首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 825 毫秒
1.
The area under no-till (NT) in Brazil reached 22 million ha in 2004-2005, of which approximately 45% was located in the southern states. From the 1970s to the mid-1980s, this region was a source of carbon dioxide to the atmosphere due to decrease of soil carbon (C) stocks and high consumption of fuel by intensive tillage. Since then, NT has partially restored the soil C lost and reduced the consumption of fossil fuels. To assess the potential of C accumulation in NT soils, four long-term experiments (7-19 yr) in subtropical soils (Paleudult, Paleudalf, and Hapludox) varying in soil texture (87-760 g kg(-1) of clay) in agroecologic southern Brazil zones (central region, northwest basaltic plateau in Rio Grande Sul, and west basaltic plateau in Santa Catarina) and with different cropping systems (soybean and maize) were investigated. The lability of soil organic matter (SOM) was calculated as the ratio of total organic carbon (TOC) to particulate organic carbon (POC), and the role of physical protection on stability of SOM was evaluated. In general, TOC and POC stocks in native grass correlated closely with clay content. Conversely, there was no clear effect of soil texture on C accumulation rates in NT soils, which ranged from 0.12 to 0.59 Mg ha(-1) yr(-1). The C accumulation was higher in NT than in conventional-till (CT) soils. The legume cover crops pigeon pea [Cajanus cajan (L.) Millsp] and velvet beans (Stizolobium cinereum Piper & Tracy) in NT maize cropping systems had the highest C accumulation rates (0.38-0.59 Mg ha(-1) yr(-1)). The intensive cropping systems also were effective in increasing the C accumulation rates in NT soils (0.25-0.34 Mg ha(-1) yr(-1)) when compared to the double-crop system used by farmers. These results stress the role of N fixation in improving the tropical and subtropical cropping systems. The physical protection of SOM within soil aggregates was an important mechanism of C accumulation in the sandy clay loam Paleudult under NT. The cropping system and NT effects on C stocks were attributed to an increase in the lability of SOM, as evidenced by the higher POC to TOC ratio, which is very important to C and energy flux through the soil.  相似文献   

2.
The Haitian people are facing serious problems of environmental degradation that threaten the economic livelihoods of many resource-poor farmers. Structures to retard the process of soil loss have been adopted reluctantly and, even when adopted, the management and maintenance have been less than desirable. We evaluate the factors that influence the adoption and management of alley cropping in Haiti. Results of the adoption model show that institutional factors, such as membership in a local peasant organization and training in soil conservation practices, favorably influence adoption. Socio-economic factors such as gender, per capita income, and interaction between education and per capita income also significantly influence adoption of alley cropping in Gaita and Bannate. The management of alley cropping is influenced by demographic, socio-economic, institutional, and physical factors. The relative importance of each factor on the probability of adoption and management of alley cropping varies from one variable to another. The study generates important information for resource allocation in the establishment of alley cropping as a soil conservation structure.  相似文献   

3.
New sustainable agriculture techniques are arising in response to the environmental problems caused by intensive agriculture, such as nitrate leaching and surface water eutrophication. Organic fertilization (e.g., with sewage sludge) and agroforestry could be used to reduce nutrient leaching. We assessed the efficiency of establishing trees and pasture species in environmentally sensitive, irrigated Mediterranean grassland soils in controlling nitrate leaching. Four vegetation systems-bare soil, pasture species, cherry trees [ (L.) L.], and pasture-tree mixed plantings-and five fertilization treatments-control, two doses of mineral fertilizer, and two doses of organic fertilizer (sewage sludge)-were tested in a greenhouse experiment over 2 yr. In the experiment, the wet and warm climate characteristics of Mediterranean irrigated croplands and the plant-to-plant and soil-to-plant interactions that occur in open-field agroforestry plantations were simulated. Following a factorial design with six replicates, 120 pots (30-cm radius and 120 cm deep) were filled with a sandy, alluvial soil common in the cultivated fluvial plains of the region. The greatest pasture production and tree growth were obtained with sewage sludge application. Both pasture production and tree growth decreased significantly in the pasture-tree mixed planting. Nitrate leaching was negligible in this latter treatment, except under the highest dose of sewage sludge application. The rapid mineralization of sludge suggested that this organic fertilizer should be used very cautiously in warm, irrigated Mediterranean soils. Mixed planting of pasture species and trees, such as , could be a useful tool for mitigating nitrate leaching from irrigated Mediterranean pastures on sandy soils.  相似文献   

