首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
ABSTRACT: Human induced long-term changes in precipitation and stream chemistry have been observed in eastern North America and Europe, but few long-term studies have been conducted in coastal western North America. The objectives of this research were to determine: (1) time trends in precipitation and stream chemistry in a pristine old-growth forest watershed, and (2) seasonal patterns in precipitation and stream chemistry. It was conducted in 58 ha West Twin Creek Watershed, Hoh River Valley, Olympic National Park, Washington from 1984 to 1993. Vegetation consists of old-growth forest, with western hemlock, Douglas-fir, western redcedar, Pacific silver fir, and Sitka spruce being the dominant tree species. Annual precipitation varied from 2336 to 4518 mm during the study period with the majority of the rain falling between October and May. Chemistry of precipitation was strongly dominated by oceanic influences with Na and Cl being the dominant ions. The chemistry of the stream was influenced by bedrock weathering and was dominated by Ca, HCO3, and SO4 and was not strongly related to precipitation chemistry. The pH of precipitation averaged 5.3 over time and ranged from 4.3 to 7.1, while the stream pH averaged 7.5 and ranged from 5.5 to 9.0. There were few long-term trends in the chemical constituents of bulk precipitation or stream water with the exception of a slight decrease in NO3 in precipitation and an increase of SO4 in stream water. A trend of decreasing concentrations of Ca, Mg and Na in precipitation also occurred. There were no significant seasonal patterns in precipitation although the highest SO4 concentrations usually occurred in late spring and summer perhaps due marine algal activity. Strong seasonal trends occurred in concentrations of HCO3, SO4, Ca, Mg, and Na in stream water resulting from weathering and stream flow patterns, with highest ion concentrations occurring just before the onset of the rainy season. Pulses of NO3 in the stream were observed during fall and early winter resulting from the release of NO3 which had accumulated in soils or sediments.  相似文献   

2.
ABSTRACT: The biogeochemistry of a coastal old-growth forested watershed in Olympic National Park, Washington, was examined. Objectives were to determine: (1) concentrations of major cations and anions and dissolved organic C (DOC) in precipitation, throughfall, stemflow, soil solution and the stream; (2) nutrient input/output budgets; and (3) nutrient retention mechanisms in the watershed. Stemilow was more acidic (pH 4.0–4.5) than throughfall (pH 5.1) and precipitation (pH 5.3). Organic acids were important contributors to acidity in throughfall and stemflow and tree species influenced pH. Soil solution pH averaged 6.2 at 40 cm depth. Stream pH was higher (7.6). Sodium (54.0 μeq L-1) and Cl (57.6 μeq L?1) were the dominant ions in precipitation, reflecting the close proximity to the ocean. Throughfall and stemflow were generally enriched in cations, especially K. Cation concentrations in soil solutions were generally less than those in stemilow. Ion concentrations increased in the stream. Dominant ions were Ca (759.7 μeq L?1), Na (174.4 μeq L?1), HCO3 (592.0 μeq L?1), and SO4 (331.5 μeq L?1) with seasonal peaks in the fall. Bedrock weathering strongly influenced stream chemistry. Highest average NO3 concentrations were in the stream (5.2 μeq L?1) with seasonal peaks in the fall and lowest concentrations in the growing season. Nitrogen losses were similar to inputs; annual inputs were 4.8 kg/ha (not including fixation) and stream losses were 7.1 kg/ha. Despite the age and successional status of the forest, plant uptake is an important N retention mechanism in this watershed.  相似文献   

3.
ABSTRACT: Programs of monthly or annual stream water sampling will rarely observe the episodic extremes of acidification chemistry that occur during brief, unpredictable runoff events. When viewed in the context of data from several streams, however, baseflow measurements of variables such as acid neutralizing capacity, pH and NO3· are likely to be highly correlated with the episodic extremes of those variables from the same stream and runoff season. We illustrate these correlations for a water chemistry record, nearly two years in length, obtained from intensive sampling of 13 small Northeastern U.S. streams studied during USEPA's Episodic Response Project. For these streams, simple regression models estimate episodic extremes of acid neutralizing capacity, pH, NO3·, Ca2+, SO42?, and total dissolved Al with good relative accuracy from statistics of monthly or annual index samples. Model performances remain generally stable when episodic extremes in the second year of sampling are predicted from first-year models. Monthly or annual sampling designs, in conjunction with simple empirical models calibrated and maintained through intensive sampling every few years, may estimate episodic extremes of acidification chemistry with economy and reasonable accuracy. Such designs would facilitate sampling a large number of streams, thereby yielding estimates of the prevalence of episodic acidification at regional scales.  相似文献   

