首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two environmental aspects associated with land application of poultry litter that have not been comprehensively evaluated are (i) the competition of dissolved organic matter (DOM) and P for soil sorption sites, and (ii) the sorption of dissolved organic nitrogen (DON) relative to inorganic nitrogen species (e.g., NO(3)(-) and NH(4)(+)) and dissolved organic carbon (DOC). The competition between DOM and P for sorption sites has often been assumed to increase the amount of P available for plant growth; however, elevating DOM concentrations may also increase P available for transport to water resources. Batch sorption experiments were conducted to (i) evaluate soil properties governing P sorption to benchmark soils of Southwestern Missouri, (ii) elucidate the impact of poultry litter-derived DOM on P sorption, and (iii) investigate DON retention relative to inorganic N species and DOC. Soils were reacted for 24 h with inorganic P (0-60 mg L(-1)) in the presence and absence of DOM (145 mg C L(-1)) using a background electrolyte solution comparable to DOM extracts (I = 10.8 mmol L(-1); pH 7.7). Soil P sorption was positively correlated with metal oxide (r(2) = 0.70) and clay content (r(2) = 0.79) and negatively correlated with Bray-1 extractable P (r(2) = 0.79). Poultry litter-derived DOM had no significant negative impact on P sorption. Dissolved organic nitrogen was preferentially removed from solution relative to (NO(3)(-)-N + NO(2)(-)-N), NH(4)(+)-N, and DOC. This research indicates that poultry litter-derived DOM is not likely to enhance inorganic P transport which contradicts the assumption that DOM released from organic wastes increases plant-available P when organic amendments and fertilizer P are co-applied. Additionally, this work demonstrates the need to further evaluate the fate and transport of DON in agroecosystem soils receiving poultry litter applications.  相似文献   

2.
Both the bioavailability of a trace metal (TM) in a soil and the risk of leaching to the ground water are linked to the metals concentration in the soil solution. Sampling soil solution by tension lysimetry with suction cups is a simple and established technique that is increasingly used for monitoring dissolved TM in soils. Of major concern, however, is the sorption of TM by the walls of the samplers. Metal sorption by different materials used in suction cups can vary widely, depending also on the chemistry of the soil solution. We compared the sorption of Cu, Zn, Cd, and Pb by different standard-size and micro suction cups in the laboratory at two pH values (4.5 and 7.5 or 8.0) in absence and presence of dissolved organic carbon (DOC). In addition, we investigated the sorption of DOC from different origins by the cup materials. At both pH values, the weakest sorption of all four TMs was exhibited by standard-size suction cups based on nylon membranes and by hollow fibers made from polyvinyl alcohol (PVA). At alkaline pH, borosilicate glass, ceramic materials, and polytetrafluorethylene (PTFE) mixed with silicate were characterized by generally strong sorption of all investigated TMs. In addition, Cu and Pb were strongly sorbed at low pH by PTFE-silicate and a ceramic material used for the construction of standard-size suction cups. On the other hand, sorption of Cu, Zn, and Cd by ceramic capillaries produced from pure aluminum oxide was negligible at low pH. Micro suction cups made of an unknown polymerous tube sorbed Cu strongly, but were well suited to monitor Zn, Cd, and Pb at low pH, and, in the presence of DOC, also at high pH. Major cations (Na+, Mg2+, K+, Ca2+) and anions (Cl-, NO3-, SO4(2-)) were not or very weakly sorbed by all cup materials, except for Mg2+, K+, and Ca2+ by borosilicate glass at pH 7.5. Trace metal sorption by suction cups was generally greatly reduced in the presence of DOC, especially at alkaline pH. The sorption of DOC itself depended on its source. Dissolved organic carbon from leaf litter extracts with a probably large hydrophobic fraction was sorbed more strongly than mainly hydrophilic DOC from a mineral soil solution.  相似文献   