4.
The accumulation of excess soil phosphorus (P) in watersheds under intensive animal production has been linked to increases in dissolved P concentrations in rivers and streams draining these watersheds. Reductions in water dissolved P concentrations through very strong P sorption reactions may be obtainable after land application of alum-based drinking water treatment residuals (WTRs). Our objectives were to (i) evaluate the ability of an alum-based WTR to reduce Mehlich-3 phosphorus (M3P) and water-soluble phosphorus (WSP) concentrations in three P-enriched Coastal Plain soils, (ii) estimate WTR application rates necessary to lower soil M3P levels to a target 150 mg kg(-1) soil M3P concentration threshold level, and (iii) determine the effects on soil pH and electrical conductivity (EC). Three soils containing elevated M3P (145-371 mg kg(-1)) and WSP (12.3-23.5 mg kg(-1)) concentrations were laboratory incubated with between 0 and 6% WTR (w w(-1)) for 84 d. Incorporation of WTR into the three soils caused a near linear and significant reduction in soil M3P and WSP concentrations. In two soils, 6% WTR application caused a soil M3P concentration decrease to below the soil P threshold level. An additional incubation on the third soil using higher WTR to soil treatments (10-15%) was required to reduce the mean soil M3P concentration to 178 mg kg(-1). After incubation, most treatments had less than a half pH unit decline and a slight increase in soil EC values suggesting a minimal impact on soil quality properties. The results showed that WTR incorporation into soils with high P concentrations caused larger relative reductions in extractable WSP than M3P concentrations. The larger relative reductions in the extractable WSP fraction suggest that WTR can be more effective at reducing potential runoff P losses than usage as an amendment to lower M3P concentrations.  相似文献   

5.
No-till cropping can increase soil C stocks and aggregation but patterns of long-term changes in N2O emissions, soil N availability, and crop yields still need to be resolved. We measured soil C accumulation, aggregation, soil water, N2O emissions, soil inorganic N, and crop yields in till and no-till corn-soybean-wheat rotations between 1989 and 2002 in southwestern Michigan and investigated whether tillage effects varied over time or by crop. Mean annual NO3- concentrations in no-till were significantly less than in conventional till in three of six corn years and during one year of wheat production. Yields were similar in each system for all 14 years but three, during which yields were higher in no-till, indicating that lower soil NO3- concentrations did not result in lower yields. Carbon accumulated in no-till soils at a rate of 26 g C m(-2) yr(-1) over 12 years at the 0- to 5-cm soil depth. Average nitrous oxide emissions were similar in till (3.27 +/- 0.52 g N ha d(-1)) and no-till (3.63 +/- 0.53 g N ha d(-1)) systems and were sufficient to offset 56 to 61% of the reduction in CO2 equivalents associated with no-till C sequestration. After controlling for rotation and environmental effects by normalizing treatment differences between till and no-till systems we found no significant trends in soil N, N2O emissions, or yields through time. In our sandy loam soils, no-till cropping enhances C storage, aggregation, and associated environmental processes with no significant ecological or yield tradeoffs.  相似文献   

