首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 255 毫秒
1.
ABSTRACT: The biogeochemistry of a coastal old-growth forested watershed in Olympic National Park, Washington, was examined. Objectives were to determine: (1) concentrations of major cations and anions and dissolved organic C (DOC) in precipitation, throughfall, stemflow, soil solution and the stream; (2) nutrient input/output budgets; and (3) nutrient retention mechanisms in the watershed. Stemilow was more acidic (pH 4.0–4.5) than throughfall (pH 5.1) and precipitation (pH 5.3). Organic acids were important contributors to acidity in throughfall and stemflow and tree species influenced pH. Soil solution pH averaged 6.2 at 40 cm depth. Stream pH was higher (7.6). Sodium (54.0 μeq L-1) and Cl (57.6 μeq L?1) were the dominant ions in precipitation, reflecting the close proximity to the ocean. Throughfall and stemflow were generally enriched in cations, especially K. Cation concentrations in soil solutions were generally less than those in stemilow. Ion concentrations increased in the stream. Dominant ions were Ca (759.7 μeq L?1), Na (174.4 μeq L?1), HCO3 (592.0 μeq L?1), and SO4 (331.5 μeq L?1) with seasonal peaks in the fall. Bedrock weathering strongly influenced stream chemistry. Highest average NO3 concentrations were in the stream (5.2 μeq L?1) with seasonal peaks in the fall and lowest concentrations in the growing season. Nitrogen losses were similar to inputs; annual inputs were 4.8 kg/ha (not including fixation) and stream losses were 7.1 kg/ha. Despite the age and successional status of the forest, plant uptake is an important N retention mechanism in this watershed.  相似文献   

2.
ABSTRACT: Quaker Run, a fourth order stream located in southwestern New York State, exhibits a highly unusual chemical gradient along its upper reaches. Weekly water samples showed an increase in the mean annual pH from 5.07 to 7.01 along a stretch of only 2.2 km. Mean alkalinity, calcium, magnesium, sodium, potassium, nitrate-nitrite-nitrogen, silica, and conductivity also increased appreciably over this distance. The study area receives some of the most highly acidic atmospheric deposition in the United States. Minimal buffering of these acidic inputs in the extreme upper watershed, and an abrupt downstream increase in buffering associated with changes in soil type, apparently produce the observed streamwater chemistry gradient. In contrast, a comparison between 11 midstream, downstream, and tributary sites showed relatively little variation in streamwater chemistry. In addition to the pronounced longitudinal chemistry changes along the upper portion of the stream, pronounced temporal chemistry variations were also observed at all sampling sites. High flow during snowmelt and heavy rains produced more dilute, acidic conditions, while streamwater pH and dissolved base cations were generally highest during low flow. Much of this temporal variation in streamwater chemistry is attributed to seasonal variation in residence times of soil water.  相似文献   

3.
The impact of anthropogenic activities on the fluctuation of nutrients along the Densu River and its tributaries was studied. High concentrations of nutrients were observed in the study area but the river was found to be circumneutral and fresh with pH ranging between 6.54 and 7.84. The levels of NH4 +–N ranged between 0.21 and 2.1 mg L−1 with mean concentration of 1.19 ± 0.02 mg L−1 while that of nitrate is between 0.13 and 5.21 mg L−1 with a mean concentration of 2.07 ± 0.01 mg L−1. The levels of PO4 3−–P fluctuated within the range 0.54 and 1.04 mg L−1 with a mean of 0.84 ± 0.01 mg L−1. The Densu River Basin was also found to be with organic matter with depleted dissolved oxygen. The river recorded high BOD values ranging from 6.91 to 18.8 mg L−1. Concentration of nutrients and organic pollutants increased as a consequence of anthropogenic inputs particularly from domestic, agricultural and municipal sources. The highly impaired sites were those located close to the urbanized, agricultural and high-density residential areas. The relatively high concentration of nitrate and phosphate in the river indicated that it was quite eutrophic.  相似文献   

