首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 874 毫秒
1.
Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000–2000 μm, 250–1000 μm, 53–250 μm, and <53 μm). C and N accumulated in to the light (free- and intra-aggregate density fractions) and heavy fractions of whole soil and soil size fraction were determined. Soil size fraction obtained in cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32–34%), and microaggregates (1–1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250–1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby minimizing the impact of conversion of forest to cacao AFS.  相似文献   

2.
Maintenance of soil organic carbon (SOC) is important for sustainable use of soil resources due to the multiple effects of SOC on soil nutrient status and soil structural stability. The objective of this study was to identify the changes in soil aggregate distribution and stability, SOC, and nitrogen (N) concentrations after cropland was converted to perennial alfalfa (Medicago sativa L. Algonguin) grassland for 6 years in the marginal oasis of the middle of Hexi Corridor region, northwest China. Significant changes in the size distribution of dry-sieving aggregates and water-stable aggregates, SOC, and N concentrations occurred after the conversion from crop to alfalfa. SOC and N stocks increased by 20.2% and 18.5%, respectively, and the estimated C and N sequestration rates were 0.4 Mg C ha−1 year−1 and 0.04 Mg N ha−1 year−1 following the conversion. The large aggregate (>5 mm) was the most abundant dry aggregate size fraction in both crop and alfalfa soils, and significant difference in the distribution of dry aggregates between the two land use types occurred only in the >5 mm aggregate fraction. The percentage of water-stable macroaggregates (>2, 2–0.25 mm) and aggregate stability (mean weight diameter of water-stable aggregates, WMWD) were significantly higher in alfalfa soils than in crop soils. There was a significant linear relationship between total SOC concentration and aggregate parameters (mean weight diameter) for alfalfa soils, indicating that aggregate stability was closely associated with increased SOC concentration following the conversion of crops to alfalfa. The SOC and N concentrations and the C/N ratio were greatest in the >2 mm water-stable aggregates and the smallest in the 0.25–0.05 mm aggregates in crop and alfalfa soils. For the same aggregate, SOC and N concentrations in aggregate fractions increased with increasing total SOC and N concentrations. The result showed that the conversion of annual crops to alfalfa in the marginal land with coarse-texture soils can significantly increase SOC and N stocks, and improve soil structure.  相似文献   

3.
Silvopastoral management of fast-growing tree plantations is becoming popular in the Brazilian Cerrado (savanna). To understand the influence of such systems on soil carbon (C) storage, we studied C content in three aggregate size classes in six land-use systems (LUS) on Oxisols in Minas Gerais, Brazil. The systems were a native forest, a treeless pasture, 24- and 4-yr-old eucalyptus ( sp.) plantations, and 15- and 4-yr-old silvopastures of fodder grass plus animals under eucalyptus. From each system, replicated soil samples were collected from four depths (0-10, 10-20, 20-50, and 50-100 cm), fractionated into 2000- to 250-, 250- to 53-, and <53-μm size classes representing macroaggregates, microaggregates, and silt + clay, respectively, and their C contents determined. Macroaggregate was the predominant size fraction under all LUS, especially in the surface soil layers of tree-based systems. In general, C concentrations (g kg soil) in the different aggregate size fractions did not vary within the same depth. The soil organic carbon (SOC) stock (Mg C ha) to 1-m depth was highest under pasture compared with other LUS owing to its higher soil bulk density. The soils under all LUS had higher C stock compared with other reported values for managed tropical ecosystems: down to 1 m, total SOC stock values ranged from 461 Mg ha under pasture to 393 Mg ha under old eucalyptus. Considering the possibility for formation and retention of microaggregates within macroggregates in low management-intensive systems such as silvopasture, the macroaggregate dynamics in the soil seem to be a good indicator of its C storage potential.  相似文献   

4.
Compared with open (treeless) pasture systems, silvopastoral agroforestry systems that integrate trees into pasture production systems are likely to enhance soil carbon (C) sequestration in deeper soil layers. To test this hypothesis, total soil C contents at six soil depths (0-5, 5-15, 15-30, 30-50, 50-75, and 75-125 cm) were determined in silvopastoral systems with slash pine (Pinus elliottii) + bahiagrass (Paspalum notatum) and an adjacent open pasture (OP) with bahiagrass at four sites, representing Spodosols and Ultisols, in Florida. Soil samples from each layer were fractionated into three classes (250-2000, 53-250, and <53 microm), and the C contents in each were determined. Averaged across four sites and all depths, the total soil organic carbon (SOC) content was higher by 33% in silvopastures near trees (SP-T) and by 28% in the alleys between tree rows (SP-A) than in adjacent open pastures. It was higher by 39% in SP-A and 20% in SP-T than in open pastures in the largest fraction size (250-2000 microm) and by 12.3 and 18.8%, respectively, in the intermediate size fraction (53-250 microm). The highest SOC increase (up to 45 kg m(-2)) in whole soil of silvopasture compared with OP was at the 75- to 125-cm depth at the Spodosol sites. The results support the hypothesis that, compared with open pastures, silvopastures contain more C in deeper soil layers under similar ecological settings, possibly as a consequence of a major input to soil organic matter from decomposition of dead tree-roots.  相似文献   