3.
This study was conducted to determine the main sources of dissolved organic carbon (DOC) and disinfection byproduct (DBP) precursors to the McKenzie River, Oregon (USA). Water samples collected from the mainstem, tributaries, and reservoir outflows were analyzed for DOC concentration and DBP formation potentials (trihalomethanes [THMFPs] and haloacetic acids [HAAFPs]). In addition, optical properties (absorbance and fluorescence) of dissolved organic matter (DOM) were measured to provide insight into DOM composition and assess whether optical properties are useful proxies for DOC and DBP precursor concentrations. Optical properties indicative of composition suggest that DOM in the McKenzie River mainstem was primarily allochthonous--derived from soils and plant material in the upstream watershed. Downstream tributaries had higher DOC concentrations than mainstem sites (1.6 +/- 0.4 vs. 0.7 +/- 0.3 mg L(-1)) but comprised < 5% ofmainstem flows and had minimal effect on overall DBP precursor loads. Water exiting two large upstream reservoirs also had higher DOC concentrations than the mainstem site upstream of the reservoirs, but optical data did not support in situ algal production as a source of the added DOC during the study. Results suggest that the first major rain event in the fall contributes DOM with high DBP precursor content. Although there was interference in the absorbance spectra in downstream tributary samples, fluorescence data were strongly correlated to DOC concentration (R2 = 0.98), THMFP (R2 = 0.98), and HAAFP (R2 = 0.96). These results highlight the value of using optical measurements for identifying the concentration and sources of DBP precursors in watersheds, which will help drinking water utilities improve source water monitoring and management programs.  相似文献   

4.
Interactions of dissolved organic matter (DOM) with soil minerals, such as metal oxides and clays, involve various sorption mechanisms and may lead to sorptive fractionation of certain organic moieties. While sorption of DOM to soil minerals typically involves a degree of irreversibility, it is unclear which structural components of DOM correspond to the irreversibly bound fraction and which factors may be considered determinants. To assist in elucidating that, the current study aimed at investigating fractionation of DOM during sorption and desorption processes in soil. Batch DOM sorption and desorption experiments were conducted with organic matter poor, alkaline soils. Fourier-transform infrared (FTIR) and UV-Vis spectroscopy were used to analyze bulk DOM, sorbed DOM, and desorbed DOM fractions. Sorptive fractionation resulted mainly from the preferential uptake of aromatic, carboxylic, and phenolic moieties of DOM. Soil metal-oxide content positively affected DOM sorption and binding of some specific carboxylate and phenolate functional groups. Desorptive fractionation of DOM was expressed by the irreversible-binding nature of some carboxylic moieties, whereas other bound carboxylic moieties were readily desorbed. Inner-sphere, as opposed to outer-sphere, ligand-exchange complexation mechanisms may be responsible for these irreversible, as opposed to reversible, interactions, respectively. The interaction of aliphatic DOM constituents with soil, presumably through weak van der Waals forces, was minor and increased with increasing proportion of clay minerals in the soil. Revealing the nature of DOM-fractionation processes is of great importance to understanding carbon stabilization mechanisms in soils, as well as the overall fate of contaminants that might be associated with DOM.  相似文献   

5.
Interaction of Cu with dissolved organic matter (DOM) is an important physicochemical process affecting Cu mobility in soils. The aim of this study was to investigate the effects of DOM from anaerobically digested dewatered sludge and sludge compost on the sorption of Cu on an acidic sandy loam and a calcareous clay loam. In the presence of DOM, Cu sorption capacity decreased markedly for both soils, especially for the calcareous soil. The Cu sorption isotherms could be well described by the Freundlich equation (r2 = 0.99), and the binding intensity parameter of soils in the presence of sludge DOM was lower than compost DOM. An increase in DOM concentration significantly reduced the sorption of Cu by both soils. Within the Cu and DOM concentration range studied, the decrease in Cu sorption caused by sludge DOM was consistently greater than that of compost DOM. This might be attributed to the greater amount of hydrophobic fraction of DOM in the compost. Moreover, the reduction of Cu sorption caused by DOM was more obvious in the soil with higher pH. In addition, the sorption of Cu increased with an increase in pH for both soils without the addition of DOM, while Cu sorption in the presence of DOM was unexpectedly decreased with an increase in pH at a pH >6.8. This implied that DOM produced by sludge or other C-enriched organic wastes heavily applied on calcareous soils might facilitate the leaching loss of Cu because of the formation of soluble DOM-metal complexes.  相似文献   