4.
ABSTRACT: Seventy to eighty percent of the water flowing in rivers in the United States originates as precipitation in forests. This project developed a synoptic picture of the patterns in water chemistry for over 300 streams in small, forested watersheds across the United States. Nitrate (NO3?) concentrations averaged 0.31 mg N/L, with some streams averaging ten times this level. Nitrate concentrations tended to be higher in the northeastern United States in watersheds dominated by hardwood forests (especially hardwoods other than oaks) and in recently harvested watersheds. Concentrations of dissolved organic N (mean 0.32 mg N/L) were similar to those of NO3~, whereas ammonium (NH4+) concentrations were much lower (mean 0.05 mg N/L). Nitrate dominated the N loads of streams draining hardwood forests, whereas dissolved organic N dominated the streams in coniferous forests. Concentrations of inorganic phosphate were typically much lower (mean 12 mg P/L) than dissolved organic phosphate (mean 84 mg P/L). The frequencies of chemical concentrations in streams in small, forested watersheds showed more streams with higher NO3? concentrations than the streams used in national monitoring programs of larger, mostly forested watersheds. At a local scale, no trend in nitrate concentration with stream order or basin size was consistent across studies.  相似文献   

5.
ABSTRACT: The herbicide glyphosate was applied to portions of two watersheds in southwestern British Columbia to kill vegetation that was competing with Pseudotsuga menziesii (Douglas-fir) plantations. This application had little significant effect on streamwater chemistry (K+, Na2+, Mg2+, Ca2+, Cl-, NOs3-, NH4+, PO43-, SO4=, and SiO2 concentrations, electrical conductivity, and pH) when vegetation cover in a watershed was reduced by 4%, but had significant (P>0.05) effects, which lasted for at least five years, when cover was reduced by 43%. In this case, most parameters increased in value following the application, with K+ and Mg2+ concentrations and pH values exhibiting the most prolonged increases and NO3- concentrations exhibiting the greatest percentage increases. Sulphate and dissolved SiO2 concentrations decreased following the application. Streamwater chemical fluxes showed similar trends to concentrations except that changes in fluxes were less significant and no decreases were observed. Forest management induced losses of NO3-N in streamwater during the first five post-treatment years in the study area decreased in the order: herbicide application (approximately 40 kg/ha) < clearcutting and slashburning (approximately 20 kg/ha) < clearcutting (approximately 10 kg/ha). In watersheds similar to those of the study area, herbicide application is likely to have a greater impact on streamwater chemistry, in general, than would clearcutting or clearcutting followed by slashburning.  相似文献   

6.
Little is known about the impact of agricultural legacy on subsurface biogeochemical processes in the years following restoration of riparian wetlands (WLs). More knowledge is also needed on the relative importance of seasons, precipitation events, and inputs of water and nutrients driving nitrogen (N), phosphorus (P), sulfur (S), and greenhouse gas (GHG) (N2O, CO2, CH4) dynamics in these systems. This investigation of a riparian zone comprising a restored WL area and a nonrestored well‐drained alluvium (AL) area in the United States Midwest revealed that despite successful hydrological restoration a decade earlier, biogeochemical conditions in the WL area remained less anoxic than in natural WLs, and not significantly different from those in the AL area. No significant differences in N, P, S, and C compound concentrations or fluxes were observed between the AL and WL areas. Over the duration of the study, nitrate (NO3?) and soluble reactive phosphorus appeared to be primarily driven by hillslope contributions. Ammonium (NH4+), sulfate (SO42?), and CO2 responded strongly to seasonal changes in biogeochemical conditions in the riparian zone, while N2O and CH4 fluxes were most influenced by large rewetting events. Overall, our results challenge overly simplistic assumptions derived from direct interpretation of redox thermodynamics, and show complex patterns of solutes and GHGs at the riparian zone scale.  相似文献   

