首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Few studies have evaluated how effectively environmental contamination may reduce genetic diversity of a population. Here, we chose a laboratory approach in order to test if tributyltin (TBT) exposure at environmentally relevant concentrations leads to reduced genetic variation in the midge Chironomus riparius. Two TBT-exposed and two unexposed experimental populations were reared simultaneously in the laboratory for 12 generations. We recorded several life-history traits in each generation and monitored genetic variation over time using five variable microsatellite markers. TBT-exposed strains showed increased larval mortality (treatments: 43.8%; controls: 27.8%), slightly reduced reproductive output, and delayed larval development. Reduction of genetic variation was strongest and only significant in the TBT-exposed strains (treatments: −45.9%, controls: −24.4% of initial heterozygosity) after 12 generations. Our findings document that chemical pollution may lead to a rapid decrease in genetic diversity, which has important implications for conservation strategies and ecological management in polluted environments.  相似文献   

2.
Natural populations in polluted areas are possibly subjected to selective pressures for an increased resistance to toxicants. This can result in the evolution of resistance, which may have important implications for decisions regarding safe ambient toxicant levels. By reviewing the evolution of resistance to heavy metals in aquatic organisms, we aimed to determine if all populations negatively affected by toxicants do adapt to them. If the published literature accurately represents the situation in polluted areas (i.e. negative results having an equal chance of being published), it can be concluded that most, but not all, populations in polluted areas do have an increased resistance. But it can usually not be determined if such an increased resistance has a genetic basis. There is less evidence for the evolution of resistance in metazoans (especially fish) than in micro-organisms. Additional information strongly indicates that many populations fail to survive in polluted environments. It thus seems dangerous to relax water quality criteria on the assumption that all populations in polluted environments will evolve an increased resistance. But the fact that the evolution of resistance to environmental pollutants does seem to occur in some populations in polluted environments warrants taking that possibility into consideration when evaluating the results of bioassays and monitoring programs.  相似文献   

3.
Effects of environmental chemical pollution can be observed at all levels of biological organization. At the population level, genetic structure and diversity may be affected by exposure to metal contamination. This study was conducted in Huautla, Morelos, Mexico in a mining district where the main contaminants are lead and arsenic. Peromyscus melanophrys is a small mammal species that inhabits Huautla mine tailings and has been considered as a sentinel species. Metal bioaccumulation levels were examined by inductively coupled plasma mass spectrometry and genetic analyses were performed using eight microsatellite loci in 100 P. melanophrys individuals from 3 mine tailings and 2 control sites. The effect of metal bioaccumulation levels on genetic parameters (population and individual genetic diversity, genetic structure) was analyzed. We found a tissue concentration gradient for each metal and for the bioaccumulation index. The highest values of genetic differentiation (Fst and Rst) and the lowest number of migrants per generation (Nm) were registered among the exposed populations. Genetic distance analyses showed that the most polluted population was the most genetically distant among the five populations examined. Moreover, a negative and significant relationship was detected between genetic diversity (expected heterozygosity and internal relatedness) and each metal concentration and for the bioaccumulation index in P. melanophrys. This study highlights that metal stress is a major factor affecting the distribution and genetic diversity levels of P. melanophrys populations living inside mine tailings. We suggest the use of genetic population changes at micro-geographical scales as a population level biomarker.  相似文献   

4.
The genetic composition and diversity of Plantago lanceolata L. populations were analysed using amplified fragment length polymorphism (AFLP) as well as simple sequence repeat (SSR) markers to test for differences in an old semi-natural grassland after five years of treatment with ambient or elevated ozone (O3) using a free-air fumigation system. Genetic diversity in populations exposed to elevated O3 was slightly higher than in populations sampled from control plots. This effect was significant for AFLP-based measures of diversity and for SSR markers based on observed heterozygosity. Also, a small but significant difference in genetic composition between O3 treatments was detected by analysis of molecular variance and redundancy analysis. The results show that micro-evolutionary processes could take place in response to long-term elevated O3 exposure in highly diverse populations of outbreeding plant species.  相似文献   