6.
Shaded perennial agroforestry systems contain relatively high quantities of soil carbon (C) resulting from continuous deposition of plant residues; however, the extent to which the C is sequestered in soil will depend on the extent of physical protection of soil organic C (SOC). The main objective of this study was to characterize SOC storage in relation to soil fraction-size classes in cacao (Theobroma cacao L.) agroforestry systems (AFSs). Two shaded cacao systems and an adjacent natural forest in reddish-yellow Oxisols in Bahia, Brazil were selected. Soil samples were collected from four depth classes to 1 m depth and separated by wet-sieving into three fraction-size classes (>250 μm, 250–53 μm, and <53 μm)—corresponding to macroaggregate, microaggregate, and silt-and-clay size fractions—and analyzed for C content. The total SOC stock did not vary among systems (mean: 302 Mg/ha). On average, 72% of SOC was in macroaggregate-size, 20% in microaggregate-size, and 8% in silt-and-clay size fractions in soil. Sonication of aggregates showed that occlusion of C in soil aggregates could be a major mechanism of C protection in these soils. Considering the low level of soil disturbances in cacao AFSs, the C contained in the macroaggregate fraction might become stabilized in the soil. The study shows the role of cacao AFSs in mitigating greenhouse gas (GHG) emission through accumulation and retention of high amounts of organic C in the soils and suggests the potential benefit of this environmental service to the nearly 6 million cacao farmers worldwide.  相似文献   

7.
Substantially different biogeochemical processes affecting nitrogen fate and transport were observed beneath two stormwater infiltration basins in north-central Florida. Differences are related to soil textural properties that deeply link hydroclimatic conditions with soil moisture variations in a humid, subtropical climate. During 2008, shallow groundwater beneath the basin with predominantly clayey soils (median, 41% silt+clay) exhibited decreases in dissolved oxygen from 3.8 to 0.1 mg L and decreases in nitrate nitrogen (NO-N) from 2.7 mg L to <0.016 mg L, followed by manganese and iron reduction, sulfate reduction, and methanogenesis. In contrast, beneath the basin with predominantly sandy soils (median, 2% silt+clay), aerobic conditions persisted from 2007 through 2009 (dissolved oxygen, 5.0-7.8 mg L), resulting in NO-N of 1.3 to 3.3 mg L in shallow groundwater. Enrichment of δN and δO of NO combined with water chemistry data indicates denitrification beneath the clayey basin and relatively conservative NO transport beneath the sandy basin. Soil-extractable NO-N was significantly lower and the copper-containing nitrite reductase gene density was significantly higher beneath the clayey basin. Differences in moisture retention capacity between fine- and coarse-textured soils resulted in median volumetric gas-phase contents of 0.04 beneath the clayey basin and 0.19 beneath the sandy basin, inhibiting surface/subsurface oxygen exchange beneath the clayey basin. Results can inform development of soil amendments to maintain elevated moisture content in shallow soils of stormwater infiltration basins, which can be incorporated in improved best management practices to mitigate NO impacts.  相似文献   

8.
ABSTRACT: The accumulation of arsenic, nickel, copper, and lead in the soil profile was determined beneath five urban storm-water retention/recharge basins used by the Fresno Metropolitan Flood Control District, California. Soils were sampled from the surface to the first zone of saturation and compared with soils from an adjacent un-contaminated control site. These elements were found to be accumulating in the first few centimeters of basin soil and are important to the effectiveness of a specific best management practice, i.e., the retention and recharge of urban storm water. Study basins in use since 1962, 1965, and 1969 had lead contents in the 0–2 cm soil depth interval‘of 570, 670, and 1400 mg Pb/kg soil, respectively. The median indigenous soil lead concentration was 4.6 mg/kg soil. The practice of removing excess flood runoff water from two basins by pumping apparently is a factor in reducing the accumulation rate of these elements in the surface soils of the basins.  相似文献   

