首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Extant species of the supraordinal mammal clade Euarchonta belong to the orders Primates, Scandentia, or Dermoptera. The fossil record of euarchontans suggests that they underwent their initial radiation during the Paleocene (65–55 million years ago) in North America, Eurasia, and Africa. The time and place of origin is poorly resolved due to lack of definitive fossils of euarchontan stem taxa. We describe a fragmentary humerus and two fragmentary ulnae from the latest Cretaceous of India that bear significantly on this issue. The fossils are tentatively referred to Deccanolestes cf. hislopi due to their small size and the fact that Deccanolestes is the only eutherian dental taxon to have been recovered from the same locality. The new fossils are used to evaluate the existing behavioral hypothesis that Deccanolestes was arboreal, and the competing phylogenetic hypotheses that Deccanolestes is a stem eutherian versus a stem euarchontan. The humerus resembles those of euarchontans in possessing a laterally keeled ulnar trochlea, a distinct zona conoidea, and a spherical capitulum. These features also suggest an arboreal lifestyle. The ulnar morphology is consistent with that of the humerus in reflecting an arboreal/scansorial animal. Detailed quantitative comparisons indicate that, despite morphological correlates to euarchontan-like arboreality, the humerus of Deccanolestes is morphologically intermediate between those of Cretaceous “condylarthran” mammals and definitive Cenozoic euarchontans. Additionally, humeri attributed to adapisoriculids are morphologically intermediate between those of Deccanolestes and definitive euarchontans. If adapisoriculids are euarchontans, as recently proposed, our results suggest that Deccanolestes is more basal. The tentative identification of Deccanolestes as a basal stem euarchontan suggests that (1) Placentalia began to diversify and Euarchonta originated before the Cretaceous–Tertiary boundary and (2) the Indian subcontinent, Eurasia, and Africa are more likely places of origin for Euarchonta than is North America.  相似文献   

2.
Most living mammal orders, including our own, started their career during the first 10 million years of the Cenozoic, the Age of Mammals. The fossil record documents that early Paleogene adaptive radiations of various clades included tiny species of the size of living shrews. Remains of particularly diminutive limb bones are described from the late Paleocene site of Walbeck, Sachsen-Anhalt. Discovered in 1939, it has remained the only known Paleocene mammal-bearing locality from Germany. The remains are referred to the family Adapisoriculidae, which is considered on the basis of the present postcranial evidence to represent plesiadapiform primates rather than alleged lipotyphlan insectivores as previously proposed. The Walbeck fossils compete with the Early Eocene species Toliapina vinealis from Europe and Picromomys petersonorum from North America for the status of the smallest known primate, fossil and living. Their estimated body weights are as small as 10 g. The limb bones show features related to enhanced flexion at the elbow and hip joint, suggesting arboreal habits and environments such as terminal branches. The diminutive size and tooth morphology suggest feeding on small insects and other invertebrates. Postcranials are important to assess early radiations, such tiny specimens as the present ones are extremely scarce in the fossil record, however.  相似文献   

3.
The bone-eating marine annelid Osedax consumes mainly whale bones on the deep-sea floor, but recent colonization experiments with cow bones and molecular age estimates suggesting a possible Cretaceous origin of Osedax indicate that this worm might be able grow on a wider range of substrates. The suggested Cretaceous origin was thought to imply that Osedax could colonize marine reptile or fish bones, but there is currently no evidence that Osedax consumes bones other than those of mammals. We provide the first evidence that Osedax was, and most likely still is, able to consume non-mammalian bones, namely bird bones. Borings resembling those produced by living Osedax were found in bones of early Oligocene marine flightless diving birds (family Plotopteridae). The species that produced these boreholes had a branching filiform root that grew to a length of at least 3 mm, and lived in densities of up to 40 individuals per square centimeter. The inclusion of bird bones into the diet of Osedax has interesting implications for the recent suggestion of a Cretaceous origin of this worm because marine birds have existed continuously since the Cretaceous. Bird bones could have enabled this worm to survive times in the Earth’s history when large marine vertebrates other than fish were rare, specifically after the disappearance of large marine reptiles at the end-Cretaceous mass extinction event and before the rise of whales in the Eocene.  相似文献   