6.
Litter materials from forested watersheds can be a significant source of dissolved organic matter (DOM) to surface waters that can contribute to the formation of carcinogenic disinfection by-products (DBPs) during drinking-water chlorination. This study characterized the reactivity of DOM from litter leachates of representative vegetation in oak woodlands, a major plant community in the Foothill Region of California. Leachates from fresh and decomposed litter (duff) from two oak species, pine, and annual grasses were collected for an entire rainy season to evaluate their reactivity to form DBPs on chlorination. Relationships among specific ultraviolet absorbance (SΔUVA), fluorescence index (FI), specific differential ultraviolet absorbance (SΔUVA), specific chlorine demand (SCD), and the dissolved organic carbon:dissolved organic nitrogen (DOC:DON) ratio to the specific DBP formation potential (SDBP-FP) were examined. The DOM derived from litter materials had considerable reactivity in forming trihalomethanes (THMs) (1.80-3.49 mmol mol), haloacetic acid (HAAs) (1.62-2.76 mmol mol(-1)), haloacetonitriles (HANs) (0.12-0.37 mmol mol(-1)), and chloral hydrate (CHD) (0.16-0.28 mmol mol). These values are comparable to other identified watershed sources of DBP precursors reported for the California Delta, such as wetlands and organic soils. Vegetation type and litter decomposition stage (fresh litter versus 1-5 yr-old duff) were key factors that determined characteristics of DOM and their reactivity to form DBPs. Pine litter had significantly lower specific THM formation potential compared with oak and grass, and decomposed duff had a greater DON content, which is a precursor of HANs and other nitrogenous DBPs. The SΔUVA and SDBP-FP were temporally variable and dependent on vegetation type, degree of decomposition, and environmental conditions. Among the optical properties of DOM, SΔUVA was the only parameter that was consistently correlated with SDBP-FP.  相似文献   

7.
Interactions of carbamazepine in soil: effects of dissolved organic matter   总被引:2,自引:0,他引:2  
Pharmaceutical compounds (PCs) and dissolved organic matter (DOM) are co-introduced into soils by irrigation with reclaimed wastewater. We targeted carbamazepine (CBZ) as a model compound to study the tertiary interactions between relatively polar PCs, DOM, and soil. Sorption-desorption behavior of CBZ was studied with bulk clay soil and the corresponding clay size fraction in the following systems: (i) without DOM, (ii) co-introduced with DOM, and (iii) pre-adsorption of DOM before CBZ introduction. Sorption of the DOM to both sorbents was irreversible and exhibited pronounced sorption-desorption hysteresis. Carbamazepine exhibited higher sorption affinity and nonlinearity, and a higher degree of desorption hysteresis with the bulk soil than the corresponding clay size fraction. This was probably due to specific interactions with polar soil organic matter fractions that are more common in the bulk soil. Co-introduction of CBZ and DOM to the soil did not significantly affect the sorption behavior of CBZ; however, following pre-adsorption of DOM by the bulk soil, an increase in sorption affinity and decrease in sorption linearity were observed. In this latter treatment, desorption hysteresis of CBZ was significantly increased for both sorbents. We hypothesize that this was due to either strong chemical interactions of CBZ with the adsorbed DOM or physical encapsulation of CBZ in DOM-clay complexes. Based on this study, we suggest that DOM facilitates stronger interactions of polar PCs with the solid surface. This mechanism can reduce PC desorption ability in soils.  相似文献   

8.
Sediments have a significant influence on the overlying water, and phosphorus (P) release from sediments is an important source for the lake eutrophication, particularly in shallow ones. In this study, effects of organic matter on P release from sediments in different trophic lakes from the middle and lower reaches of Yangtze River, China, were investigated, and the release kinetics of different P fractions at different temperature were studied. The results show that the release kinetics of soluble reactive phosphorus (SRP), dissolved organic phosphorus (DOP) and dissolved total phosphorus (DTP) were similar for the studied sediments, the release rate increased rapidly in the initial hours, and it increased gradually after 10h. The release kinetics of SRP, DOP and DTP followed the Power Function model. SRP was the major fraction among the released DTP, while DOP was an important fraction in the heavily polluted sediments. Organic matter restricted the SRP and DTP release while it promoted the DOP release. Both DOP and SRP release processes were endothermic. The thermodynamic properties in the P release kinetics were calculated and discussed.  相似文献   