7.
ABSTRACT: Water quality variables were sampled over 109 weeks along Coweeta Creek, a fifth-order stream located in the Appalachian mountains of western North Carolina. The purpose of this study was to observe any changes in water quality, over a range of flow conditions, with concomitant downstream changes in the mix of landuses. Variables sampled include pH, HCO32?, conductivity, NO3??-N, NH4+-N, PO43?-P, C1?-, Na, K, Ca2+, Mg2+, SO42?, 5iO2, turbidity, temperature, dissolved oxygen, total and fecal coliform, and focal streptococcus. Landcover/landuse was interpreted from 1:20,000 aerial photographs and entered in a GIS, along with information on total and paved road length, building location and density, catchment boundaries, hydrography, and slope. Linear regressions were performed to relate basin and near-stream landscape variables to water quality. Consistent, cumulative, downstream changes in water quality variables were observed along Coweeta Creek, concomitant with downstream, human-caused changes in landuse. Furthermore, larger downstream changes in water quality variables were observed during stormflow when compared to baseflow, suggesting cumulative impacts due to landscape alteration under study conditions were much greater during storm events. Although most water quality regulations, legislation, and sampling are promulgated for baseflow conditions, this work indicates they should also consider the cumulative impacts of physical, chemical, and biological water quality during stormflow.  相似文献   

8.
Abstract: Autumn‐olive (Elaeagnus umbellata Thunb.) is an invasive, exotic shrub that has become naturalized in the eastern United States. Autumn‐olive fixes nitrogen (N) via a symbiotic relationship with the actinomycete Frankia. At the plot scale, the presence of autumn‐olive has been related to elevated soil water nitrate‐N (NO3?‐N) concentrations. This study examined the relationship between autumn‐olive cover in a watershed and stream water quality. Stream water nitrate‐N (NO3?‐N) and ammonium‐N (NH4+‐N) concentrations were measured in 12 first order ephemeral streams draining watersheds with mixed forest cover and a range of 0‐35% autumn‐olive cover. Percent autumn‐olive cover was positively correlated with mean stream NO3?‐N concentrations, but was not correlated with mean stream NH4+‐N concentrations. While other studies have demonstrated a significant relationship between native N‐fixers and stream NO3?‐N, this is the first study to document a relationship for an invasive, exotic N‐fixing species. Results suggest that this exotic species can be an additional source of NO3? in local and regional water bodies and demonstrates an additional negative ecosystem consequence of invasion beyond losses in biodiversity.  相似文献   

9.
Two‐stage ditches represent an emerging management strategy in artificially drained agricultural landscapes that mimics natural floodplains and has the potential to improve water quality. We assessed the potential for the two‐stage ditch to reduce sediment and nutrient export by measuring water column turbidity, nitrate (NO3?), ammonium (NH4+), and soluble reactive phosphorus (SRP) concentrations, and denitrification rates. During 2009‐2010, we compared reaches with two‐stage floodplains to upstream reaches with conventional trapezoid design in six agricultural streams. At base flow, these short two‐stage reaches (<600 m) reduced SRP concentrations by 3‐53%, but did not significantly reduce NO3? concentrations due to very high NO3? loads. The two‐stage also decreased turbidity by 15‐82%, suggesting reduced suspended sediment export during floodplain inundation. Reach‐scale N‐removal increased 3‐24 fold during inundation due to increased bioreactive surface area with high floodplain denitrification rates. Inundation frequency varied with bench height, with lower benches being flooded more frequently, resulting in higher annual N‐removal. We also found both soil organic matter and denitrification rates were higher on older floodplains. Finally, influence of the two‐stage varied among streams and years due to variation in stream discharge, nutrient loads, and denitrification rates, which should be considered during implementation to optimize potential water quality benefits.  相似文献   

10.
ABSTRACT: Hydrological and geochemical spatial patterns and temporal trends were analyzed using U.S. Geological Survey (USGS) water quality data collected from 1975 to 1999 along the uppermost 600 km of the Rio Grande in Colorado and New Mexico. Data on discharge, specific conductivity (SC), total dissolved solids (TDS), pH, Ca2+, Na+, Mg2+, K+, HCO3?, SO42‐, Cl?, F?, and SiO2 came from six USGS stations ranging from the Colorado‐New Mexico border to below Albuquerque, New Mexico. Linear regression, Kendall's S, and Seasonal Kendall's S’ were used to detect trends, and ANOVA was used to analyze spatial differences between stations. Statistically significant increasing trends occurred in SC, TDS, Ca2+, Na+, Mg2+, K+, Cl?, and F?in the uppermost reaches, and significant decreasing trends of SC, TDS, Ca2+, Mg2+, K+, HCO3?, and SO42‐occurred at the lower stations around Albuquerque. Both fluoride concentrations and pH values increased at and below Albuquerque over the study period. Discharge data show an increasing trend across all stations. Spatially, data for dissolved substances show generally linear upstream to downstream increases in concentrations in the upper four stations, with several notable nonlinear increases at and below Albuquerque (SC, TDS, Na+, Cl?). Significant increases in pH appear at and below Albuquerque, relative to upstream stations, probably due to improved sewage treatment.  相似文献   