4.
The mode of life of the early Tertiary giant bird Gastornis has long been a matter of controversy. Although it has often been reconstructed as an apex predator feeding on small mammals, according to other interpretations, it was in fact a large herbivore. To determine the diet of this bird, we analyze here the carbon isotope composition of the bone apatite from Gastornis and contemporaneous herbivorous mammals. Based on 13C-enrichment measured between carbonate and diet of carnivorous and herbivorous modern birds, the carbonate δ13C values of Gastornis bone remains, recovered from four Paleocene and Eocene French localities, indicate that this bird fed on plants. This is confirmed by a morphofunctional study showing that the reconstructed jaw musculature of Gastornis was similar to that of living herbivorous birds and unlike that of carnivorous forms. The herbivorous Gastornis was the largest terrestrial tetrapod in the Paleocene biota of Europe, unlike the situation in North America and Asia, where Gastornis is first recorded in the early Eocene, and the largest Paleocene animals were herbivorous mammals. The structure of the Paleocene terrestrial ecosystems of Europe may have been similar to that of some large islands, notably Madagascar, prior to the arrival of humans.  相似文献   

5.
Arctostylopids are common in Late Palaeocene and Early Eocene mammal faunas of Asia, but they are rare in North America. From the time of their first discovery, arctostylopids were grouped with the strictly endemic South American Notoungulata based on their strikingly similar dental morphology. This relationship was challenged based on dental morphology of more recently discovered arctostylopids and on supposed tarsal morphology (based on unassociated material) of the Asian arctostylopid Palaeostylops. Therefore, Arctostylopidae were placed in a separate order, Arctostylopida, of enigmatic affinities. Many authors, however, continue to unite Arctostylopidae and Notoungulata based on dental similarities. In the Late Palaeocene Subeng site in Inner Mongolia, we identified the Palaeostylops tarsals based on their size and abundance. This identification is supported by comparison to unpublished Arctostylops tarsals from the North American Clarkforkian, derived from a semi-articulated skeleton also including dental material. Tarsal morphology shows moderate similarity to the gliriform Pseudictops, and strong resemblance to the tarsally conservative gliroid Rhombomylus. Hence, Arctostylopidae may best be grouped with Asian non-gliroid Gliriformes, which we interpret as having dispersed into North America in the Late Palaeocene.Pieter Missiaen is an aspirant of the Research Foundation-Flanders (RF-Flanders)  相似文献   

6.

The fossil record of Late Cretaceous–Paleogene modern birds in the Southern Hemisphere includes the Maastrichtian Neogaeornis wetzeli from Chile, Polarornis gregorii and Vegavis iaai from Antarctica, and Australornis lovei from the Paleogene of New Zealand. The recent finding of a new and nearly complete Vegavis skeleton constitutes the most informative source for anatomical comparisons among Australornis, Polarornis, and Vegavis. The present contribution includes, for the first time, Vegavis, Polarornis, and Australornis in a comprehensive phylogenetic analysis. This analysis resulted in the recognition of these taxa as a clade of basal Anseriformes that we call Vegaviidae. Vegaviids share a combination of characters related to diving adaptations, including compact and thickened cortex of hindlimb bones, femur with anteroposteriorly compressed and bowed shaft, deep and wide popliteal fossa delimited by a medial ridge, tibiotarsus showing notably proximally expanded cnemial crests, expanded fibular crest, anteroposterior compression of the tibial shaft, and a tarsometatarsus with a strong transverse compression of the shaft. Isolated bones coming from the Cretaceous and Paleogene of South America, Antarctica, and New Zealand are also referred to here to Vegaviidae and support the view that these basal anseriforms were abundant and diverse at high southern latitudes. Moreover, vegaviids represent the first avian lineage to have definitely crossed the K–Pg boundary, supporting the idea that some avian clades were not affected by the end Mesozoic mass extinction event, countering previous interpretations. Recognition of Vegaviidae indicates that modern birds were diversified in southern continents by the Cretaceous and reinforces the hypothesis indicating the important role of Gondwana for the evolutionary history of Anseriformes and Neornithes as a whole.

  相似文献   

7.
The endemic South American mammals Meridiolestida, considered previously as dryolestoid cladotherians, are found to be non-cladotherian trechnotherians related to spalacotheriid symmetrodontans based on a parsimony analysis of 137 morphological characters among 44 taxa. Spalacotheriidae is the sister taxon to Meridiolestida, and the latter clade is derived from a primitive spalacolestine that migrated to South America from North America at the beginning of the Late Cretaceous. Meridiolestida survived until the early Paleocene (Peligrotherium) and early Miocene (Necrolestes) in South America, and their extinction is probably linked to the increasing competition with metatherian and eutherian tribosphenic mammals. The clade Meridiolestida plus Spalacotheriidae is the sister taxon to Cladotheria and forms a new clade Alethinotheria. Alethinotheria and its sister taxon Zhangheotheria, new clade (Zhangheotheriidae plus basal taxa), comprise Trechnotheria. Cladotheria is divided into Zatheria (plus stem taxa, including Amphitherium) and Dryolestida, including Dryolestidae and a paraphyletic array of basal dryolestidans (formerly classified as “Paurodontidae”). The South American Vincelestes and Groebertherium are basal dryolestidans.  相似文献   

