首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
More than 85% of the mountainous spruce forest of the Bavarian Forest National Park died after bark beetle attack during the last decade. The elemental budget of intact stands and of different stages after the dieback was investigated. N-fluxes in throughfall of intact stands were lower (12–16 kg ha-1 a-1) than in an earlier study in an intact mountainous spruce stand in the Bavarian Forest National Park and were reduced in the first years after the dieback (3–5 kg N ha-1 a-1). Nitrate-N fluxes by seepage water of intact stands at 40 cm depth, which is below the main rooting zone, were moderate (5–9 kg ha-1 a-1). After the dieback of the stands, NH4 + concentrations were increased in humus efflux as were NO3 - concentrations in mineral soil. Due to the relatively high precipitation, dilution of the elemental concentrations in seepage was considerable.Therefore, NO3 - concentrations were usually below the level of drinking water (806 μmol NO3 - L-1), with lowest concentrations after the snowmelt and highest in autumn. Nitrate concentrations were elevated from the first year until the 7th year after the dieback. Total NO3 --N losses by seepage until the 7th year after the dieback equalled 543 kg N ha-1. Aluminium fluxesafter the dieback were enhanced in the mineral soil from 55 to 503 mmolc m-2 a-1 (average of 8 yr), K+ fluxes from 8 to 37 mmolc m-2 a-1, and Mg2+ fluxes from 13 to 35 mmolc m-2 a-1. The consequences for the nutritional status of the ecosystem, the hydrosphere, and forest management are discussed in the paper.  相似文献   

2.
A joint multidisciplinary investigation was undertaken to studythe effects of lime and wood ash applications on two Norway spruce forest Spodosolic soils. The two sites, typical for southern Sweden, were treated in 1994 with either 3.25 t ha-1 dolomite or 4.28 t ha-1 wood ash (Horröd site) or in 1984 with either 3.45 or 8.75 t ha-1 dolomite (Hasslöv site). Both sites show signs of acidification by atmospheric anthropogenic deposition and possessed low soil pH(4.3) and high concentrations of inorganic Al (35 M) in theupper illuvial soil solution. The prevailing soil conditions indicated perturbed soil processes. Following treatment with lime or wood ash, the soil conditions were dramatically altered. Cation exchange capacity (CEC) and base saturation (BS) was considerable increased after addition. Four years after application most of the added Ca and Mg was still present in the mor layer. Fifteen years after application,Mg in particular, became integrated deeper in the soil profile with a greater proportion lost by leaching incomparison to Ca. The concentrations of these ions were greatestin the mor layer soil solutions and Mg had higher mobility givinghigher concentrations also deeper in the profile. Four years after treatment, the application of wood ash and limeresulted in lower pH values and higher inorganic Al in mineral subsoil solutions compared to the untreated soil. We hypothesize that this was probably due to an increased flow of hydrogen ionsfrom the upper soil as a result of displacement by Ca and Mg ionsin the enlarged exchangeable pool. In contrast, fifteen years after lime and wood ash application, the mineral subsoil horizonspossessed a higher pH and lower soil solution Al content than theuntreated plots.Liming promoted soil microbial activity increasing soil respiration 10 to 36%. This is in the same range as net carbon exchange for forests in northern Sweden and could potentially have a climatological impact. The turnover of low molecularweight organic acids (LMWOA) by the soil microbial biomass werecalculated to contribute 6 to 20% to this CO2 evolution.At Horröd, citrate and fumarate were the predominant LMWOAs with lowest concentrations found in the treated areas. In contrast, at the Hasslöv site, propionate and malonate were the most abundant LMWOAs. Higher microbial activity in the upper soil horizons was also theprobable cause of the considerably higher DOC concentrations observed in the soil solution of ash and lime treated areas. Thelime-induced increase in DOC levels at Hasslöv could be attributed to increases in the 3–10 kDa hydrophobic size fraction. Liming also promoted nitrification with high liming doses leading to extreme concentrations of NO3 - (1 mM) in soil solution.At Hasslöv the community of mycorrhizal fungi was dramatically changed by the addition of lime, with only four of 24 species recorded being common to both control and treated areas.Many of the observed effects of lime and ash treatment can be viewed as negative in terms of forest sustainability. After fouryears of treatment, there was a decrease in the pH of the soil solution and higher concentrations of inorganic Al and DOC. Increased organic matter turnover, nitrification and NO3 -leakage were found at Hasslöv. Considering that the weathering rate and the mineral nutrient uptake by trees is mostprobably governed by mycorrhizal hyphae etchingmineral grains in the soil, it is important to maintain this ability of the mycorrhizal fungi. The lime and ash-induced changed mycorrhizal community structure may significantly affect this capability. In light of this investigation and others, as reviewed by Lundström et al. (2003), the implications ofliming on forest health are multifaceted with complex relationships occurring over both space and time.  相似文献   