4.
ABSTRACT: Programs of monthly or annual stream water sampling will rarely observe the episodic extremes of acidification chemistry that occur during brief, unpredictable runoff events. When viewed in the context of data from several streams, however, baseflow measurements of variables such as acid neutralizing capacity, pH and NO3· are likely to be highly correlated with the episodic extremes of those variables from the same stream and runoff season. We illustrate these correlations for a water chemistry record, nearly two years in length, obtained from intensive sampling of 13 small Northeastern U.S. streams studied during USEPA's Episodic Response Project. For these streams, simple regression models estimate episodic extremes of acid neutralizing capacity, pH, NO3·, Ca2+, SO42?, and total dissolved Al with good relative accuracy from statistics of monthly or annual index samples. Model performances remain generally stable when episodic extremes in the second year of sampling are predicted from first-year models. Monthly or annual sampling designs, in conjunction with simple empirical models calibrated and maintained through intensive sampling every few years, may estimate episodic extremes of acidification chemistry with economy and reasonable accuracy. Such designs would facilitate sampling a large number of streams, thereby yielding estimates of the prevalence of episodic acidification at regional scales.  相似文献   

5.
ABSTRACT: The herbicide glyphosate was applied to portions of two watersheds in southwestern British Columbia to kill vegetation that was competing with Pseudotsuga menziesii (Douglas-fir) plantations. This application had little significant effect on streamwater chemistry (K+, Na2+, Mg2+, Ca2+, Cl-, NOs3-, NH4+, PO43-, SO4=, and SiO2 concentrations, electrical conductivity, and pH) when vegetation cover in a watershed was reduced by 4%, but had significant (P>0.05) effects, which lasted for at least five years, when cover was reduced by 43%. In this case, most parameters increased in value following the application, with K+ and Mg2+ concentrations and pH values exhibiting the most prolonged increases and NO3- concentrations exhibiting the greatest percentage increases. Sulphate and dissolved SiO2 concentrations decreased following the application. Streamwater chemical fluxes showed similar trends to concentrations except that changes in fluxes were less significant and no decreases were observed. Forest management induced losses of NO3-N in streamwater during the first five post-treatment years in the study area decreased in the order: herbicide application (approximately 40 kg/ha) < clearcutting and slashburning (approximately 20 kg/ha) < clearcutting (approximately 10 kg/ha). In watersheds similar to those of the study area, herbicide application is likely to have a greater impact on streamwater chemistry, in general, than would clearcutting or clearcutting followed by slashburning.  相似文献   

6.
The effects of addition of a range of organic amendments (biosolids, spent mushroom compost, green waste compost and green waste-derived biochar), at two rates, on some key chemical, physical and microbial properties of bauxite-processing residue sand were studied in a laboratory incubation study. Levels of exchangeable cations were not greatly affected by additions of amendments but extractable P was increased significantly by mushroom and green waste composts and massively (i.e. from 11.8 to 966 mg P kg?1) by biosolids applications. Levels of extractable NO3?–N were also greatly elevated by biosolids additions and there was a concomitant decrease in pH. Addition of all amendments decreased bulk density and increased mesoporosity, available water holding capacity and water retention at field capacity (?10 kPa), with the higher rate having a greater effect. Addition of biosolids, mushroom compost and green waste compost all increased soluble organic C, microbial biomass C, basal respiration and the activities of β-glucosidase, L-asparaginase and alkali phosphatase enzymes. The germination index of watercress grown in the materials was greatly reduced by biosolids application and this was attributed to the combined effects of a high EC and high concentrations of extractable P and NO3?. It was concluded that the increases in water storage and retention and microbial activity induced by additions of the composts is likely to improve the properties of bauxite-processing residue sand as a growth medium but that allowing time for soluble salts, originating from the organic amendments, to leach out may be an important consideration before sowing seeds.  相似文献   

7.
The present study investigates the physical, chemical, and biological characteristics of spring water samples in Shoubak area in the southern Jordan. The samples were collected from May 2004 to May 2005. All samples were analyzed for temperature, conductivity, dissolved oxygen, pH, major cations (Ca2+, Mg2+, K+, Na+), major anions (Cl, NO3, HCO3, SO42−, PO43−, F), and trace metals (Fe2+, Al3+, Mn2+, Cu2+, Cr3+, Ni2+, Zn2+, Pb2+, Cd2+). Water quality for available springs showed high salinity through long period of contact with rocks. The ion concentrations in the water samples were from dissolution of carbonate rocks and ion exchange processes in clay. The general chemistry of water samples was typically of alkaline earth waters with prevailing bicarbonate chloride. Some springs showed elevated nitrate and sulfate contents which could reflect to percolation from septic tanks, cesspools, and agricultural practices. The infiltration of wastewater from cesspools and septic tanks into groundwater is considered the major source of water pollution. The results showed that there were great variations among the analyzed samples with respect to their physical, chemical and biological parameters, which lie below the maximum permissible levels of the Jordanian and WHO drinking water standards. The results indicate that the trace metals of spring’s water of Shoubak area do not generally pose any health or environmental problems. Factor analysis was used to identify the contributers to water quality. The first factor represents major contribution from anthropogenic activities, while the second one represents major contribution from natural processes.  相似文献   