5.
Medina MH  Correa JA  Barata C 《Chemosphere》2007,67(11):2105-2114
Polluting events can change community structure and ecosystem functioning. Selection of genetically inherited tolerance on exposed populations, here referred as micro-evolution due to pollution, has been recognized as one of the causes of these changes. However, there is a gap between studies addressing this process and those assessing effects at higher levels of biological organization. In this review we attempt to address these evolutionary considerations into the ecological risk assessment (ERA) of polluting events and to trigger the discussion about the consequences of this process for the ecosystem response to toxic stress. We provide clear evidence that pollution drives micro-evolutionary processes in several species. When this process occurs, populations inhabiting environments that become polluted may persist. However, due to the existence of ecological costs derived from the loss of genetic variability, negative pleiotropy with fitness traits and/or from physiological alterations, micro-evolution due to pollution may alter different properties of the affected populations. Despite the existence of empirical evidence showing that safety margins currently applied in the ERA process may account for pollution-induced genetic changes in tolerance, information regarding long-term ecological consequences at higher levels of biological organization due to ecological costs is not explicitly considered in these procedures. In relation to this, we present four testable hypotheses considering that micro-evolution due to pollution acts upon the variability of functional response traits of the exposed populations and generates changes on their functional effect traits, therefore, modifying the way species exploit their ecological niches and participate in the overall ecosystem functioning.  相似文献   

6.
To reveal the degradation capacity of bacteria in PAH polluted soil and rhizosphere we combined bacterial extradiol ring-cleavage dioxygenase and 16S rRNA analysis in Betula pubescens rhizoremediation. Characterisation of the functional bacterial community by RFLP revealed novel environmental dioxygenases, and their putative hosts were studied by 16S rRNA amplification. Plant rhizosphere and PAH amendment effects were detected by the RFLP/T-RFLP analysis. Functional species richness increased in the birch rhizosphere and PAH amendment impacted the compositional diversity of the dioxygenases and the structural 16S rRNA community. A shift from an Acidobacteria and Verrucomicrobia dominated to an Alpha- and Betaproteobacteria dominated community structure was detected in polluted soil. Clone sequence analysis indicated catabolic significance of Burkholderia in PAH polluted soil. These results advance our understanding of rhizoremediation and unveil the extent of uncharacterized functional bacteria to benefit bioremediation by facilitating the development of the molecular tool box to monitor bacterial populations in biodegradation.  相似文献   

7.
In 1990, 3 ha of a highly metal polluted acid sandy soil at the site of a former pyrometallurgical zinc smelter was treated with a combination of beringite and compost; beringite is a substance that has a strong metal immobilization capacity. After soil treatment and sowing of a mixture of metal-tolerant Agrostis capillaris and Festuca rubra, a healthy vegetation cover developed. Five years later, an evaluation was made of soil physico-chemical parameters, potential phytotoxicity, floristic and fungal diversity and mycorrhizal infection of the plant community. Phytotoxicity was shown to be maintained at the low level observed immediately after soil treatment. The water-extractable metal fraction of the treated soil was up to 70 times lower compared to the non-treated soil. The vegetation was still healthy and regenerating by vegetative means and by seed. Diversity of higher plant species and saprophytic fungi was extremely low in the untreated area due to the high soil toxicity and the absence of metal tolerant ecotypes of plants and fungi. On the treated soil, in contrast, the species richness of higher plants was much higher; several perennial forbs which are not noted as metal tolerant had colonized the revegetated area. Most of these species belong to mycotrophic families so that the presence of a mycorrhizal network in the soil promotes their establishment. The ubiquity of the mycorrhizal fungi in the roots showed that a functioning ecosystem was establishing. In non-treated soil, the mycorrhizal infection rates of the roots were consistently lower during the whole growing season.  相似文献   