5.
The rehabilitation of sandy desertified land in semi-arid and arid regions has a great potential to increase carbon sequestration and improve soil quality. Our objective was to investigate the changes in the soil carbon pool and soil properties of surface soil (0–15 cm) under different types of rehabilitation management. Our study was done in the short-term (7 years) and long-term (32 years) desertification control sites in a marginal oasis of northwest China. The different management treatments were: (1) untreated shifting sand land as control; (2) sand-fixing shrubs with straw checkerboards; (3) poplar (Populus gansuensis) shelter forest; and (4) irrigated cropland after leveling sand dune. The results showed that the rehabilitation of severe sandy desertified land resulted in significant increases in soil organic C (SOC), inorganic C, and total N concentrations, as well as enhanced soil aggregation. Over a 7-year period of revegetation and cultivation, SOC concentration in the recovered shrub land, forest land and irrigated cropland increased by 4.1, 14.6 and 11.9 times compared to the control site (shifting sand land), and increased by 11.2, 17.0 and 23.0 times over the 32-year recovery period. Total N, labile C (KMnO4–oxidation C), C management index (CMI) and inorganic C (CaCO3–C) showed a similar increasing trend as SOC. The increased soil C and N was positively related to the accumulation of fine particle fractions. The accumulation of silt and clay, soil C and CaCO3 enhanced the formation of aggregates, which was beneficial to mitigate wind erosion. The percentage of >0.25 mm dry aggregates increased from 18.0% in the control site to 20.0–87.2% in the recovery sites, and the mean weight diameter (MWD) of water-stable aggregates significantly increased, with a range of 0.09–0.30 mm at the recovery sites. Long-term irrigation and fertilization led to a greater soil C and N accumulation in cropland than in shrub and forest lands. The amount of soil C sequestration reached up to 1.8–9.4 and 7.5–17.3 Mg ha?1 at the 0–15 cm layer over a 7- and 32-year rehabilitation period compared to the control site, suggesting that desertification control has a great potential for sequestering soil C and improving soil quality in northwest China.  相似文献   

6.
Carbon storage by urban soils in the United States   总被引:4,自引:0,他引:4  
We used data available from the literature and measurements from Baltimore, Maryland, to (i) assess inter-city variability of soil organic carbon (SOC) pools (1-m depth) of six cities (Atlanta, Baltimore, Boston, Chicago, Oakland, and Syracuse); (ii) calculate the net effect of urban land-use conversion on SOC pools for the same cities; (iii) use the National Land Cover Database to extrapolate total SOC pools for each of the lower 48 U.S. states; and (iv) compare these totals with aboveground totals of carbon storage by trees. Residential soils in Baltimore had SOC densities that were approximately 20 to 34% less than Moscow or Chicago. By contrast, park soils in Baltimore had more than double the SOC density of Hong Kong. Of the six cities, Atlanta and Chicago had the highest and lowest SOC densities per total area, respectively (7.83 and 5.49 kg m(-2)). On a pervious area basis, the SOC densities increased between 8.32 (Oakland) and 10.82 (Atlanta) kg m(-2). In the northeastern United States, Boston and Syracuse had 1.6-fold less SOC post- than in pre-urban development stage. By contrast, cities located in warmer and/or drier climates had slightly higher SOC pools post- than in pre-urban development stage (4 and 6% for Oakland and Chicago, respectively). For the state analysis, aboveground estimates of C density varied from a low of 0.3 (WY) to a high of 5.1 (GA) kg m(-2), while belowground estimates varied from 4.6 (NV) to 12.7 (NH) kg m(-2). The ratio of aboveground to belowground estimates of C storage varied widely with an overall ratio of 2.8. Our results suggest that urban soils have the potential to sequester large amounts of SOC, especially in residential areas where management inputs and the lack of annual soil disturbances create conditions for net increases in SOC. In addition, our analysis suggests the importance of regional variations of land-use and land-cover distributions, especially wetlands, in estimating urban SOC pools.  相似文献   