9.
Adsorption-desorption of copper (Cu2+) at contaminated levels in two red soils was investigated. The red soil derived from the Quaternary red earths (clayey, kaolinitic thermic plinthite Aquult) (REQ) adsorbed more Cu2+ than the red soil developed on the Arenaceous rock (clayey, mixed siliceous thermic typic Dystrochrept) (RAR). The maximum adsorption values (M(A)) that are obtained from the simple Langmuir model were 25.90 and 20.17 mmol Cu2+ kg(-1) soil, respectively, for REQ and RAR. Adsorption of Cu2+ decreased soil pH, by 0.8 unit for the REQ soil and 0.6 unit for the RAR soil at the highest loadings. The number of protons released per Cu2+ adsorbed increased sigmoidally with increasing initial Cu2+ concentration for the RAR soil, but the relationship was almost linear for the REQ soil. The RAR soil released about 2.57 moles of proton per mole of Cu2+ adsorbed at the highest Cu2+ loading and the corresponding value for the REQ soil was 1.12. The distribution coefficient (Kd) decreased exponentially with increasing Cu2+ loading. Most of the adsorbed Cu2+ in the soils was readily desorbed in the NH4Ac. After five successive extractions with 1 mol L(-1) NH4Ac (p 5.0), 61 to 95% of the total adsorbed Cu2+ in the RAR soil was desorbed and the corresponding value for the REQ soil was 85 to 92%, indicating that the RAR soil had a greater affinity for Cu2+ than the REQ soil at low levels of adsorbed Cu2+.  相似文献   

10.
The Khanikhola watershed in Sikkim is agrarian with about 50% area under rain-fed agriculture representing the conditions of the middle mountains all over the Himalaya. The study was conducted to assess overland flow, soil loss and subsequent nutrient losses from different land uses in the watershed, and identify biotechnological inputs for management of mountain farming systems. Overland flow, soil and nutrient losses were very high from open agricultural (cropped) fields compared to other land uses, and more than 72% of nutrient losses were attributable to agriculture land use. Forests and large cardamom agroforestry conserved more soil compared to other land uses. Interventions, like cultivation of broom grass upon terrace risers, N2-fixing Albizia trees for maintenance of soil fertility and plantation of horticulture trees, have reduced the soil loss (by 22%). Soil and water conservation values (> 80%) of both large cardamom and broom grass were higher compared to other crops. Use of N2-fixing Albizia tree in large cardamom agroforestry and croplands contributed to soil fertility, and increased productivity and yield. Bio-composting of farm resources ensured increase in nutrient availability specially phosphorus in cropped areas. Agricultural practices in mountain areas should be strengthened with more agroforestry components, and cash crops like large cardamom and broom grass in agroforestry provide high economic return and are hydroecologically sustainable.  相似文献   

11.
Agroforestry is often an economically viable land-use option for the environmental rehabilitation of salinized cropping areas in irrigated drylands, but afforestation initiative at the farm level is subject to various socio-political constraints. We analyzed the factors that affect farmer decisions with respect to the agroforestry adoption using an ex ante approach through Ethnographic Decision Tree Modeling (EDTM). Constraints on agroforestry adoption were identified via a review of legal documents, focus-group discussions, and a farm survey in northwest Uzbekistan. The findings highlighted the importance of farmer perceptions of risk with respect to decision making surrounding the adoption of alternative land uses. The EDTM analysis allowed determining those policy incentives for afforestation that could directly influence the decision-making process of potential participants. In particular, there is a need for increased land-use flexibility, improved land tenure and tree plantation proprietorship security, increased awareness raising and training in agroforestry practices, and greater institutional support.  相似文献   