3.
Aluminium (Al) is a key element in critical loadcalculations for forest. Here, we argue for re-evaluating theimportance of Al. Effects of two levels of enhanced Alconcentrations and lowered Ca:Al ratios in the soil solutionin a field manipulation experiment in a mature spruce stand(1996–1999) on tree vitality parameters were tested. Inaddition, Al solubility controls were tested. Various loads ofAl were added to forest plots by means of an irrigationsystem. Potentially toxic Al concentrations and criticalratios of Ca to inorganic Al were established. The ratio of Cato total Al was not a suitable indicator for unfavourableconditions for plant growth. No significant effects on crowncondition, tree growth and fine root production were observedafter three years of treatment. In 1999, foliar Mg content inthe highest Al addition treatment had declined significantly.This agreed with the known response to Al stress of seedlingsin nutrient solution experiments. No support was found forusing the chemical criterion Ca:Al ratio in soil solution,foliar and root tissue as an indicator for forest damage dueto acidification. Al solubility was considerably lower thanimplied by the assumption of equilibrium with gibbsite,particularly in the root zone. The gibbsite equilibrium iscommonly used in critical load models. Substitution of thegibbsite equilibrium with an Al-organic matter complexationmodel to describe Al solubility in soil water may have largeconsequences for calculation of critical loads. The resultsindicate that critical load maps for forests should bereconsidered.  相似文献   

4.
In order to test the hypothesis of aluminium toxicity induced by acid deposition, an experimental acid irrigation was carried out in a mature Norway spruce stand in Southern Germany (Höglwald). The experiment comprised three plots: no irrigation, irrigation (170 mm a?1), and acid irrigation with diluted sulphuric acid (pH of 2.6–2.8). During the seven years of acid irrigation (1984–1990) water containing 0.43 molc m?2 a?1 of protons and sulphate was added with a mean pH of 3.2 (throughfall?+?acid irrigation water) compared to 4.9 (throughfall) on both control plots. Most of the additional proton input was consumed in the organic layer and the upper mineral soil. Acid irrigation resulted in a long lasting elevation of sulphate concentrations in the seepage water. Together with sulphate both aluminium and appreciable amounts of base cations were leached from the main rooting zone. The ratio between base cations (Ca?+?Mg?+?K) and aluminium was 0.79 during acid irrigation and 0.92 on the control. Neither tree growth and nutrition nor the pool of exchangeable cations were affected significantly. We conclude that at this site protection mechanisms against aluminium toxicity exist and that additional base cation runoff can still be compensated without further reduction of the supply of exchangeable base cations in the upper mineral soil.  相似文献   

5.
The objective of this study was to assess the time variation of mineral and water stress levels across the life of a declining, Mg-deficient, spruce stand, in order to clarify the factors that caused the decline. Since 1985, strong soil acidification linked to a large leaching of nitrate and base cations was measured at the study site. In 1994, 5 trees were felled and tree rings were measured and analysed for Ca, Mg, K, Sr, 13C12C and 87Sr/86Sr isotopic ratios. Strontium pools and fluxes as well as root Sr isotope ratio in relation to depth were also measured. Wood chemical concentrations and isotope ratios were strongly related to the dominance status of each tree. On average during the study period, the 87Sr/86Sr ratio of spruce wood decreased. Using a mechanistic model computing long term variations of 87Sr/86Sr ratio in trees and soils, we reproduced the observed trend by simulating soil acidification – increasing Sr drainage from the whole profile, and particularly from the organic horizon –, and root uptake becoming more superficial with time. Between 1952 and 1976, tree ring 13C decreased strongly and continuously, which, in addition to other factors, might be related to an increase in water stress. Thus, a decrease in rooting depth, possibly related to soil acidification, appeared as a possible cause for the long term increase in water stress. The extreme drought event of 1976 appears to have revealed and triggered the decline.  相似文献   