8.
Well-preserved jaw fragments and skull bones of a new scincomorphan lizard are described from the continental Hainin Formation (Middle Palaeocene) of the Mons Basin in southwestern Belgium. This taxon, Scincoideus haininensis gen. et sp. nov., is characterised by vermiculate dermal rugosities and represents the earliest formally recognised scincoid in Europe. It differs from cordylids (girdled lizards) by lacking the parietal downgrowth and differs from scincids (skinks) by having robustly built bones and a well-developed lingual cusp on tooth crowns. By its mosaic characters, S. haininensis is considered here as being a basal scincoid lizard close to the origin of cordylids and scincids. Palaeobiogeographic analysis suggests that scincoids were present in Europe from the Palaeocene or maybe even before the Cretaceous/Palaeogene boundary and that they were replaced by modern scincoids such as true scincids and cordylids during the Eocene. The origin of the latter two families in Europe was very likely related with the immigration of the first modern mammals.Electronic supplementary material  Supplementary material is available for this article at and accessible for authorised users.  相似文献   

9.
The basal non-mammaliaform cynodonts from the late Permian (Lopingian) and Early Triassic are a major source of information for the understanding of the evolutionary origin of mammals. Detailed knowledge of their anatomy is critical for understanding the phylogenetic transition toward mammalness and the paleobiological reconstruction of mammalian precursors. Using micro-computed tomography (μCT), we describe the internal morphology of the interorbital region that includes the rarely fossilized orbitosphenoid elements in four basal cynodonts. These paired bones, which are positioned relatively dorsally in the skull, contribute to the wall of the anterior part of the braincase and form the floor for the olfactory lobes. Unlike procynosuchids and the more basal therapsids in which the orbitosphenoids are well developed, dense, and bear a ventral keel, the basal epicynodonts Cynosaurus, Galesaurus, and Thrinaxodon display cancellous, reduced, and loosely articulated orbitosphenoids, a condition shared with many eucynodonts. The hemi-cylindrical orbitosphenoid from which the mammalian condition is derived re-evolved convergently in traversodontid and some probainognathian cynodonts.  相似文献   

10.
Ferganodon narynensis gen. et sp. nov. is represented by a lower molariform tooth from the Middle Jurassic (Callovian) Balabansai Svita in Kyrgyzstan. The new genus is allied with Klamelia zhaopengi Chow and Rich 1984 from the Middle Jurassic Shishugou Formation in Xinjiang, northwest China to the new family Klameliidae based on parallelogram-shaped lower molariforms, imbricating rather than interlocking of cusps e-d-f, by a peculiar distolabial cingulid cusp, and by vertical folding of the enamel on the labial crown side. The new family Klameliidae fam. nov. is most similar to Gobiconodontidae by the structure of the molariform teeth and represents a previously unrecognized radiation of eutriconodontan mammals possibly endemic to Central Asia.  相似文献   

11.
Aside from pollen and nectar, bees of the subfamily Megachilinae are closely associated with plants as a source of materials for nest construction. Megachilines use resins, masticated leaves, trichomes and other plant materials sometimes along with mud to construct nests in cavities or in soil. Among these, the leafcutter bees (Megachile s.l.) are the most famous for their behaviour to line their brood cells with discs cut from various plants. We report on fossil records of one body fossil of a new non-leafcutting megachiline and of 12 leafcuttings from three European sites—Eckfeld and Messel, both in Germany (Eocene), and Menat, France (Paleocene). The excisions include the currently earliest record of probable Megachile activity and suggest the presence of such bees in the Paleocene European fauna. Comparison with extant leafcuttings permits the interpretation of a minimal number of species that produced these excisions. The wide range of size for the leafcuttings indirectly might suggest at least two species of Megachile for the fauna of Messel in addition to the other megachiline bee described here. The presence of several cuttings on most leaves from Eckfeld implies that the preferential foraging behaviour of extant Megachile arose early in megachiline evolution. These results demonstrate that combined investigation of body and trace fossils complement each other in understanding past biodiversity, the latter permitting the detection of taxa not otherwise directly sampled and inferences on behavioural evolution.  相似文献   