12.
The accumulation of P in agricultural soils due to fertilization has increased the risk of P losses from agricultural fields to surface waters. In risk assessment systems for P losses, both P release from soil to solution and transport mechanisms need to be considered. In this study, the overall objective was to identify soil variables for prediction of potential P release from soil to solution. Soils from nine sites of the Swedish long-term fertility experiment were used, each with four soil P levels. Phosphorus extractable with CaCl2 was used as an estimate of potential P release from soil to solution. Ammonium lactate-extractable phosphorus (P-AL) or NaHCO3-extractable phosphorus (Olsen P) could not be used alone for prediction of potential P release since soils with high phosphorus sorption capacity (PSC) released less P than soils with low PSC at the same soil test phosphorus (STP) level. Degree of phosphorus saturation (DPS) was calculated as Olsen P or P-AL as a percentage of PSC derived from P sorption isotherms or from Fe and Al extractable in ammonium oxalate. The CaCl2-extractable total phosphorus (CaCl2-TP) was exponentially related to these DPS values (r2 > or = 0.79). The CaCl2-TP was also linearly related to ratios between Olsen P or P-AL and a single-point phosphorus sorption index (PSI; r2 > or = 0.86). These ratios, which are easily determined and gave good correlations with CaCl2-TP, seemed to be the most useful estimates of potential P release for risk assessment systems.  相似文献   

13.
Atrazine (6-chloro-N2-ethyl-N4-isopropyl-1,3,5-triazine-2,4-diamine) behavior was studied in four surface soils during incubations in laboratory conditions. Soils were chosen in relation to their cropping management (tillage and no tillage) and crop rotation system (continuous soybean [Glycine mar (L.) Merr.] and maize (Zea mays L.)-soybean rotation). A natural soil under brushwood was sampled as a reference. Atrazine use in field conditions was associated with maize cropping, thus only one soil received atrazine every other year. Atrazine behavior was characterized through the balance of 14C-U-ring atrazine radioactivity among the mineralized fraction, the extractable fraction, and the nonextractable bound residues. Soil organic matter capacity to form bound residues was characterized using soil size fractionation. Accelerated atrazine mineralization was only observed in the soil receiving atrazine in field conditions. Atrazine application every other year was enough to develop a microflora adapted to triazine ring mineralization. Bound residue formation was rapid and increased with soil organic matter content. The coarsest soil size fractions (2000-200 and 200-50 microm) containing the nonhumified organic matter presented the highest capacity to form bound residues. No effect of tillage system was observed, probably because of the uniform sampling depth at 20 cm, hiding the stratification pattern of soil organic matter in non-tilled soils.  相似文献   

14.
ABSTRACT: Nonirrigated crop yields and forage production are limited by low and variable precipitation in the southern Great Plains. Precipitation variation involves production risks, which can be reduced by considering probability of precipitation, precipitation retention, and soil erosion under various production systems. The objective of this study was to probabilistically quantify the impact of precipitation variations, land use, cropping, and tillage systems on precipitation retention and soil erosion. Five 1.6 ha watersheds that had 3 to 4 percent slopes, and similar silt loam soils were selected. One was kept in native grass, and the others were planted into winter wheat (Triticum aestivum L.) under different cropping and tillage systems. Daily runoff and soil erosion were measured at the outlet of each watershed. Precipitation distributions exhibited great seasonal and interannual variations, and precipitation retention distributions resembled those of precipitation. Cropping and tillage systems affected precipitation retention but much less than did precipitation variations. Available soil water storage, which was largely controlled by ET, played an important role in retaining precipitation. This indicates that cropping systems should be adjusted to precipitation patterns, if predictable, for better soil water use. Land use and cropping and tillage systems had a much greater impact on soil erosion than on precipitation retention. Soil erosion risks, which were proportional to the levels of tillage disturbance, were mainly caused by a few large storms in summer, when surface cover was low. This study explored a novel approach for evaluating production risks associated with insufficient precipitation retention and excessive soil erosion for certain crops or cropping systems under assumed precipitation conditions.  相似文献   