11.
The selective catalytic reduction (SCR) rate of NO with N-containing reducing agents can be enhanced considerably by converting part of NO into NO2. The enhanced reaction rate is more pronounced even at lower temperatures by using an equimolar mixture of NO and NO2 (fast SCR reaction). The oxidation characteristics of NO over catalyst Pt/TiO2 have been determined in a fixed bed reactor (8 mm-ID) with different concentrations of oxygen, nitric oxide and nitrogen dioxide in the presence of 8% water. The conversion of NO to NO2 increases with increasing oxygen (O2) concentration from 3 to 12%, but it levels off at higher O2 concentrations. The NO conversion to NO2 decreases with increasing NO concentration and it also decreases by an addition of NO2 in the feed stream. Therefore, the oxidation of NO over Pt/TiO2 catalyst could be auto-inhibited by the reaction product of NO2. The effects of CO and SO2 on NO oxidation characteristics have also been determined. In fact, the presence of SO2 significantly suppresses oxidation of NO but due to the less stability of sulfate on anatase structure in TiO2, it becomes less significant. On the other hand, the presence of CO increases NO oxidation significantly due to the auto-inhibition effect by CO. Moreover, the effect of SO2/CO on NO oxidation has also been determined and it was observed that NO oxidation decreases with the increase in SO2/CO ratio.  相似文献   

12.
Soil quality in urban areas in India is degraded due to multiple anthropogenic activities. The objectives of this work are to determine the concentration variations, toxicity, and sources of carbons, metals, and ions in the surface soil of Raipur, the industrialized capital city of Chhattisgarh state, India. High concentrations of Al, K, Ca, Ti, Fe, and elemental carbon (EC) were registered. Relatively lower concentrations of V, Cr, Mn, Ni, Cu, Zn, Sr, Ba, Pb, organic carbon (OC), and carbonate carbon (CC), as well as ions (viz. F, Cl, NO3, SO42–, Na+, K+, Mg2+, and Ca2+), were also recorded. EC was found to be one of the major pollutants, although enrichment factors pointed to high contamination with SO42–, K+, Mg2+, Cr, Mn, and Pb; and extreme contamination with NO3 and Ca2+. The spatial and temporal variations, enrichment factors, toxicity, and sources of the chemical species detected in the soil are discussed.  相似文献   

13.
Under the United States Clean Air Act Amendments of 1977, a class I designation safeguards wilderness areas from the negative effects of new sources of air pollution. We monitored streamwater chemistry in the class I Lye Brook Wilderness in southwestern Vermont from May 1994 through August 1995. Stream samples were collected biweekly at nine sampling locations throughout the wilderness and were analyzed for major cations and anions, dissolved organic carbon, pH, and acid-neutralizing capacity. Eight of nine sites sampled had mean annual acid neutralizing capacity values below zero. During the study period, decreases in streamwater acid neutralizing capacity values were caused primarily by SO4 2−. At some sites, however, NO3 and naturally occurring, weak organic acids were seasonally important. During high discharge, the low pH and high concentrations of inorganic monomeric Al were at levels that are toxic to acid-sensitive aquatic species. Watershed mass balances were calculated to determine annual gains or losses for measured ions. These budgets indicate that S inputs and outputs were nearly equal, there was a net loss of base cations, and a net gain in N. How long these watersheds can continue to assimilate additional N inputs is unknown.  相似文献   

14.
ABSTRACT: During an autumn runoff event we sampled 48 streams with predominantly forested watersheds and igneous bedrock in the Oregon Coast Range. The streams had acid neutralizing capacities (ANC) > 90 μeq/L and pH > 6.4. Streamwater Na +, Ca2 +, and Mg2 + concentrations were greater than K + concentrations. Anion concentrations generally followed the order of Cl- > NO3- > SO42-. Chloride and Na + concentrations were highest in samples collected in streams near the Pacific Ocean and decreased markedly as distance from the coast increased. Sea salt exerted no discernible influence on stream water acid-base status during the sampling period. Nitrate concentrations in the study streams were remarkably variable, ranging from below detection to 172 μeq/L. We hypothesize that forest vegetation is the primary control of spatial variability of the NO3- concentrations in Oregon Coast Range streams. We believe that symbiotic N fixation by red alder in pure or mixed stands is the primary source of N to forested watersheds in the Oregon Coast Range.  相似文献   