12.
Herein, we report evidence of an envenomation apparatus (EA) in two different species of extinct “giant” shrews, Beremendia and an indeterminate soricine (Mammalia, Eulipotyphla, Soricidae), documented by very well preserved fossil specimens recovered from two Early Pleistocene cave deposits of the Sierra de Atapuerca in Burgos, Spain. The two soricine taxa from Atapuerca have evolved specialized teeth as EAs, which differ from those of recently reported mammals of the Paleocene age, being more similar to the ones described in the modern Solenodon. This discovery reveals the first instance of shrews possessing what appears to be an EA, an evolutionary adaptation that, in these species, was probably related to an increase in body mass and hunting of a larger-sized prey. The Atapuerca specimens would have a highly specialized EA, one of the very few reported for an extinct or living mammal of any time. In addition to the presence of a gutter-like groove along the medial side of the crown of the lower incisors, these two species also present stout jaws and a modified mandibular symphysis with a conspicuous cavity, which in life would likely contain large amounts of connective tissue. The strong mandible architecture of these large shrews would be, in this way, reinforced by a more immovable symphysis, increasing the bite force exerted over a potential prey. This adaptation, together with the grooved incisors, would ensure a rapid and efficient transmission of the poisonous saliva to paralyze relatively large-sized prey.  相似文献   

13.
The titanosaur Lirainosaurus astibiae is the only sauropod species known from the Late Cretaceous of the Iberian Peninsula. Lirainosaurus did not reach a gigantic body size and is one of the smallest sauropods discovered to date. Histological analysis of Lirainosaurus bones, focused on diaphyseal transverse sections of appendicular elements, reveals that Lirainosaurus did not exhibit the osseous microstructure typical for large sauropods, but is comparable with that of the coeval titanosaurs Alamosaurus sanjuanensis, Ampelosaurus atacis, and Magyarosaurus dacus, and also shares histological traits with other small to medium-sized sauropodomorph dinosaurs. Lirainosaurus limb bones exhibit a laminar fibrolamellar bone microstructure interrupted by growth marks, fully obliterated in adulthood by intense secondary remodeling processes which tend to replace completely the primary cortex. Lirainosaurus attained smaller sizes than typical sauropods reducing the rate of primary periosteal osteogenesis and developing an extensive secondary remodeling well before the adult size was reached. Histological organization of Lirainosaurus long bones is more mature than observed in basal neosauropods at similar ontogenetic stage, documenting a case of peramorphosis by pre-displacement. This heterochronic growth would be a reversal of the accelerated pattern of bone deposition typical for the sauropod lineage.  相似文献   

14.
The Paleocene–Eocene transition is of crucial interest for interpreting the Cenozoic evolutionary radiation of vertebrates. A substantial increase of the number of vertebrate families occurred between the Late Paleocene and Early Eocene, with the appearance of most of the representatives of extant lineages. Basal Eocene marine fish diversity is currently poorly known, exclusively restricted to two assemblages from Denmark and Turkmenistan, respectively. Exceptionally well-preserved articulated skeletal remains of fishes have recently been discovered from a basal Eocene sapropelitic layer exposed along the Kheu River in the Republic of Kabardino-Balkaria, northern Caucasus, Russia. Here, we report on Gerpegezhus paviai gen. et sp. nov., a new peculiar syngnathoid fish from this new Ciscaucasian locality. The morphological structure of the single available specimen suggests that it is the first long-bodied member of the superfamily Centriscoidea, representing the sole member of the new family Gerpegezhidae, which forms a sister pair with the extant family Centriscidae.  相似文献   

15.
A new mammal, Mondegodon eutrigonus gen. et sp. nov., is described from the earliest Eocene locality of Silveirinha, Portugal. This species shows dental adaptations indicative of a carnivorous diet. M. eutrigonus is referred to the order Acreodi and considered, along with the early Paleocene North American species Oxyclaenus cuspidatus, as a morphological intermediate between two groups of ungulate-like mammals, namely, the triisodontids and mesonychians. Considering that triisodontids are early to early-late Paleocene North American taxa, Mondegodon probably belongs to a group that migrated from North America towards Europe during the first part of the Paleocene. Mondegodon could represent thus a relict genus, belonging to the ante-Eocene European mammalian fauna. The occurrence of such a taxon in Southern Europe may reflect a period of isolation of this continental area during the Paleocene/Eocene transition. In this context, the non-occurrence of closely allied forms of Mondegodon in the Eocene North European mammalian faunas is significant. This strengthens the hypothesis that the mammalian fauna from Southern Europe is characterized by a certain degree of endemism during the earliest Eocene. Mondegodon also presents some striking similarities with an unnamed genus from the early Eocene of India which could represent the first Asian known transitional form between the triisodontids and mesonychians.  相似文献   