15.
A new method to diagnose the environmental sustainability of specific orchard management practices was derived and tested. As a significant factor for soil quality, the soil carbon (C) management in the topsoil of the tree-row of an integrated and organic apple orchard was selected and compared. Soil C management was defined as land management practices that maintain or increase soil C. We analyzed the impact of the soil C management on biological (microbial biomass C, basal respiration, dehydrogenase activity, respiratory quotient) and physical (aggregate stability, amount of plant-available water, conductive mean pore diameter near water saturation) soil properties. Soil in the alley acted as a reference for the managed soil in the tree row. The total and hot-water-extractable C amounts served as a combined proxy for the soil C management. The soil C management accounted for 0 to 81% of the degradation or enhancement of biophysical soil properties in the integrated and organic system. In the integrated system, soil C management led to a loss of C in the top 0.3 m of the tree row within 12 yr, causing a decrease in microbial activities. In the tree row of the organic orchard, C loss occurred in the top 0.1 m, and the decrease in microbial activities was small or not significant. Regarding physical soil properties, the C loss in the integrated system led to a decrease of the aggregate stability, whereas it increased in the organic system. Generally, the impact of soil C management was better correlated with soil microbial than with the physical properties. With respect to environmental soil functions that are sensitive to the decrease in microbial activity or aggregate stability, soil C management was sustainable in the organic system but not in the integrated system.  相似文献   

16.
Increased CO2 release from soils resulting from agricultural practices such as tillage has generated concerns about contributions to global warming. Maintaining current levels of soil C and/or sequestering additional C in soils are important mechanisms to reduce CO2 in the atmosphere through production agriculture. We conducted a study in northern Alabama from 2003 to 2006 to measure CO2 efflux and C storage in long-term tilled and non-tilled cotton (Gossypium hirsutum L.) plots receiving poultry litter or ammonium nitrate (AN). Treatments were established in 1996 on a Decatur silt loam (clayey, kaolinitic thermic, Typic Paleudults) and consisted of conventional-tillage (CT), mulch-tillage (MT), and no-tillage (NT) systems with winter rye [Secale cereale (L.)] cover cropping and AN and poultry litter (PL) as nitrogen sources. Cotton was planted in 2003, 2004, and 2006. Corn was planted in 2005 as a rotation crop using a no-till planter in all plots, and no fertilizer was applied. Poultry litter application resulted in higher CO2 emission from soil compared with AN application regardless of tillage system. In 2003 and 2006, CT (4.39 and 3.40 micromol m(-2) s(-1), respectively) and MT (4.17 and 3.39 micromol m(-2) s(-1), respectively) with PL at 100 kg N ha(-1) (100 PLN) recorded significantly higher CO2 efflux compared with NT with 100 PLN (2.84 and 2.47 micromol m(-2) s(-1), respectively). Total soil C at 0- to 15-cm depth was not affected by tillage but significantly increased with PL application and winter rye cover cropping. In general, cotton produced with NT conservation tillage in conjunction with PL and winter rye cover cropping reduced CO2 emissions and sequestered more soil C compared with control treatments.  相似文献   

17.
Artificially draining soils using subsurface tiles is a common practice on many agricultural fields. High levels of nitrate-nitrogen (NO-N) are often released from these systems; therefore, knowledge on the sources and processes controlling NO-N in drainage systems is needed. A dual isotope study (δN and δO) was used to investigate three subsurface drainage systems (shallow, conventional, and controlled) in Onslow, Nova Scotia, Canada. The objectives of this study were (i) to identify which drainage system more effectively reduced the NO-N loading, (ii) to examine differences in isotopic signatures under identical nutrient and cropping regimes for a fixed soil type, and (iii) to identify the utility of different drainage systems in controlling nutrient flows. Nitrate concentrations measured ranged from 0.92 to 11.8, from 2.3 to 17.3, and from 2.1 to 19.8 mg L for the shallow, conventional, and controlled drains, respectively. Total NO-N loading from shallow and controlled drains were 20 and 5.6 kg ha, respectively, lower than conventional (39.1 kg ha). The isotopic composition of NO-N for all drainage types appeared to be a mixture of two organic sources (manure and soil organic matter) via the process of nitrification. There was no evidence that denitrification played a significant role in removing NO-N during transport. Overall, shallow drainage reduced NO-N loading but offered no water conservation benefits. Combining the benefits of decreased NO-N loading from shallow systems with water control capability may offer the best solution to reducing nutrient loadings into water systems, achieving optimal crop yield, and decreasing drainage installation costs.  相似文献   