15.
Although wetlands are known to be sinks for nitrogen (N) and phosphorus (P), their function in urban watersheds remains unclear. We analyzed water and nitrate (NO3?) and phosphate (PO43?) dynamics during precipitation events in two oxbow wetlands that were created during geomorphic stream restoration in Baltimore County, Maryland that varied in the nature and extent of connectivity to the adjacent stream. Oxbow 1 (Ox1) received 1.6‐4.2% and Oxbow 2 (Ox2) received 4.2‐7.4% of cumulative streamflow during storm events from subsurface seepage (Ox1) and surface flow (Ox2). The retention time of incoming stormwater ranged from 0.2 to 6.7 days in Ox1 and 1.8 to 4.3 days in Ox2. Retention rates in the wetlands ranged from 0.25 to 2.74 g N/m2/day in Ox1 and 0.29 to 1.94 g N/m2/day in Ox2. Percent retention of the NO3?‐N load that entered the wetlands during the storm events ranged from 64 to 87% and 23 to 26%, in Ox1 and Ox2, respectively. During all four storm events, Ox1 and Ox2 were a small net source of dissolved PO43? to the adjacent stream (i.e., more P exited than entered the wetland), releasing P at a rate of 0.23‐20.83 mg P/m2/day and 3.43‐24.84 mg P/m2/day, respectively. N and P removal efficiency of the oxbows were regulated by hydrologic connectivity, hydraulic loading, and retention time. Incidental oxbow wetlands have potential to receive urban stream and storm flow and to be significant N sinks, but they may be sources of P in urban watersheds.  相似文献   

16.
Drive point peizometers were installed at the stream–riparian interface in a small urbanizing southern Ontario catchment to measure the effect of buffers (presence/ absence) and land use (urban/agricultural) on the movement of NO? 3-N in shallow groundwater from the riparian area to the stream. Mean NO? 3-N concentrations ranged from 1.0 to 1.3 mg L?1 with maximum values of 9.4 mg L?1. Holding land use constant, there was no significant difference (p>0.05) in NO? 33-N concentration between buffered and unbuffered sites. Nitrate-N levels were not significantly different (p>0.05) as a function of land use. The lack of difference between sites as a function of buffer absence/presence and land use is probably due to the placement of some peizometers in low conductivity materials that limited groundwater flow from the riparian zone to the stream. Subsurface factors controlling the hydraulic gradient are important in defining buffer effectiveness and buffer zones should not be used indiscrim inately as a management tool in urban and agricultural landscapes to control nitrate-N loading in shallow groundwater to streams without detailed knowledge of the hydrogeo logic environment.  相似文献   

17.
Over the past thirty years, Xishuangbanna in Southwestern China has seen dramatic changes in land use where large areas of tropical forest and fallow land have been converted to rubber and tea plantations. In this study we evaluated the effects of land use and slope on soil properties in seven common disturbed and undisturbed land-types. Results indicated that all soils were acidic, with pH values significantly higher in the 3- and 28-year-old rubber plantations. The tropical forests had the lowest bulk densities, especially significantly lower from the top 10?cm of soil, and highest soil organic matter concentrations. Soil moisture content at topsoil was highest in the mature rubber plantation. Soils in the tropical forests and abandoned cultivated land had inorganic N (IN) concentrations approximately equal in NH4 +-N and NO3 ?-N. However, soil IN pools were dominated by NH4 +-N in the rubber and tea plantations. This trend suggests that conversion of tropical forest to rubber and tea plantations increases NH4 +-N concentration and decreases NO3 ?-N concentration, with the most pronounced effect in plantations that are more frequently fertilized. Soil moisture content, IN, NH4 +-N and NO3 ?-N concentrations within all sites were higher in the rainy season than in the dry season. Significant differences in the soil moisture content, and IN, NH4 +-N and NO3 ?-N concentration was detected for both land uses and sampling season effects, as well as interactions. Higher concentrations of NH4 +-N were measured at the upper slopes of all sites, but NO3 ?-N concentrations were highest at the lower slope in the rubber plantations and lowest at the lower slopes at all other. Thus, the conversion of tropical forests to rubber and tea plantations can have a profound effect on soil NH4 +-N and NO3 ?-N concentrations. Options for improved soil management in plantations are discussed.  相似文献   