9.
Phosphorus dissolution often increases as soils become more reduced, but the mechanisms are not fully understood. The objectives of this research were to determine rates and mechanisms of P dissolution during microbial reduction of a surface soil from the North Carolina Coastal Plain. Duplicate suspensions of silt + clay fractions from a Cape Fear sandy clay loam (fine, mixed, semiactive, thermic Typic Umbraquult) were reduced in a continuously stirred redox reactor for 40 d. We studied the effects of three treatments on P dissolution: (i) 2 g dextrose kg(-1) solids added as a microbial carbon source at time 0 d; (ii) 2 g dextrose kg(-1) solids split into three additions at 0, 12, and 26 d; and (iii) no added dextrose. After 40 d of reduction, concentrations of dissolved reactive phosphorus (DRP) were similar for all treatments and increased up to sevenfold from 1.5 to 10 mg L(-1). The initial rate of reduction and dissolution of DRP was significantly greater for the 0-d treatment. A linear relationship (R(2) = 0.79) was found between DRP and dissolved organic carbon (DOC). Dissolved Fe and Al and pH increased, suggesting the formation of aqueous Fe- and Al-organic matter complexes. Separate batch experiments were performed to study the effects of increasing pH and citrate additions on PO(4) dissolution under aerobic conditions. Increasing additions of citrate increased concentrations of DRP, Fe, and Al, while increasing pH had no effect. Results indicated that increased dissolved organic matter (DOM) during soil reduction contributed to the increase in DRP, perhaps by competitive adsorption or formation of aqueous ternary DOM-Fe-PO(4) or DOM-Al-PO(4) complexes.  相似文献   

10.
Dairy operations have the potential to elevate dissolved organic carbon (DOC) levels in ground water, where it may interact with organic and inorganic contaminants, fuel denitrification, and may present problems for drinking water treatment. Total and percent bioavailable DOC and total and carbon-specific trihalomethane (THM) formation potential (TTHMFP and STHMFP, respectively) were determined for shallow ground water samples from beneath a dairy farm in the San Joaquin Valley, California. Sixteen wells influenced by specific land management areas were sampled over 3 yr. Measured DOC concentrations were significantly elevated over the background as measured at an upgradient monitoring well, ranging from 13 to 55 mg L(-1) in wells downgradient from wastewater ponds, 8 to 30 mg L(-1) in corral wells, 5 to 12 mg L(-1) in tile drains, and 4 to 15 mg L(-1) in wells associated with manured fields. These DOC concentrations were at the upper range or greatly exceeded concentrations in most surface water bodies used as drinking water sources in California. DOC concentrations in individual wells varied by up to a factor of two over the duration of this study, indicating a dynamic system of sources and degradation. DOC bioavailability over 21 d ranged from 3 to 10%, comparable to surface water systems and demonstrating the potential for dairy-derived DOC to influence dissolved oxygen concentrations (nearly all wells were hypoxic to anoxic) and denitrification. TTHMFP measurements across all management units ranged from 141 to 1731 microg L(-1), well in excess of the maximum contaminant level of 80 microg L(-1) established by the Environmental Protection Agency. STHMFP measurements demonstrated over twofold variation ( approximately 4 to approximately 8 mmol total THM/mol DOC) across the management areas, indicating the dependence of reactivity on DOC composition. The results indicate that land management strongly controls the quantity and quality of DOC to reach shallow ground water and hence should be considered when managing ground water resources and in any efforts to mitigate contamination of ground water with carbon-based contaminants, such as pesticides and pharmaceuticals.  相似文献   

11.
Pyrethroids are widely used insecticides in both agricultural and urban environments, and their potential movement to surface streams and toxicity to susceptible aquatic species is an emerging concern. Natural surface waters usually contain low levels of dissolved organic matter (DOM). Limited data have shown that DOM preparations can significantly alter the bioavailability and toxicity effects of pyrethroids. However, the importance of these effects in natural waters has not been investigated. In this study we measured uptake and acute toxicity of permethrin and cyfluthrin by Daphnia species in 15 surface water samples. Low levels of DOM (3-20 mg L(-1)) inhibited cyfluthrin uptake by Daphnia magna and acute toxicity to Ceriodaphnia dubia in most samples. For permethrin, the effects of DOM on bioavailability and toxicity were generally not significant. The effects of DOM on bioavailability of cyfluthrin could not be explained from the DOC concentration alone, suggesting that properties of DOM were also important in regulating bioavailability. Regression of K DOC with selected DOM properties revealed significant dependence of K DOC on the carboxylic acid content of DOM. Moreover, concentrations sensed by solid-phase microextraction (SPME) fibers were well correlated with the observed changes in bioaccumulation by D. magna and acute toxicity to C. dubia. Therefore, selective sampling methods such as SPME may be used for measuring the bioavailable concentrations of pyrethroids in waters with naturally occurring DOM levels and predicting the actual toxicity effects.  相似文献   