8.
Liu P  Yang YS  Hao CY  Guo WD 《Chemosphere》2007,68(8):1497-1505
Environmental and ecological risk assessment always provide useful evidence for characterisation and conservation of the rare and endangered species, e.g. seven-son flower (Heptacodium miconioides Rehd.). Seven-son flower is a deciduous arbor species, but endangered, with a restricted distribution in the subtropical forests of China. Genetic risk assessment of 56 samples of the flower from nine main populations in Zhejiang (China) was carried out by using the RAPD analysis. This was to study the ecological characteristics, spatial distribution and genetic features of the seven-son flower communities and establish a feasible conservation plan. Twenty-one primers screened from 50 yielded 119 RAPD bands with 72 polymorphic products and 60.50% of total bands. The genetic variation was found to be partitioned mainly among rather than within populations. Percentages of genetic diversity among populations were quantified by Shannon index and the Nei's gene diversity coefficient. AMOVA also demonstrated that these relict populations were highly differentiated. The high level of population variation observed is in contrast to that expected for a primarily outcrossed woody perennial plant, and suggests that there may be a degree of inbreeding. The dendrogram constructed from genetic distances through UPGMA method based on Nei's coefficients shows two groups among nine population clusters, which is further supported by a principle components analysis (PCA) of RAPD phenotypic data. The analysis showed that the biologic characteristics and habitat fragmentation were the reasons of the great genetic variation among populations. Some strategies of its genetic diversity conservation were proposed in the fragmented habitats based on its genetic structure and its biological characteristics in this study.  相似文献   

9.
The population genetic composition of Poa annua L. was studied by starch electrophoresis along a transect running NE from an organic reagents factory at Shanghai, China. Five enzyme systems were stained. We have reached the following preliminary conclusions: (1). Organic pollution has dramatically changed genotypic frequencies at some loci of Poa annua populations. At polluted sites, significant deviations from Hardy-Weinberg equilibrium were observed on loci Sod-1 and Me due to the excess of heterozygote. Especially in the two nearest sites to pollution source, all the individuals were heterozygous at locus Sod-1. The data suggests that heterozygotes were more tolerant to organic pollution than homozygotes, indicating the fitness superiority of heterozygotes. (2). A tendency towards clinal changes of allele frequencies was found at some polymorphic loci. Frequencies of the common alleles at loci Sod-1, Me and Fe-1 increased as the distance to the pollution source increased. (3). The effective number of alleles per locus, and the observed and expected heterozygosity were much higher in the pollution series than in the clear control site (Botanic Park population), but genetic multiplicity (number of alleles per locus) was lower than for the control. (4). Most genetic variability was found within populations, and only 2.56% were among populations of the polluted series. However, 9.48% of the total genetic variation occurred among populations when including the Botanic Park population. The genetic identity between populations of the pollution series (0.9869-1.0000, mean 0.9941) was higher than those between the pollution series and the Botanic Park population. UPGMA divided the five populations into two groups. One contained the four polluted populations, and the other only contained the Botanic Park population.  相似文献   

10.
Shinn C  Marco A  Serrano L 《Chemosphere》2008,71(3):507-514
Several authors have suggested that nitrogen-based fertilizers may be contributing to the global amphibian decline. We have studied the impact of sodium nitrite on early aquatic stages of Epidalea calamita, Pelophylax perezi and Hyla meridionalis larvae from Do?ana National Park (coastal wetland) and P. perezi from Gredos Mountain (high mountain ponds), exposed during 10 to 16 days. After 8 days of exposure all P. perezi larvae from Do?ana presented 100% mortality at 5 mg l(-1)N-NO2(-) while E. calamita larvae mortality rates were significantly lower at that concentration after 15 days. However, for H. meridionalis at day 15 no deaths were registered at 5 mg l(-1)N-NO2(-) and at 20 mg l(-1)N-NO2(-) presented intermediate mortality rates. In Do?ana the 10 d LC50 of older H. meridionalis larvae was between 20 and 30 mg l(-1)N-NO2(-) whilst for P. perezi it was below 5 mg l(-1)N-NO2(-). These results indicate inter-specific variation of the sensitivity of larval amphibians to nitrite. Gredos Mountain P. perezi larvae exposed since the egg stage were highly sensitive to nitrite, with a 16 d LC50 below 0.5 mg l(-1)N-NO2(-). The same species in Do?ana had a 15 d LC50 between 5 and mg l(-1)N-NO2(-). These results suggest that there is also intra-specific variation in sensitivity of amphibian larvae to nitrite: mountain amphibian populations appear to be more sensitive to polluted environments than coastal populations. Geographic and genetic variation and evolutionary adaptation of tolerance may also be the keys to variation amongst populations of the same species.  相似文献   