18.
本文研究了高台位旱地石灰性紫色土的肥力退化因子,并针对紫色母岩矿质养分丰富、易风化成土的特点,以一种培肥耕作法-聚土免耕耕作法培肥土壤。结果表明,采用此耕作法的土壤具有防蚀、抗旱、培肥和自调能力,能提高系统生产力。  相似文献   

19.
The aim of this paper was to assess the influence of tamarisk shrubs on soil fertility, salinity and nematode communities in various habitats located in an arid desert-oasis region in northwest China. Three habitats were studied: sand dune, riparian zone and saline meadow, where tamarisk shrubs have been established in recent decades in order to vegetation restoration used as desertification control and saline land rehabilitation projects and become the dominant plant community. The parameters measured include soil organic carbon (SOC), total nitrogen, available phosphorus (P) and potassium (K), pH, salt component, and nematode community characteristics. Enrichment ratios (a comparison of the soil measurements between soils under canopy and in the open interspaces) for soil nutrients and salinity were used to evaluate fertility and salinity islands underneath the tamarisk shrubs. The soil nematode community was used as a biological indicator of soil condition. SOC and available P and K were higher beneath the plant canopy than in the open interspaces outside that canopy. The enrichment ratios for SOC and nutrients were highest for the sand dune habitat and tamarisk shrubs clearly created islands of greater salinity under the canopies. Nematode abundance per 100 g dry soil varied considerably between the locations and habitats, with the highest abundance found in sand dune and the lowest in saline meadow. A significantly higher nematode abundance and a lower trophic diversity were found in soils under the canopy compared to the soils in the open interspaces. With the exception of saline meadow, the abundance of bacterivores increased and fungivores decreased under the canopy relative to the open interspaces, and bacterivores dominated under the canopies in the sand dune and riparian habitats. The enrichment ratios for salinity were higher than for fertility, suggesting that improved soil fertility can not limit the impact of salinization beneath tamarisk shrubs. The adverse effect of salt accumulation on the soil environment should be taken into account when using tamarisk as restoration plant species, especially in saline meadow and controlling of tamarisk density should be considered when undertaking re-vegetation projects in the arid desert oasis regions.  相似文献   

20.
Fluoride depositions near aluminum smelters and other fluoride-emitting plants can lead to fluoride accumulation in soils, which constitutes a risk for ground water contamination. This study was conducted to investigate the capacity of a 0.2 M acid ammonium oxalate solution to selectively and quantitatively extract fluoride accumulated in soils. The recovery of fluoride added to three soils was evaluated following 7- to 28-d incubations. Oxalate extraction was also compared with a total fluoride extraction method, using oxalate-extractable fluoride (Fox) and total fluoride (Ftot) accumulation profiles derived from column percolation experiments. To determine low-level fluoride concentrations without interference from high Al and Fe concentrations, an adapted ion chromatography method was used. Following soil incubations, oxalate extracted 42 to 86% of added fluoride. Recovery varied between soils and, in one soil, increased with added fluoride concentration. Recovery was unaffected by incubation time. Maximum recovery was obtained in a soil high in amorphous Fe and Al, low in clay, and free of carbonate. Lower recoveries were obtained in soils with higher clay or carbonate contents. Only 4 to 8% of Ftot was extracted in untreated samples using Fox, which suggests a high selectivity of this method for added fluoride. In percolation experiments, the use of Fox reduced considerably the background noise associated with Ftot for the evaluation of fluoride accumulation profiles. Because of its high selectivity and despite incomplete fluoride recovery, the use of Fox to determine fluoride resident concentrations in soils may improve environmental monitoring of fluoride accumulation and movement in contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号