6.
A nitrogen (N) budget was constructed for a period of 6 years (1988–1993) in a Norway spruce stand with current deposition of 19 kg N and 22 kg S ha−1 year−1. The stand was fertilized annually by addition of 100 kg N and 114 kg S ha−1 (NS). Above and below ground biomass, litterfall, fine- root litter production, soil solution and net mineralization were measured to estimate pools, fluxes and accumulation of nitrogen. The average needle litterfall in control (C) and NS plots in 1993 was 2.2 and 2.5 ton ha−1 year−1, respectively. The fine root litter production prior to treatment (1987) was 4.4 ton ha−1 year−1 and after treatment (1993) it was 4.5 and 3.9 ton ha−1 year−1 in C and NS plots, respectively. Net N mineralization in the soil profile down to 50 cm was estimated to be 86 and 115 kg ha−1 year−1 in C and NS plots, respectively in 1992. During the treatment period the uptake of N in the needle biomass in C and NS plots was 29 and 77 kg ha−1 year−1, respectively. No N was accumulated in needles of C plot where the NS plots accumulated 34 kg ha−1 year−1. Of the annually added inorganic N to NS plots 47% was accumulated in the above and below ground biomass and 37% in the soil. N fluxes via fine-root litter production in the C plots were much higher (54 kg ha−1 year−1) than that via litterfall (29 kg ha−1 year−1). The corresponding values in the NS plots were 65 and 43 kg ha−1 year−1, respectively. Most of the net N mineralization occurred in the FH layer and upper mineral soil. It is concluded that fine root litter and litterfall play an important role in the cycling of N. Despite a high N uptake the losses of N in litterfall and fine root litter resulted in an incorporation of N in soil organic matter.  相似文献   

7.
We used the Québec forest monitoring network (`Réseaud'Étude et de Surveillance des Écosystèmes Forestiers' or RESEF)along with its atmospheric monitoring stations to assess criticalS and N loads and their combined soil acidification exceedancesfor natural ecosystems of the northern hardwood and borealconiferous forests in Québec, Canada. Critical loads (CL) forforest soil acidification were calculated using the simple mass-balance (SMB) approach and with the steady-state PROFILE model.Atmospheric deposition rates for water, S, N, Ca, Mg, Na, and K,for the years 1989–1993, and detailed, plot-specific forest andsoil characteristics were used as input. The SMB model alsorequired information regarding nutrient uptake and storage in theaboveground woody biomass. The CL calculations indicated that,from the 31 RESEF plots, 18 received atmospheric acidic inputs inexcess of their CL (55 and 61% of the hardwood and coniferousplots, respectively). The range of CL exceedance varied from 60to 470 eq ha-1 yr-1 for the hardwood stands, and from 10to 590 eq ha-1 yr-1 for the coniferous stands. The standswith CL exceedance were mainly located in the western and centralpart of the province. Stand growth associated with exceedanceclass of acidity was determined using the RESEF plots along withselected permanent forest survey plots having similar sitecharacteristics, but for which longer growth records wereavailable. We found a significant negative correlation betweenforest growth rates and critical soil acidification exceedancefor both the northern hardwood and the boreal conifer sites.Specifically, plots with critical load exceedances were found tohave a growth reduction of about 30% during the 1974–1982 andthe 1972–1990 measurement (plots with no soil acidificationexceedance served as a control). While this correlation is notnecessarily causal, it is nevertheless consistent with theexpectation that increased losses of soil base cations on accountof increased soil acidification should and could lead todeteriorating forest health conditions.  相似文献   