11.
Photo-oxidation of cork manufacturing wastewater   总被引:7,自引:0,他引:7  
Several photo-activated processes have been investigated for oxidation of a cork manufacturing wastewater. A comparative activity study is made between different homogeneous (H2O2/UV-Vis and H2O2/Fe2+/UV-Vis) and heterogeneous (TiO2/UV-Vis and TiO2/H2O2/UV-Vis) systems, with degradation performances being evaluated in terms of total organic carbon (TOC) removal. Results obtained in a batch photo-reactor show that photo-catalysis with TiO2 is not suitable for this kind of wastewater while the H2O2/UV-Vis oxidation process, for which the effect of some operating conditions was investigated, allows to remove 39% of TOC after 4 h of operation (for C(H2O2)=0.59 M, pH=10 and T=35 degrees C). The combined photo-activated process, i.e., using both TiO2 and H2O2, yields an overall TOC decrease of 46% (for C(TiO2)=1.0 gl(-1)). The photo-Fenton process proved to be the most efficient, proceeds at a much higher oxidation rate and allows to achieve 66% mineralization in just 10 min of reaction time (for C(H2O2)=0.31 M, T=30 degrees C, Fe2+:H2O2=0.12 (mol) and pH=3.2).  相似文献   

12.
The impact of industrial heavy metal pollution on Scots pine (Pinus sylvestris L.) and black pine (Pinus nigra Arn.) populations was investigated. Sampled pine stands, which were located in Upper Silesia (southern Poland) in an area strongly polluted by heavy metals, consisted of resistant and sensitive trees. To evaluate the adaptation process, genetic structure and diversity was tested using isozyme analysis. Higher levels of Zn, Pb, Cd and Cu were detected in needles of sensitive trees compared with resistant ones. With respect to morphology, Scots pines were more distinctly impaired than black pines. Although black pines had lower heavy metal concentrations, levels in 1-year-old needles, other than Cu, significantly exceeded “reference plant” values (Markert 1994). In both species, resistant trees demonstrated a lower degree of genetic variation than metal-sensitive trees with respect to some enzyme loci (SHDH A, PGI, PGM, MDH C and DIA). This observation was corroborated in sensitive trees by the smaller number of identified alleles and alleles per locus, absence of private alleles and significant excess of homozygotes in relation to expected Hardy–Weinberg equilibrium values. Assuming that only resistant trees of both species survive under conditions of prolonged soil contamination, the observed genetic structure implies that remaining populations will be depleted of some alleles of unknown adaptive value to future selection pressures. Genetic changes induced by heavy metals suggest an important role for specific enzymes—FEST, SHDH A and B, GOT B and PGI—in the adaptation process. Our results may serve as a basis for selection and propagation of individuals appropriate for re-cultivation of areas chemically degraded by industrial activity.  相似文献   