12.
Sorption of dissolved organic matter (DOM) plays an important role in maintaining the fertility and quality of soils in agricultural ecosystems. Few studies have examined the effects of decomposition on DOM sorption and chemical characteristics. This study investigated the sorption to goethite (alpha-FeOOH) of fresh and decomposed hydrophilic (HPL) and hydrophobic (HPB) DOM fractions extracted from the shoots and roots of crimson clover (Trifolium incarnatum L.), corn (Zea mays L.), soybean [Glycine max (L.) Merr.], hairy vetch (Vicia villosa L.), and dairy and poultry manures. Sorption was positively related to apparent molecular weight (MWAP), aromaticity as measured by absorptivity at 280 nm, and phenolic acid content. A 10-d laboratory microbial decomposition of the source organic matter generally increased the sorption of the extracted DOM onto goethite. The decomposition effect on sorption was greater for the HPL fractions than for the HPB fractions. There was a decrease in the MWAP values of the DOM samples following sorption to goethite. In many cases the reduction in MWAP was large, indicating a strong preference by goethite for the higher MWAP DOM fractions. The results of this laboratory-based research demonstrate that microbial processes affect the chemical characteristics of DOM which may affect the distribution of soil organic C pools.  相似文献   

13.
Sorption dynamics of organic and inorganic phosphorus compounds in soil   总被引:1,自引:0,他引:1  
Phosphorus retention in soils is influenced by the form of P added. The potential impact of one P compound on the sorption of other P compounds in soils has not been widely reported. Sorption isotherms were utilized to quantify P retention by benchmark soils from Indiana, Missouri, and North Carolina when P was added as inorganic P (Pi) or organic P (beta-D-glucose-6-phosphate, G6P; adenosine 5'-triphosphate, ATP; and myoinositol hexaphosphate, IP6) and to determine whether soil P sorption by these organic P compounds and Pi was competitive. Isotherm supernatants were analyzed for pH and total P using standard protocols, while Pi and organic P compounds were assayed using ion chromatography. Under the controlled conditions of this study, the affinity of all soils for P sources followed the order IP6 > G6P > ATP > Pi. Each organic P source had a different potential to desorb Pi from soils, and the order of greatest to least Pi desorption was G6P > ATP > IP6. Glucose-6-phosphate and ATP competed more directly with Pi for sorption sites than IP6 at greater rates of P addition, but at the lesser rates of P addition, IP6 actually desorbed more Pi. Inositol hexaphosphate was strongly sorbed by all three soils and was relatively unaffected by the presence of other P sources. Decreased total P sorption due to desorption of Pi can be caused by relatively small additions of organic P, which may help explain vertical P movement in manured soils. Sorption isotherms performed using Pi alone did not accurately predict total P sorption in soils.  相似文献   

14.
The role of structural fractions of dissolved organic matter (DOM) from wastewater in the sorption process of hydrophobic organic compounds is still not clear. In this study, DOM from two wastewater treatment plants (Lachish and Netanya, Israel) was fractionated to hydrophobic acid (HoA) and hydrophobic neutral (HoN) fractions. The fractions were characterized and their sorptive capabilities for s-triazine herbicides and polycyclic aromatic hydrocarbons (PAHs) were studied. For all sorbates, the binding to the HoN fractions was much higher than to HoA fractions. The HoA fractions were more polar than the HoN fractions, containing a higher level of carboxylic functionalities. However the higher binding coefficients of atrazine (2-chloro-4-ethylamine-6-isopropylamino-s-triazine) and ametryn [2-(ethylamino)-4-isopropylamino-6-methyl-thio-s-triazine] obtained for the HoN fractions suggest that their sorption is governed by hydrophobic-like interactions rather than H bonding. The values of binding coefficients of PAHs measured for the HoN fractions were within the range reported for humic acids and much higher than other fractions, suggesting that this fraction plays an important role in the overall sorption of these compounds by DOM. Higher sorption coefficients were measured for the Netanya DOM sample containing higher level of hydrophobic fractions (HoA + HoN) than the Lachish DOM, suggesting that the sorption of hydrophobic organic compounds by DOM is governed by the level of these structural substances. The evaluation of mobility of organic pollutants by wastewater irrigation requires not only assessment of the total carbon concentration but also, more importantly, the content of the hydrophobic fractions.  相似文献   