8.
Changing of Lead and Cadmium Pools of Swedish Forest Soils   总被引:2,自引:0,他引:2  
The aims of the paper are to; i)evaluate the rate and direction of present changesin lead (Pb) and cadmium (Cd) soil pools of Swedishforests; ii) discuss processes of importance forleaching of Pb and Cd in Swedish forest soils. Thepresently ongoing changes of Pb and Cd pools ofSwedish forest soils are evaluated by compilationof data from the literature and unpublishedsources. It is concluded that Cd pools arepresently decreasing in larger areas of Sweden. Therate of decrease is mainly determined by soilacidity status; Cd leaching is regulated by ionexchange with Ca2+, Mg2+, Al3+ andH+, and is higher in acid soils. The Pb poolsare presently increasing with 0.1 to 0.3 percentannually in the soil down to 0.5 meter. Pb isredistributed from the O horizon to the B horizon,most pronounced in spruce forests; the Pb pools ofthe O horizon are presently not increasing, but isslightly decreasing by 0.1 to 0.2 percent annually. The leaching of Pb in the soil is controlled byfactors regulating the solubility of organicmatter.  相似文献   

9.
To study the effects of elevated inputs of acidity and nitrogen (N), 1000 mmol m-2 a-1 of ammonium sulphate (NH4NO3) equivalent to an input of potential acidity of 2000 mmol m-2 a-1 was applied annually for 11 yr between 1983 and 1993 in a beech forest at Solling, Germany. Most of the applied NH4 + was nitrified in the litter layer and in the upper mineral soil. N in soil leachate quickly responded to the elevated input, but most of the applied N was stored in the soil or left the ecosystem via pathways other than soil output. Leaching of N from the soil increased until the last year of N addition. After the last N application, N fluxes decreased rapidly to low values. The buffering of acidity produced by the nitrification of the applied NH4 + was caused mainly by three different processes: (i) sulphur (S) retention, (ii) release of aluminium, (iii) release of base cations. Retention of S took place mostly in the subsoil. 72% of the S input was recovered in output after 14 years of the experiment. Due to the increased fluxes of mobile anions with soil solution, outputs of cations increased drastically.  相似文献   

10.
Anthropogenic acid deposition causes forest soil acidification and perturbation of the soil forming processes. The impact of soil acidification on tree growth is discussed in view of the role of mycorrhizal fungi in weathering and nutrient uptake. A review has been carried out of experiments involving treatments of forest soil by lime and wood ash, where soil properties and soil solution composition have been investigated. Results from these experiments in Europe and North America are summarized. In general, the content of C in the mor layer decreased as a result of treatment due to higher microbial activity and soil respiration as well as increased leakage of DOC. In addition, the content of N in the mor layer, in general, decreased after treatment and there are occasional peaks of high NO3concentrations in soil solution. In nearly all reviewed investigations the pH of the deep mineral soil solution decreased and Al, SO4and NO3concentrations increased after treatment. These effects are probably due to the high ionic strength and increased microbial activity as a consequence of the treatments. In the soil, pH, CEC and base saturation increased in the upper horizons, but decreases in the upper mineral soil are also reported. In general, there was no increase in tree growth as a result of these treatments. The positive effects of the treatments on soil processes and tree growth are therefore questionable. In view of these conclusions, an investigation was carried out on the soil and soil solution chemistry and the role of mycorrhizal fungi in a spruce stand treated with two doses of lime and another treated with lime/ash in southern Sweden. The results of this investigation is reported in this volume.  相似文献   

11.
Total organic carbon (TOC) concentrations and fluxes in throughfall, forest floor leachate, soil solution (15 and 35 cm depths), and groundwater for coniferous forest sites in the boreal zone throughout Finland are described. Eight upland forest stands and one peatland forest stand are included in the study and the samples were collected during 1991–1997. Carbon (C) pools in the living tree biomass and soil compartments are presented, and the hydrophobic/hydrophilic and acidic components of dissolved organic carbon (DOC) in samples collected in autumn 1999 and spring 2000 from two of the sites are compared. Biomass (aboveground and belowground) pools of C averaged 88 Mg ha-1 and soil (humus layer + 20 cm soil layer) averaged 55 Mg ha-1. Stand throughfall TOC monthly mean concentrations ranged from 4.0 to 18.6 mg L-1 and annual fluxes averaged 4.0 g m-2 yr-1. TOC concentrations in the water passing through the forest floor and soil decreased with depth. Plot mean concentrations at 35 cm depth values ranged from 4.1 to 21.2 mg L-1 and fluxes averaged 3.7 g m-2 yr-1. Throughfall TOC concentrations were lowest during the winter, snowfall period and highest during the growing season. No monotonic trends in throughfall TOC concentrations over the 1991–1997 period were found. Soil solution TOC concentrations varied considerably, both within and between years. DOC in throughfall, forest floor, and soil solutions and in both autumn and spring seasons was dominated by hydrophobic fractions, particularly acids. Spruce canopies and litter appear to be important sources of soluble organic carbon, particularly acidic and hydrophobic compounds. Further studies on the nature and dynamics of organic carbon fluxing through coniferous, boreal forest ecosystems are needed.  相似文献   