8.
Summary The biomass and productivity of a montane grassland of Garhwal Himalaya were estimated with the objectives to compare these values of the dominant exotic species, Eupatorium glandulosum HBK. (Asteraceae) with other species, and to compare the sites more dominated by this species with other study sites. The effect of dominance of this species on other species was undertaken because of its continuous spread in the grasslands of the Garhwal Himalaya causing replacement of some native grasses and economically important herbaceous plants. Out of six study sites, SW1, SW2, and NE1 were more dominated by Eupatorium glandulosum. Total net primary productivity (TNP) ranged from 1528.5 to 2163.4 g m−2 yr−1. Eupatorium glandulosum showed individual highest biomass on all the study sites, and the sites more dominated by this species showed higher values of primary productivity, thereby reducing the biomass and production of other species on these sites.  相似文献   

9.
We quantified annual sediment deposition, bank erosion, and sediment budgets in nine riverine wetlands that represented a watershed continuum for 1 year in the unregulated Yampa River drainage basin in Colorado. One site was studied for 2 years to compare responses to peak flow variability. Annual mean sediment deposition ranged from 0.01 kg/m2 along a first-order subalpine stream to 21.8 kg/m2 at a sixth-order alluvial forest. Annual mean riverbank erosion ranged from 3 kg/m-of-bank at the first-order site to 1000 kg/m at the 6th-order site. Total sediment budgets were nearly balanced at six sites, while net export from bank erosion occurred at three sites. Both total sediment deposition (R2 = 0.86, p < 0.01) and bank erosion (R2 = 0.77, p < 0.01) were strongly related to bankfull height, and channel sinuosity and valley confinement helped to explain additional variability among sites. The texture and organic fraction of eroded and deposited sediment were relatively similar in most sites and varied among sites by watershed position. Our results indicate that bank erosion generally balances sediment deposition in riverine wetlands, and we found no distinct zones of sediment retention versus export on a watershed continuum. Zones of apparent disequilibrium can occur in unregulated rivers due to factors such as incised channels, beaver activity, and cattle grazing. A primary function of many western riverine wetlands is sediment exchange, not retention, which may operate by transforming materials and compounds in temporary sediment pools on floodplains. These results are considered in the context of the Hydrogeomorphic approach being implemented by the U.S. government for wetland resource management.  相似文献   

10.
During 2010–2011, a study was conducted in Sequoia and Kings Canyon National Parks (SEKI) to evaluate the influence of pack animals (stock) and backpackers on water quality in wilderness lakes and streams. The study had three main components: (1) a synoptic survey of water quality in wilderness areas of the parks, (2) paired water quality sampling above and below several areas with differing types and amounts of visitor use, and (3) intensive monitoring at six sites to document temporal variations in water quality. Data from the synoptic water quality survey indicated that wilderness lakes and streams are dilute and have low nutrient and Escherichia coli concentrations. The synoptic survey sites were categorized as minimal use, backpacker-use, or mixed use (stock and backpackers), depending on the most prevalent type of use upstream from the sampling locations. Sites with mixed use tended to have higher concentrations of most constituents (including E. coli) than those categorized as minimal-use (P ≤ 0.05); concentrations at backpacker-use sites were intermediate. Data from paired-site sampling indicated that E. coli, total coliform, and particulate phosphorus concentrations were greater in streams downstream from mixed-use areas than upstream from those areas (P ≤ 0.05). Paired-site data also indicated few statistically significant differences in nutrient, E. coli, or total coliform concentrations in streams upstream and downstream from backpacker-use areas. The intensive-monitoring data indicated that nutrient and E. coli concentrations normally were low, except during storms, when notable increases in concentrations of E. coli, nutrients, dissolved organic carbon, and turbidity occurred. In summary, results from this study indicate that water quality in SEKI wilderness generally is good, except during storms; and visitor use appears to have a small, but statistically significant influence on stream water quality.  相似文献   