13.
Visible injury caused by ozone is recorded every year in native plant species growing in Great Smoky Mountains National Park (USA). One of the most sensitive species, cutleaf coneflower (Rudbeckia laciniata L.), shows great variation in symptoms between and within populations but the causes of this variation and its ecological significance are currently unknown. This paper presents data relating to genetic variation, ozone concentrations, stomatal conductance and light (PAR) within populations. The data show that populations differ in genetic diversity, one consisting of only three genets while another was very diverse. In the former population, symptoms varied greatly within a single genet, pointing to a large micro-environmental influence. Measurements of ozone, stomatal conductance and PAR within plant canopies suggest that variation in symptom expression is unlikely to be due to differences in ozone flux and more likely to be due to variation in light. The variation in visible symptoms raises the question of what bioindicators actually indicate, and it suggests that symptoms should be interpreted with great caution until the underlying causes of that variation are fully understood.  相似文献   

14.
Genotype frequencies of glucose-6-phosphate isomerase (GPI) allozymes differed significantly among populations of the spotfin shiner Notropis spilopterus from sites with varying water quality. Frequencies of shiners with a GPI-2 BB genotype decreased significantly at sites with reduced water quality. Alternatively, the total frequencies of shiners with a genotype of GPI-2 AA and AB increased at sites with reduced water quality. Individuals with certain allozyme genotypes may be more sensitive to the toxic effects of polluted waters than those with other genotypes. The selection of individuals with sensitive genotypes may reduce genetic diversity in populations and thus increase the susceptibility of these populations to additional novel stresses. Because allele and genotype frequencies of GPI-2 were correlated with water quality, electrophoretic determination of genetic structure in fishes may be a useful tool for monitoring the health of aquatic populations.  相似文献   

15.
Bo Ngam lead mine soils contain high concentrations of lead (up 1% total Pb) and low amounts of organic matter and major nutrients (N, P, K). A glasshouse study was conducted to compare growth performance, metal tolerance and metal uptake by two grasses, Thysanolaena maxima (Roxb.) O. Kuntze and four ecotypes of Vetiveria zizanioides (L.) Nash, syn. Chrysopogon zizanioides (L.) Roberty (three from Thailand: Surat Thani, Songkhla and Kamphaeng Phet, and one from Sri Lanka) and to study the effects of pig manure (20% and 40% w/w) and inorganic fertilizer (75 and 150 mg kg(-1)) amendments to this lead mine soil. The results showed that both T. maxima and V. zizanioides (Surat Thani and Songkhla) could tolerate high Pb concentrations in soil (10750 mg kg(-1)) and had very good growth performance. Application of pig manure increased electrical conductivity (EC) and reduced DTPA-extractable Pb concentration in the soils. Pig manure application improved the growth of vetiver, especially at 20%, application dosage. Vetiver had the highest biomass. T. maxima could not tolerate high EC values. The uptake by roots and transport of Pb to shoots of both species was reduced when soils were amended with pig manure. Application of inorganic fertilizer did not improve growth of vetiver but did improve that of T. maxima. Fertilizer application did not have any great influence on the Pb uptake in vetiver while T. maxima took up more Pb as a result of the fertilizer enhancing its biomass yield. Both species transported low Pb concentrations to shoots (8.3-179 mg kg(-1)) and accumulated higher concentrations in roots (107-911 mg kg(-1)). In summary, both species may be species well suited for phytostabilization in tropical lead mine areas.  相似文献   

16.
In the present work, the relationships between plant consortia, consisting of 1-4 metallicolous pseudometallophytes with different metal-tolerance strategies (Thlaspi caerulescens: hyperaccumulator; Jasione montana: accumulator; Rumex acetosa: indicator; Festuca rubra: excluder), and their rhizosphere microbial communities were studied in a mine soil polluted with high levels of Cd, Pb and Zn. Physiological response and phytoremediation potential of the studied pseudometallophytes were also investigated. The studied metallicolous populations are tolerant to metal pollution and offer potential for the development of phytoextraction and phytostabilization technologies. T. caerulescens appears very tolerant to metal stress and most suitable for metal phytoextraction; the other three species enhance soil functionality. Soil microbial properties had a stronger effect on plant biomass rather than the other way around (35.2% versus 14.9%). An ecological understanding of how contaminants, ecosystem functions and biological communities interact in the long-term is needed for proper management of these fragile metalliferous ecosystems.  相似文献   