18.
The effects of livestock grazing on selected riparian and stream attributes, water chemistry, and algal biomass were investigated over a two-year period using livestock enclosures and by completing stream surveys in the Cypress Hills grassland plateau, Alberta, Canada. Livestock enclosure experiments, partially replicated in three streams, comprised four treatments: (1) early season livestock grazing (June–August), (2) late season livestock grazing (August–September), (3) all season grazing (June–September), and (4) livestock absent controls. Livestock grazing significantly decreased streambank stability, biomass of riparian vegetation, and the extent to which aquatic vegetation covered the stream channels compared with livestock-absent controls. Water quality comparisons indicated significant differences among the four livestock grazing treatments in Battle and Graburn creeks but not in Nine Mile Creek. In Graburn Creek, the concentration of total phosphorus in the all-season livestock grazing treatment was significantly higher than that in the livestock-absent control, and the early season and late season grazing treatments. Concentrations of soluble reactive phosphorus in the all-season livestock grazing treatment also exceeded that in livestock-absent control. In contrast, differences in water quality variables in the remaining 22 comparisons (i.e., 22 of the total 24 comparisons) were minor even when differences were statistically significant. Effects of livestock grazing on algal biomass were variable, and there was no consistent pattern among creeks. At the watershed scale, spatial variation in algal biomass was related (P < 0.05) with concentrations of NO2 ? + NO3 ? and soluble reactive phosphorus in two of the four study creeks. Nutrient diffusing substrata experiments showed that algal communities were either nitrogen-limited or not limited by nutrients, depending on stream and season.  相似文献   

19.
Studies of air quality were carried out in the towns of Kajang, Nilai and Banting in the Langat River Basin, southern region of Kuala Lumpur to determine the status and trend of air quality. The determination of air quality was based on several parameters such as suspended solids with diameters less than 10???m (PM10) and gaseous pollutants of sulphur dioxide (SO2), nitrogen dioxide (NO2), ozone (O3), and carbon monoxide (CO). Primary concentration data of air pollutants were compiled through fieldwork studies and combined with secondary data obtained from the regular monitoring data as collected by Alam Sekitar Malaysia Sdn. Bhd. (ASMA) on behalf of Malaysian Department of Environment (DOE) at their stations in Kajang and Nilai. Results showed that the average concentrations of PM10, SO2, NO2, O3, and CO at all sampling stations were still below the permissible values recommended by the Malaysian DOE. The level of gaseous pollutants of NO2, O3, and CO was recorded at statistically higher levels (p?<?0.05) than values recorded at the control station at Pangsun Recreational Area. These pollutants were suspected to have originated mainly from exhaust systems of motor vehicles. Data for the years 1996 to 2006 as obtained from ASMA showed long-term air quality trends of increasing O3 and NO2 concentrations in Kajang whilst concentrations of PM10 recorded at both Kajang and Nilai stations were mostly expected coming from transboundary sources especially biomass burning and the development activities around the study areas.  相似文献   

20.
The U.S. Geological Survey's New Jersey and Iowa Water Science Centers deployed ultraviolet‐visible spectrophotometric sensors at water‐quality monitoring sites on the Passaic and Pompton Rivers at Two Bridges, New Jersey, on Toms River at Toms River, New Jersey, and on the North Raccoon River near Jefferson, Iowa to continuously measure in‐stream nitrate plus nitrite as nitrogen (NO3 + NO2) concentrations in conjunction with continuous stream flow measurements. Statistical analysis of NO3 + NO2 vs. stream discharge during storm events found statistically significant links between land use types and sampling site with the normalized area and rotational direction of NO3 + NO2‐stream discharge (N‐Q) hysteresis patterns. Statistically significant relations were also found between the normalized area of a hysteresis pattern and several flow parameters as well as the normalized area adjusted for rotational direction and minimum NO3 + NO2 concentrations. The mean normalized hysteresis area for forested land use was smaller than that of urban and agricultural land uses. The hysteresis rotational direction of the agricultural land use was opposite of that of the urban and undeveloped land uses. An r2 of 0.81 for the relation between the minimum normalized NO3 + NO2 concentration during a storm vs. the normalized NO3 + NO2 concentration at peak flow suggested that dilution was the dominant process controlling NO3 + NO2 concentrations over the course of most storm events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号