12.
A conceptual model for N sequestration into the terrestrial nitrogen(N) sink is presented. The model uses foliar litter-fall data, limit values for litter decomposition, and calculated N concentration at the limit value (Nlimit), giving the N concentration in the hypothesized stable remains. The Nlimit values were determined extrapolating a linear relationship between accumulated litter mass loss and the increasing litter N concentration to the limit value. Thesequestration rates for N in boreal forest humus were calculated and validated for a Scots pine (Pinus sylvestris L.) monocultural stand and mixed stands with Scots pine, Norway spruce (Picea abies L.), and silver birch (Betula pendula L.). The calculated stable N fraction was compared to actually measured amounts of N in humus layers that started to accumulate 2984, 2081, 1106, and 120 yr BP. Sequestration rates of N were measured to be 0.255, 0.221, 0.147, and 0.168 g m-2 yr-1 and modeled to be 0.204, 0.207, 0.190, and 0.190 g m-2 yr-1, respectively, with missing fractions being 11.0, 1.5, 30.8, and 13.3%, respectively. The more N-rich the litter, the larger was the N fraction sequestered. This was found for experimental Scots pine needle litter (n = 6) and for 53 decomposition studies, encompassing seven litter species. The amounts of N sequestered annually ranged from ca. 1–2 kg ha-1 yr-1 under nutrient-poor boreal conditions to about 30 kgha-1 yr-1 in temperate, more nutrient-rich forests.  相似文献   

13.
The effect of liming and ash treatment on pools, fluxes and concentrations of major solutes was investigated at two forestedsites (Norway spruce) in S. Sweden. One site was treated 15 yrprior to sampling (Hasslöv-Hs; dolomite: 3.45 and 8.75 t ha-1) and the other 4 yr before (Horröd-Hd; dolomite: 3.25 t ha-1; wood ash: 4.28 t ha-1). Effects of limingwere most pronounced in the O horizon solutions where higher pH,elevated Ca (120–700 M) and Mg (50–600 M) were observed as compared to control plots. The impact on the mineralsoil was more moderate. Soil solution concentrations were combined with modelled hydrological flow to calculate mass flows,which largely followed the trends of the solution composition. Liming also resulted in large increases of both exchangeable Caand Mg as well as effective cation exchange capacity (CECE;2–5 times the controls). The base saturation (BS%) was raised to 60–100% in the O horizon while in the mineral soil elevated values were only seen at the Hs site (20–60%; down to 10–15 cm depth for 8.75 t ha-1). Ash treatment did notaffect either the soil solution nor the exchangeable pool to thesame extent as lime. In general, the impact at the Hd site was less pronounced especially in the mineral soil, which might be due to shorter treatment time (4 vs. 15 yr) and also differentthickness of the O horizon. Budget calculations for Ca and Mg originating from the lime showed that a major part of the Ca (40–100%) was retained in the top 30 cm of the soil, of which30–95% was present in the O horizon. The mobility of Mg wasgreater and it was estimated that a significant part had been leached from the profile (30 and 50 cm depth) after 15 yr. Increased mass flows of NO3 - due to nitrification resulting from liming at the Hs site were calculated in the range120–350 mmol m-2 yr-1 (or 1.2–3.5 kmol ha-1 yr-1). There was significant leaching of Al (25–60 mmol m-2 yr-1), of which about 70% was inorganic, in thelower B horizon at both sites with no influence of liming.  相似文献   