16.
粤北南雄盆地是中生代末世和新生代初世的陆相沉积盆地。上白垩统富含末代恐龙、恐龙蛋和恐龙脚印化石。下第三系古新统则出现哺乳动物先驱化石。对研究恐龙的绝灭有重要科学意义。  相似文献   

17.
松属(Pinus L.)约113种,是松科现代属中最原始的类群。松属植物种类丰富且研究领域广泛,对其已经积累的资料数据进行系统梳理总结十分必要。本文通过总结国内外松属大化石资料,结合分子系统发育、地质背景和地理隔离事件讨论了其地史分布及植物地理学意义;该属化石在早白垩世至全新世地层中均有记录。化石证据表明松属很可能在早白垩世(之前)起源于西欧地区,从这一起源地通过北大西洋陆桥扩散到北美洲东部,而东亚的类群可能是从北美洲西部经过白令陆桥散布的。在晚白垩世分化出双维管束松亚属Subgenus Pinus L.及单维管束松亚属Subgenus Strobus (D. Don) Lemmon,前者更接近祖先类群。古新世由于全球显著增温以及白垩纪末期大灭绝等地质事件的影响使松属数量急剧减少,在晚始新世至中新世时期随着气温转凉转冷再次分化扩散,中新世达到其发展高峰且分布面貌与现代类群近似。松属多样性时空历史可能和新生代气候变迁及晚新生代构造运动塑造的山地隆升等环境变化紧密相关。  相似文献   

18.
Despite significant recent improvements to our understanding of the early evolution of the Order Proboscidea (elephants and their extinct relatives), geographic sampling of the group’s Paleogene fossil record remains strongly biased, with the first ~30 million years of proboscidean evolution documented solely in near-coastal deposits of northern Africa. The considerable morphological disparity that is observable among the late Eocene and early Oligocene proboscideans of northern Africa suggests that other, as yet unsampled, parts of Afro-Arabia might have served as important centers for the early diversification of major proboscidean clades. Here we describe the oldest taxonomically diagnostic remains of a fossil proboscidean from the Arabian Peninsula, a partial mandible of Omanitherium dhofarensis (new genus and species), from near the base of the early Oligocene Shizar Member of the Ashawq Formation, in the Dhofar Governorate of the Sultanate of Oman. The molars and premolars of Omanitherium are morphologically intermediate between those of Arcanotherium and Barytherium from northern Africa, but its specialized lower incisors are unlike those of other known Paleogene proboscideans in being greatly enlarged, high-crowned, conical, and tusk-like. Omanitherium is consistently placed close to late Eocene Barytherium in our phylogenetic analyses, and we place the new genus in the Family Barytheriidae. Some features of Omanitherium, such as tusk-like lower second incisors, the possible loss of the lower central incisors, an enlarged anterior mental foramen, and inferred elongate mandibular symphysis and diminutive P2, suggest a possible phylogenetic link with Deinotheriidae, an extinct family of proboscideans whose origins have long been mysterious.  相似文献   

19.
The impact of petroleum on archaeal community in salinealkali soils was investigated, which will expand the knowledge of the archaeal population involved in the natural attenuation of hydrocarbons in extreme environments.  相似文献   

20.
Footprint secretions deposited at the nest entrance or on food sources are used for chemical communication by honey bees, bumble bees, and stingless bees. The question of the glandular origin of the substances involved, however, has not been unequivocally answered yet. We investigated the morphology and structure of tarsal glands within the fifth tarsomeres of the legs of workers of Melipona seminigra in order to clarify their possible role in the secretion of footprints. The tarsal gland is a sac-like fold forming a reservoir. Its glandular tissue is composed of a unicellular layer of specialized epidermal cells, which cover the thin cuticular intima forming the reservoir. We found that the tarsal glands lack any openings to the outside and therefore conclude that they are not involved in the secretion of footprint substances. The secretion produced accumulates within the glands reservoir and reaches as far as into the arolium. Thus it is likely that it serves to fill and unfold the arolium during walking to increase adhesion on smooth surfaces, as is known for honey bees and weaver ants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号