17.
Seasonal changes in soil pH, sulphate concentration and total-S were measured in two brown earth soils, sampled from deciduous woodlands. One site studied was exposed to severe atmospheric pollution from a coking works while the other site was relatively unpolluted but located in an area receiving wet and dry deposited acidity of greater than 1.0 and 2.4 kg H(+) ha(-1) year(-1), respectively The pH of soil at the heavily polluted site was lower than the relatively unpolluted soil at each monthly sample point, except during November. Annual average sulphate concentrations (LiCl-extractable) were highest in the soil exposed to coking pollution, where they peaked during summer and autumn. A marked difference in total-S was found in soils from the two sites, the heavily polluted soil showing the highest concentration with peaks again occurring during late summer and autumn. Only 4.0% (w/w) of the total-S of the heavily polluted soil occurred as LiCl-extractable sulphate, compared to 21.4% (w/w) for the relatively unpolluted soil, showing that organic sulphur is increased in brown earths following exposure to severe atmospheric pollution from the coking works.  相似文献   

18.

Background aim and scope  

Though the tidal Anacostia River, a highly polluted riverine system, has been well characterized with regard to contaminants, its overall resident bacterial populations have remained largely unknown. Improving the health of this system will rely upon enhanced understanding of the diversity and functions of these communities. Bacterial DNA was extracted from archived (AR, year 2000) and fresh sediments (RE, year 2006) collected from various locations within the Anacostia River. Using a combination of metabolic and molecular techniques, community snapshots of sediment bacterial diversity and activity were produced.  相似文献   

19.
In situ fixation of metals in soils using bauxite residue: biological effects   总被引:17,自引:0,他引:17  
Soils polluted with heavy metals can cause phytotoxicity and exhibit impared microbial activities. In this paper we evaluate the responses of different biological endpoints to in situ remediation processes. Three soil amendments (red mud, beringite and lime) were applied to two soils polluted by heavy metals. Oilseed rape, wheat, pea and lettuce were grown successively in pots on the untreated and amended soils and their yield and metal uptake were determined. A suite of microbial tests (lux-marked biosensors, Biolog and soil microbial biomass) were performed to determine the effect of the soil amendments on the functionality and size of the soil microbial community. In both soils all three amendments reduced phytotoxicity of heavy metals, enhanced plant yields and decreased the metal concentrations in plants. The red mud treatment also increased soil microbial biomass significantly. The microbial biosensors responded positively to the remediation treatments in the industrially-contaminated soil used in the experiment. Red mud applied at 2% of soil weight was as effective as beringite applied at 5%. The results also showed that since the biological systems tested respond differently to the alleviation of metal toxicity, a suite of biological assays should be used to assess soil remediation processes.  相似文献   

20.
The present paper investigated the short-term colonization by plants of a highly degraded soil in field conditions. The objectives were to identify, through phytosociological analysis, the plant species able to grow on such polluted areas and to characterize pollutant effects at different biological levels through analyses of plant oxidative status, plant growth or community indexes of richness and biodiversity. Our results showed that among the plants present in the uncontaminated surrounding area, only few species were able to colonize the polluted soil. These species were typical of the first years of grassland successions. Ecological indexes proved that the polluted soil vegetation presented a lower degree of species richness and biodiversity than the control area. These discrepancies were partly explained by pollutant phytotoxicity. Indeed, for several species including Erigeron canadensis and Oenothera biennis, we observed toxic effects of the polluted soil on plant height and biomass. Moreover, at the cellular level, changes in antioxidant enzyme activities (SOD, CAT, APX, GPX and GRD) and lipid peroxidation level (MDA) were observed. Such biochemical changes seemed to play an important role on plant sensitivity/tolerance to pollutants and thus to render them more or less competitive for colonization of such disturbed areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号