14.
The exchange of NO, NO2 and O3 at the soil surface wasmeasured with automatic dynamic chambers in a spruce forest and in abeech forest during periods of several months.NO was emitted from the soil at a rate of0–8 ng N m-2 s-1(spruce) and 0–15 ng Nm-2 s-1(beech), but there was no simple relationship between the flux andeither soil temperature or soil moisture. NO2 and O3 weredeposited at the soil surface. Deposition velocities forNO2were on average 0.3 mm s-1 (spruce) and 0.1 mms-1(beech), and the deposition velocities of O3 were on average 1.6 mm s-1 (spruce) and 1.4 mm s-1 (beech). The depositionvelocity of O3 is fairly constant whereas the deposition velocityof NO2 varies greatly, but the reasons remain to be investigated.  相似文献   

15.
We reviewed the current methods for calculatingcritical loads of acidity for forest soils. The consequencesof four sets of assumptions concerning the soil modelstructure, parameter values and the critical loads criterionwere explored by comparing the values of the averageaccumulated exceedance (AAE) calculated for Finland withdeposition values for the year 1995. The AAE index is given inthe unit of deposition and is a measure of how far a region isfrom being protected in terms of fulfilling a certaincriterion, taking into account the size of the ecosystem areas.Using a critical limit for the molar ratio of theconcentrations of base cations to aluminium in soil solutiongave the lowest average accumulated exceedance. Assumingorgano-aluminium complexes and leaching of organic anions gaveAAE = 4 eq ha-1 a-1, which was close to the valueobtained with the standard approach used in Finland, assuminggibbsite equilibrium and no leaching of organic anions,yielding AAE = 5 eq ha-1 a-1. With a critical basesaturation limit, instead of the concentrations criterion, theAAE index was 17 eq ha-1 a-1. The highest averageaccumulated exceedance (AAE = 25 eq ha-1 a-1),corresponding to the lowest critical load, was obtained whenthe effects-based criterion (critical concentration or criticalbase saturation) was substituted with one restricting thedeterioration of the neutralizing capacity of the soil, ANC le(crit) = 0. These tests illustrate the variabilityof the critical load values for acidity that can be introducedby changing the criterion or by varying the calculation method,without, however, representing the extreme values of criticalloads that could be derived.  相似文献   

16.
The SO4–S and NO3–N concentrations and pH in bulk precipitation, throughfall, stemflow and soil water for the 1994–2004 period were studied in pine forests in Latvia (Rucava and Taurene Integrated Monitoring stations). The SO4–S and NO3–N concentrations decreased over the study period, simultaneously with a decrease of acidity in precipitation. The changes were more evident in the western part of Latvia, probably due to declining long-range air pollution from West Europe. The trend of decreasing sulphate concentrations and increasing pH in precipitation were not followed by respective changes in soil water. In the upper soil horizon sulphate ion concentrations and acidity increased in soil water. Over the observation period, nitrate concentrations also showed an increasing trend in soil water at Rucava and Taurene, but these changes were not statistically significant.  相似文献   

17.
Chemical weathering losses were calculated for two conifer stands in relation to ongoing studies on liming effects and ash amendments on chemical status, soil solution chemistry and soil genesis. Weathering losses were based on elemental depletion trends in soil profiles since deglaciation and exposure to the weathering environment. Gradients in total geochemical composition were assumed to reflect alteration over time. Study sites were Horröd and Hasslöv in southern Sweden. Both Horröd and Hasslöv sites are located on sandy loamy Weichselian till at an altitude of 85 and 190 m a.s.l., respectively. Aliquots from volume determined samples from a number of soil levels were fused with lithium metaborate, dissolved in HNO3, and analysed by ICP – AES. Results indicated highest cumulative weathering losses at Hasslöv. The weathering losses for the elements are in the following order:Si > Al > K > Na > Ca > MgTotal annual losses for Ca+Mg+K+Na, expressed in mmolc m-2 yr-1, amounted to c. 28 and 58 at Horröd and Hasslöv, respectively. Variations between study sites could not be explained by differences in bulk density, geochemistry or mineralogy. The accumulated weathering losses since deglaciation were larger in the uppermost 15 cm than in deeper B horizons for most elements studied.  相似文献   