11.
Here we report N2O emission results for freshwater marshes isolated from human activities at the Sanjiang Experimental Station of Marsh Wetland Ecology in northeastern China. These results are important for us to understand N2O emission in natural processes in undisturbed freshwater marsh. Two adjacent plots of Deyeuxia angustifolia freshwater marsh with different water regimes, i.e., seasonally waterlogged (SW) and not- waterlogged (NW), were chosen for gas sampling, and soil and biomass studies. Emissions of N2O from NW plots were obviously higher than from the SW plots. Daily maximum N2O flux was observed at 13 o′clock and the seasonal maximum occurred in end July to early August. The annual average N2O emissions from the NW marsh were 4.45 μg m−2 h−1 in 2002 and 6.85 μg m−2 h−1 in 2003 during growing season. The SW marsh was overall a sink for N2O with corresponding annual emissions of −1.00 μg m−2 h−1 for 2002 and −0.76 μg m−2 h−1 for 2003. There were significant correlations between N2O fluxes and temperatures of both air and 5-cm-depth soil. The range of soil redox potential 200–400 mV appeared to be optimum for N2O flux. Besides temperature and plant biomass, the freeze–thaw process is also an important factor for N2O emission burst. Our results show that the freshwater marsh isolated from human activity in northeastern China is not a major source of N2O.  相似文献   

12.
Aquatic insect diversity in the Chandrabhaga, an important headwater stream of Garhwal Himalayas, was surveyed for a period of twelve months (October 1999 to September 2000). All the important physico-chemical environmental variables (temperature, water velocity, hydromedian depth, transparency, turbidity, total dissolved solids, pH, alkalinity, dissolved oxygen, free CO2, nitrates, phosphates, sodium and potassium) of the aquatic ecosystem were measured monthly for one year. Aquatic insects were sampled from three sites (S1, S2 & S3) of the headwater stream Chandrabhaga. Aquatic insects of Chandrabhaga were represented by the members of the orders of Ephemeroptera, Trichoptera, Coleoptera, Diptera, Plecoptera and Odonata. The maximum density of aquatic insects was recorded in the month of March (4,165 ind. m−2) and minimum in the month of August (680 ind. m−2). The annual contribution of Trichoptera (38%) and Ephemeroptera (32%) was observed to be maximum, while Odonata contributed minimum (2%) to the total aquatic insect density. The present study on the relationship between physico-chemical environmental variables and the density of aquatic insects revealed that the velocity of water, hydromedian depth, turbidity and dissolved oxygen in addition to composition and texture of the bottom substrates have significant impact on benthic aquatic insects’ density and their diversity. The ecological relevance of the measured hydrological attributes was investigated by composing their degree of correlation with insects density and diversity. The diversity index (Shannon–Weiner) of aquatic insects dwelling in the Chandrabhaga river ranged from 2.54 to 3.86. Some of the natural and anthropogenic environmental factors contributing towards the degradation of the watershed of the Chandrabhaga have been identified, and ameliorative measures for the conservation of the aquatic insect diversity have been suggested.  相似文献   

13.
ABSTRACT: Federal parks and other public lands have unique mandates and rules regulating their use and conservation. Because of variation in their response to local, regional, and global‐scale disturbance, development of mitigation strategies requires substantial research in the context of long‐term inventory and monitoring. In 1982, the National Park Service began long‐term, watershed‐level studies in a series of national parks. The objective was to provide a more comprehensive database against which the effects of global change and other issues could be quantified. A subset of five sites in North Carolina, Texas, Washington, Michigan, and Alaska, is examined here. During the last 50 years, temperatures have declined at the southern sites and increased at the northern sites with the greatest increase in Alaska. Only the most southern site has shown an increase in precipitation amount. The net effect of these trends, especially for the most northern and southern sites, would likely be an increase in the growing season and especially the time soil processes could continue without moisture or temperature limitations. During the last 18 years, there were few trends in atmospheric ion inputs. The most evident was the decline in SO42 deposition. There were no significant relationships between ion input and stream water output. This finding suggests other factors as modification of precipitation or canopy throughfall by soil processes, hydrologic flow path, and snowmelt rates are major processes regulating stream water chemical outputs.  相似文献   

