween 20 increased the pesticide adsorption. The increases or decreases in the adsorption in the experiment revealed that the behavior of CLP-m in soil water-systems mainly depends on the type of surfactant. Moreover water solubility of CLP-m changes by the three surfactants below and above their CMC were studied. While the solubility of CLP-m was enhanced by SDS both below and above the CMC, the solubility of the pesticide was enhanced by DHAB only above the CMC. Tween 20 did not influence the solubility of CLP-m.  相似文献   

20.
At concentrations above the critical micelle concentration, surfactants can significantly enhance the solubilization of residual nonaqueous phase liquids (NAPL) and, for this reason, are the focus of research on surfactant-enhanced aquifer remediation (SEAR). As a consequence of their amphiphilic nature, surfactants may also partition to various extents between the organic and aqueous phases, thereby affecting SEAR performance. We report here on the observation and analysis of the effect of surfactant partitioning on the dissolution kinetics of residual perchloroethylene (PCE) by aqueous solutions (1000 mg/L) of the non-ionic surfactant Triton X-100 in a model porous medium. For this fluid system, batch equilibration experiments showed that the surfactant partitions strongly into the NAPL (NAPL-water partition coefficient equal to 12.5). Dynamic interfacial tension (IFT) measurements were employed to study surfactant diffusion and interfacial adsorption. The dynamic IFT measurements were consistent with partitioning of the surfactant between the two liquid phases. PCE dissolution experiments, conducted in a transparent glass micromodel using an aqueous surfactant solution, were contrasted to experiments using clean water. Surfactant partitioning was observed to delay significantly the onset of micellar solubilization of PCE, an observation reproduced by a numerical model. This effect is attributed to the reduction of surfactant concentration in the immediate vicinity of the NAPL-water interface, which accompanies transport of the surfactant into the NAPL. Accordingly, it is suggested that both the rate and the extent of diffusion of the surfactant into the NAPL affect the onset of and the driving force for micellar solubilization. While many surfactants do not readily partition in NAPL, this possibility must be considered when selecting non-ionic surfactants for the enhanced solubilization of residual chlorinated solvents in porous media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号