18.
Soil solution samples were taken from two sites (Horröd and Hasslöv) in the south part of Sweden to evaluate how soil solution chemistry responded to different treatmentswith dolomite and wood ash. At Horröd, samples were taken four years after application of wood ash, 4.28 ton ha-1 and dolomite, 3.25 ton ha-1. At Hasslöv dolomite, 3.45 ton ha-1 and 8.75 ton ha-1 was applied and samples were taken 15 yr later. It was found that treatment with dolomite at one site (Hasslöv) resulted in higher pH values (<2 pH units) and higher nitrification. It was also found at this site that the total Al and the inorganic Al concentrations decreased with dolomite treatment. The Ca, Mg, DOC, Fe, SO4 2- and Cl- concentrations, mainly in the topsoil, were found to be higher at both sites, following dolomite treatment; Ca and Mg concentrations were 2–8 times higher (<820 M) than in controls (<70 M). Wood ash was found to have less impact. The PO4 concentration in the O2 horizon at Hasslöv decreased due to dolomite-treatment. ANOVA (Analyse of Variance) and PLS (Partial Least Square) were used to evaluate the data from the two sites.  相似文献   

19.
Discharging untreated highly acidic (pH < 4.0), organic and nutrients rich monosodium glutamate wastewater (MW), and highly alkaline (pH > 10.0) paper-mill wastewater (PW) causes environmental pollution. When acidity of MW neutralized (pH 6.5 ± 0.1) with PW and lime (treatments represented as MW + PW and MW + Lime), then MW may be utilized as a potential source of nutrients and organic carbon for sustainable food production. Objectives of this study were to compare the effects of PW and lime neutralized MW and chemical fertilizers on maize (Zea mays L. cv. Snow Jean) plant growth, yield, nutrients uptake, soil organic matter and humic substances. The field experiment was carried out on maize using MW at 6000 L ha?1. Impacts of the MW application on maize crop and soil properties were evaluated at different stages. At harvest, plant height, and plant N and K uptake were higher in MW treatment. Leaf area index at 60 days after sowing, plant dry matter accumulation at harvest, and kernels ear?1 and 100-kernel weight were higher in MW + Lime treatment. Kernel N, P, K, Mn, Fe and Zn, and plant Zn uptake were highest in MW + Lime. Plant Fe uptake, and soil organic matter and humic substances were highest in MW + PW. The MW + PW and MW + Lime treatments exhibited comparable results with chemically fertilized treatment. The MW acidity neutralized with lime showed positive impacts on growth, yield and nutrients uptake; nevertheless, when MW pH neutralized with PW has an additional benefit on increase in soil organic matter and humic substances.  相似文献   

20.
The timing of forestry operations relative to weather conditions is a consideration in applying Forestry Best Management Practices (BMPs). Harvesting during different seasons can result in degrees of soil disturbance, the distribution of logging debris, and potentially future stand productivity. The purpose of this study is to examine the response of loblolly pine (Pinus taeda L.) stands after wet- and dry-weather harvesting combined with three site preparation treatments. A 20 × 20 meter grid was established in fifteen 20-year-old, 3.3-ha loblolly pine plantations in South Carolina. A census of soil physical disturbance and slash distribution was made after harvesting. Growth was measured on 1/125th-ha plots at ages two and five. Dry-weather harvested (DWH) sites were 91% undisturbed, and 9% compressed. Wet-weather harvested (WWH) sites were 41% undisturbed, and 59% disturbed. WWH sites averaged 9% bare soil, while DWH sites averaged 16% with 1 kg m-2 less logging residue; primarily in the form of heavy and light slash. At age five, the green-weight biomass of flat-planted DWH and WWH sites were 13.3 and 12.6 kg tree-1 respectively, and on the bedded DWH and WWH sites were 18.6 and 22.8 kg tree-1. Wet weather harvesting did not seem to adversely affect stand growth, and may have improved it. Due to a prolonged drought, bedding had a larger effect on WWH sites than DWH harvested sites. The effects of droughty conditions may be influencing treatment response on these highly productive sites; however, the long-term effects of harvesting on stand growth remain to be seen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号