14.
Prescribed fire is a common site preparation practice in forest management in southern China. However, the effect of fire on soil properties and N transformations is still poorly understood in this region. In this study, soil properties and N transformations in burned and unburned site of two vegetation types (Eucalyptus plantation and shrubland) were compared in rainy and dry seasons after 2 years’ prescribed fire. Soil pH and soil NH4-N were all higher in the burned site compared to the unburned control. Furthermore, burned sites had 30–40 % lower of soil total phosphorus than conspecific unburned sites. There was no difference in soil organic matter, total N, soil exchangeable cations, available P or NO3-N. Nitrogen mineralization rate of 0–5 cm soil in the unburned site ranged from 8.24 to 11.6 mg N kg?1 soil month?1 in the rainy season, compared to a lower level of 4.82–5.25 mg N kg?1 soil month?1 in the burned sites. In contrast, 0–5 cm layer nitrification rate was overall 2.47 mg N kg?1 soil month?1 in the rainy season, and was not significantly affected by burning. The reduced understory vegetation coverage after burning may be responsible for the higher soil NH4-N in the burned site. This study highlights that a better understanding the effect of prescribed burning on soil nutrients cycling would provide a critical foundation for management decision and be beneficial to afforestation in southern China.  相似文献   

15.
In this study, two pilot-scale aerobic landfill reactors with (A1) and without (A2) leachate recirculation are used to obtain detailed information on the quantity and quality of leachate in aerobic landfills. The observed parameters of leachate quality are pH, chloride (Cl), chemical oxygen demand (COD), biological oxygen demand (BOD), total Kjeldahl nitrogen (TKN), ammonia nitrogen (NH3-N), and nitrate (NO3-N). pH values of the leachate increased to 7 after 50 days in reactor A1 and after 70 days in reactor A2. Cl concentrations increased rapidly to 6100 (A1) and 6900 (A2) mg/L after 80 days, from initial values of 3000 and 2800 mg/L, respectively. COD and BOD values decreased rapidly in the A1 landfill reactor, indicating the rapid oxidation of organic matter. The BOD/COD ratio indicates that leachate recirculation slightly increases the degradation of solid waste in aerobic landfills. NH3-N concentrations decreased as a result of the nitrification process. Denitrification occurred in parts of the reactors as a result of intermittent aeration; this process causes a decrease in NO3 concentrations. There is a marked difference between the A1 and A2 reactors in terms of leachate quantity. Recirculated leachate made up 53.3% of the leachate generated from the A1 reactor during the experiment, while leachate quantity decreased by 47.3% with recirculation when compared with the aerobic dry landfill reactor.  相似文献   

16.
ABSTRACT: Thirty-five lakes in southern Labrador sampled in 1981 were resampled in 1989 and water chemistry values were compared between visits. Results showed higher pH, specific conductance, acid neutralization capacity, color, and base cations values in 1989, though sulfate, the ion most likely to reflect acid precipitation impacts, did not vary. The major ion changes measured were probably due to natural hydrological variations and not to changes in acid inputs. Results from the 1989 data showed a slight, but significant, decrease in water sulfate concentration trend from western to eastern Labrador, though most values, even in the western portion of the study area, fell close to the values considered “background” by Brakke et at. (1989). Base cation concentrations exceeded those which could be predicted from weathering by carbonic and bicarbonic acid. Assuming that little weathering is generated by acid precipitation in this region, the excess cations measured are probably a result of bedrock dissolution from organic acids generated by plant decomposition. Calculations showed that organic acid effect could be responsible for 9 to 52 percent of total weathering in the study basins.  相似文献   

17.
ABSTRACT: During an autumn runoff event we sampled 48 streams with predominantly forested watersheds and igneous bedrock in the Oregon Coast Range. The streams had acid neutralizing capacities (ANC) > 90 μeq/L and pH > 6.4. Streamwater Na +, Ca2 +, and Mg2 + concentrations were greater than K + concentrations. Anion concentrations generally followed the order of Cl- > NO3- > SO42-. Chloride and Na + concentrations were highest in samples collected in streams near the Pacific Ocean and decreased markedly as distance from the coast increased. Sea salt exerted no discernible influence on stream water acid-base status during the sampling period. Nitrate concentrations in the study streams were remarkably variable, ranging from below detection to 172 μeq/L. We hypothesize that forest vegetation is the primary control of spatial variability of the NO3- concentrations in Oregon Coast Range streams. We believe that symbiotic N fixation by red alder in pure or mixed stands is the primary source of N to forested watersheds in the Oregon Coast Range.  相似文献   