15.
Abstract: Differences in the storm‐event responses of dissolved organic carbon (DOC) and nitrogen (DON) in streamflow and ground water were evaluated for a glaciated forested watershed in western New York. Eight to ten storm events with varying rainfall amounts, intensities, and antecedent moisture conditions were studied for three catchments (1.6, 3.4, and 696 ha) over a three‐year period (2003‐2005). Concentrations of DOC in streamflow exiting the catchments were significantly higher for storm events following a dry period, whereas no similar response was observed for DON. Highest DON concentrations in streamflow were typically associated with storm events following wet antecedent moisture conditions. In addition to antecedent moisture conditions, DOC concentrations were also positively correlated with precipitation amounts, while DON did not reveal a consistent pattern. Streamwater and ground‐water concentrations of DOC during storm events were also strongly correlated with riparian ground‐water depths but a similar relationship was not observed for DON. Ground‐water DON concentrations were also more variable than DOC. We hypothesized that the differences in DOC and DON responses stemmed from the differences in catchment sources of these solutes. This study suggests that while DOC and DON are intrinsically linked as components of dissolved organic matter, their dynamics and exports from watersheds may be regulated by a different set of mechanisms and factors. Identifying these differences is critical for developing more reliable and robust models for transport of dissolved organic matter.  相似文献   

16.
The Siak is a typical, nutrient-poor, well-mixed, black water river in central Sumatra, Indonesia, which owes its brown color to dissolved organic matter (DOM) leached from surrounding, heavily disturbed peat soils. We measured dissolved organic carbon (DOC) and oxygen concentrations along the river, carried out a 36-h experiment in the province capital Pekanbaru and quantified organic matter and nutrient inputs from urban wastewater channels into the Siak. In order to consider the complex dynamic of oxygen in rivers, a box-diffusion model was used to interpret the measured data. The results suggest that the decomposition of soil derived DOM was the main factor influencing the oxygen concentration in the Siak which varied between ~100 and 140 μmol l?1. Additional DOM input caused by wastewater discharges appeared to reduce the oxygen concentrations by ~20 μmol l?1 during the peak-time in household water use in the early morning and in the early evening. Associated enhanced nutrient inputs appear to reduce the impact of the anthropogenic DOM by favoring the photosynthetic production of oxygen in the morning. A reduction of 20 μmol l?1, which although perhaps not of great significance in Pekanbaru, has strong implications for wastewater management in the fast developing areas downstream Pekanbaru where oxygen concentrations rarely exceed 20 μmol l?1.  相似文献   

17.
Determination of polyacrylamide (PAM) concentration in soil waters is important in improving the efficiency of PAM application and understanding the environmental fate of applied PAM. In this study, concentrations of anionic PAM with high molecular weight in soil waters containing salts and dissolved organic matter (DOM) were determined quantitatively by size exclusion chromatography (SEC) with ultraviolet (UV) absorbance detection. Polyacrylamide was separated from interferential salts and DOM on a polymeric gel column eluted with an aqueous solution of 0.05 M KH2PO4 and then detected at a short UV wavelength of 195 nm. Analysis of PAM concentrations in soil sorption supernatants, soil leachates, and water samples from irrigation furrow streams showed that SEC is an effective approach for quantifying low concentrations (0-10 mg L(-1)) of PAM in waters containing soil DOM and salts. The method has a lower detection limit of 0.02 microg and a linear response range of 0.2 to 80 mg L(-1). Precision studies gave coefficients of variation of < 1.96% (n = 4) for > 10 mg L(-1) PAM and < 12% (n = 3) for 0.2 to 3 mg L(-1) PAM.  相似文献   

18.
Bacterial extracellular polymers (BEP) affect the translocation and fate of organic and inorganic pollutants in terrestrial and aquatic ecosystems. In this study, BEP from activated sludge was compared with sludge dissolved organic matter (DOM) in terms of behavior and effects on the mobilization and bioavailability of Cu in a well-aged Cu-contaminated orchard sandy loam. Addition of sludge BEP (10-200 mg dissolved organic carbon [DOC] L(-1)) to the soil resulted in 1.6- to 12.8-fold-higher soil soluble Cu concentration over the control and 1.3- to 2.2-fold over sludge DOM of the same concentration. Consequently, the Cu uptake by the ryegrass (Lolium perenne L., cv. Target) grown in the soil was increased by 31% due to interval watering of 100 mg DOC L(-1) of sludge BEP solution in a 35-d period. The influence of sludge BEP on mobilizing soil Cu could be maintained as long as 60 d or more, depending on BEP biodegradation status. The findings that sludge BEP promoted Cu mobilization and bioavailability could be attributed to less adsorption of BEP by soil, slow degradation, and higher affinity with Cu. For example, after 3 wk of aerobic incubation, the soluble Cu present in the sludge DOM-treated soil was reduced to about the level of the control, while the concentration of soluble Cu in BEP-treated soil was 6.2 times higher than that in the control. Therefore, sludge BEP could act as a facilitated-transport carrier of Cu. The environmental risk of Cu should receive much attention if BEP is incorporated into soils.  相似文献   