18.
ABSTRACT: Weekly precipitation and stream water samples were collected from small watersheds in Denali National Park, Alaska, the Fraser Experimental Forest, Colorado, Isle Royale National Park, Michigan, and the Calumet watershed on the south shore of Lake Superior, Michigan. The objective was to determine if stream water chemistry at the mouth and upstream stations reflected precipitation chemistry across a range of atmospheric inputs of H+, NH4+, NO3??, and SO42?. Volume-weighted precipitation H+, NH4+, NO3??, and SO42? concentrations varied 4 to 8 fold with concentrations highest at Calumet and lowest in Denali. Stream water chemistry varied among sites, but did not reflect precipitation chemistry. The Denali watershed, Rock Creek, had the lowest precipitation NO3?? and SO42? concentrations, but the highest stream water NO3?and SO42? concentrations. Among sites, the ratio of mean monthly upstream NO3?? concentration to precipitation NO3?- concentration declined (p < 0.001, R2= 0.47) as precipitation NO3?? concentration increased. The ratio of mean monthly upstream to precipitation SO42? concentration showed no significant relationship to change in precipitation SO42? concentration. Watersheds showed strong retention of inorganic N (> 90 percent inputs) across inputs ranging from 0.12 to > 6 kg N ha?1 y?1. Factors possibly accounting for the weak or non-existent signal between stream water and precipitation ion concentrations include rapid modification of meltwater and precipitation chemistry by soil processes, and the presence of unfrozen soils which permits winter mineralization and nitrification to occur.  相似文献   

19.
ABSTRACT: Runoff and ground-water samples were collected from four ombrotrophic bogs, representing undisturbed and drained/harvested conditions, at two-week intervals during the summer of 1984. Analyses of samples for water quality parameters revealed significant (P < 0.05 level) increases in specific conductance, NH4+-N, total dissolved P, Mg, K, and Na and a decrease in the E4:E6 ratio (suggesting increased proportions of humic acid) associated with drainage. There were no significant changes in dissolved organic carbon, Ca concentrations, or pH. Comparison of samples collected before, during, and after ditching showed increases in the dissolved organic carbon, NH4+-N, total dissolved P, K, and Na and a decrease in the E4:E6 ratio, but these changes were short lived; water quality returned to preditching values after about a week. The observed changes in water quality are small, probably because the peat is very acid (pH 3.0 to 4.5).  相似文献   

20.
Abstract: Many rivers and streams of the Mid‐Atlantic Region, United States (U.S.) have been altered by postcolonial floodplain sedimentation (legacy sediment) associated with numerous milldams. Little Conestoga Creek, Pennsylvania, a tributary to the Susquehanna River and the Chesapeake Bay, is one of these streams. Floodplain sedimentation rates, bank erosion rates, and channel morphology were measured annually during 2004‐2007 at five sites along a 28‐km length of Little Conestoga Creek with nine colonial era milldams (one dam was still in place in 2007). This study was part of a larger cooperative effort to quantify floodplain sedimentation, bank erosion, and channel morphology in a high sediment yielding region of the Chesapeake Bay watershed. Data from the five sites were used to estimate the annual volume and mass of sediment stored on the floodplain and eroded from the banks for 14 segments along the 28‐km length of creek. A bank and floodplain reach based sediment budget (sediment budget) was constructed for the 28 km by summing the net volume of sediment deposited and eroded from each segment. Mean floodplain sedimentation rates for Little Conestoga Creek were variable, with erosion at one upstream site (?5 mm/year) to deposition at the other four sites (highest = 11 mm/year) despite over a meter of floodplain aggradation from postcolonial sedimentation. Mean bank erosion rates range between 29 and 163 mm/year among the five sites. Bank height increased 1 m for every 10.6 m of channel width, from upstream to downstream (R2 = 0.79, p < 0.0001) resulting in progressively lowered hydraulic connectivity between the channel and the floodplain. Floodplain sedimentation and bank erosion rates also appear to be affected by the proximity of the segments to one existing milldam, which promotes deposition upstream and scouring downstream. The floodplain and bank along the 28‐km reach produced a net mean sediment loss of 5,634 Mg/year for 2004‐2007, indicating that bank erosion was exceeding floodplain sedimentation. In particular, the three segments between the existing dam and the confluence with the Conestoga River (32% of the studied reach) account for 97% of the measured net sediment budget. Future research directed at understanding channel equilibria should facilitate efforts to reduce the sediment impacts of dam removal and legacy sediment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号