19.
Post-treatment of leachate from soil-washing remedial actions may be necessary depending on the amounts of dissolved contaminants present. Uptake of arsenic species by surfactant-modified zeolite (SMZ) from a synthetic soil leachate (pH of approximately 12 [NaOH]) was measured as a test of SMZ as a post-treatment sorbent. Batch sorption isotherms were prepared using leachate to SMZ ratios from 40:1 to 4:1, and temperatures of 25 and 15 degrees C. Equilibrium levels of dissolved and total solution arsenic were similar. At each temperature, sorption appeared to reach a plateau or maximum, then decreased at the highest solution concentration, corresponding to the lowest amount of zeolite added (2.5 g). A maximum sorption value of 72.0 mmol of arsenic per kg of SMZ (5400 mg/kg) was observed at 25 degrees C, and 42.1 mmol/kg (3150 mg/kg) at 15 degrees C. Total arsenic recoveries varied from 74 to 125%. Surfactant-modified zeolite removed up to 97% of dissolved organic carbon and decolorized the leachate solutions. Excluding the points for the highest arsenic to SMZ ratio, the sorption isotherms were well described by the linearized form of the Langmuir equation, with coefficients of determination greater than 0.90 at both temperatures. Sorption of arsenic by SMZ is attributed to anion exchange with counterions on the surfactant head groups, and/or partitioning of organic carbon-complexed arsenic into the surfactant bilayer.  相似文献   

20.
The zinc binding characteristics of natural organic matter (NOM) from several representative surface waters were studied and compared. NOM samples were concentrated by reverse osmosis. The samples were treated in the laboratory to remove trace metals. Square wave anodic stripping voltammetry (SWASV) was used to study zinc complexing properties of those NOM samples at fixed pH, ionic strength, and dissolved organic carbon (DOC) concentrations. Experimental data were compared to the predictions from the Windermere Humic Aqueous Model (WHAM) Version VI. At the same pH, ionic strength, and temperature, the zinc titration curves for NOM samples from different surface water sources tested in our study almost overlapped each other, indicating similarity in zinc binding properties of the NOM. A discrete two-site model gave good fits to our experimental titration data. Non-linear fitting by FITEQL 4.0 shows that the conditional zinc binding constants at the same pH are similar for NOM from different sources, indicating that zinc complexation characteristics of the NOM used in our study do not depend on their origin and one set of binding parameters can be used to represent Zn-NOM complexation for NOM samples from those different surface water sources representing geographically diverse locations. In addition, the total ligand concentrations (L(1,T), L(2,T), and L(T)) of all NOM show no observable gradation with increasing pH (L(1,T)=2.06+/-0.80 mmol/g carbon; L(2,T)=0.12+/-0.04 mmol/g carbon; L(T)=2.18+/-0.78 mmol/g carbon), while the conditional binding constants of zinc by NOM (logK(ZnL)(c)) show a linear increase with increasing pH(logK(1)(c)(pH=6.0)=4.69+/-0.25; logK(1)(c)(pH=7.0)=4.94+/-0.10; logK(1)(c)(pH=8.0)=5.25+/-0.006; logK(2)(c)(pH=6.0)=6.29+/-0.13; logK(2)(c)(pH=7.0)=6.55+/-0.08; logK(2)(c)(pH=8.0)=6.86+/-0.023) with a slope of ca. 0.28, indicating the zinc-NOM complexes become more stable at higher pH. The WHAM VI predicted free zinc ion activities at high zinc concentrations agree with our experimental results at pH 6.0, 7.0, and 8.0. However, the zinc binding of these NOM samples is over estimated by WHAM VI at zinc concentrations below 10(-6) M at pH 8.0.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号