7.
Carbon Sequestration in Dryland Ecosystems   总被引:8,自引:0,他引:8  
Drylands occupy 6.15 billion hectares (Bha) or 47.2% of the worlds land area. Of this, 3.5 to 4.0 Bha (57%–65%) are either desertified or prone to desertification. Despite the low soil organic carbon (SOC) concentration, total SOC pool of soils of the drylands is 241 Pg (1 Pg = petagram = 1015 g = 1 billion metric ton) or 15.5% of the worlds total of 1550 Pg to 1-meter depth. Desertification has caused historic C loss of 20 to 30 Pg. Assuming that two-thirds of the historic loss can be resequestered, the total potential of SOC sequestration is 12 to 20 Pg C over a 50-year period. Land use and management practices to sequester SOC include afforestation with appropriate species, soil management on cropland, pasture management on grazing land, and restoration of degraded soils and ecosystems through afforestation and conversion to other restorative land uses. Tree species suitable for afforestation in dryland ecosystems include Mesquite, Acacia, Neem and others. Recommended soil management practices include application of biosolids (e.g., manure, sludge), which enhance activity of soil macrofauna (e.g., termites), use of vegetative mulches, water harvesting, and judicious irrigation systems. Recommended practices of managing grazing lands include controlled grazing at an optimal stocking rate, fire management, and growing improved species. The estimated potential of SOC sequestration is about 1 Pg C/y for the world and 50 Tg C/y for the U.S. This potential of dryland soils is relevant to both the Kyoto Protocol under UNFCCC and the U.S. Farm Bill 2002.
  相似文献   

8.
Regional patterns of soil organic carbon stocks in China   总被引:8,自引:0,他引:8  
Soil organic carbon (SOC) is of great importance in the global carbon cycle. Distribution patterns of SOC in various regions of China constitute a nation-wide baseline for studies on soil carbon changes. This paper presents an integrated and multi-level study on SOC stock patterns of China, and presents baseline SOC stock estimates by great administrative regions, river watersheds, soil type regions and ecosystem. The assignment is done by means of a recently completed 1: 1,000,000 scale soil database of China, which is the most detailed and reliable one in China at the present time. SOC densities of 7292 soil profiles collected across China in the middle of the 1980s were calculated and then linked to corresponding polygons in a digital soil map, resulting in a SOC Density Map of China on a 1: 1,000,000 scale, and a 1 km x 1 km grid map. Corresponding maps of administrative regions, river watersheds, soil types (ST), and ecosystems in China were also prepared with an identical resolution and coordinate control points, allowing GIS analyses. Results show that soils in China cover an area of 9.281 x 10(6)km(2) in total, with a total SOC stock of 89.14 Pg (1 Pg=10(15)g) and a mean SOC density of 96.0 t C/ha. Confidence limits of the SOC stock and density in China are estimated as [89.23 Pg, 89.08 Pg] and [96.143 t C/ha, 95.981 t C/ha] at 95% probability, respectively. The largest total SOC stock (23.60 Pg) is found in South-west China while the highest mean SOC density (181.9 t C/ha) is found in north-east China. The total SOC stock and the mean SOC density in the Yangtze river watershed are 21.05 Pg and 120.0 t C/ha, respectively, while the corresponding figures in the Yellow river watershed are 8.46 Pg and 104.3 t C/ha, respectively. The highest total SOC stocks are found in Inceptisols (34.39 Pg) with SOC density of 102.8 t C/ha. The lowest and highest mean SOC densities are found on Entisols (28.1 t C/ha), and on Histosols (994.728.1 t C/ha), respectively. Finally, the total SOC stock in shrub and forest ecosystem classes are 25.55 and 21.50 Pg, respectively; the highest mean SOC density (209.9 t C/ha) was recorded in the wetland ecosystem class and the lowest (29.0 t C/ha) in the desert ecosystem class. Among five forest ecosystem types, Evergreen conifer forest stores the highest SOC stock (6.81 Pg), and Deciduous conifer forest shows the highest SOC density (225.9 t C/ha). Figures of SOC stocks stratified by Administrative regions, river watersheds, soil types and ecosystem types presented in the study may constitute national-wide baseline for studies of SOC stock changes in various regions in the future.  相似文献   

9.
Following turfgrass establishment, soils sequester carbon (C) over time. However, the magnitude of this sequestration may be influenced by a range of climatic and soil factors. Analysis of home lawn turfgrass soils throughout the United States indicated that both climatic and soil properties significantly affected the soil organic carbon (SOC) concentration and pool to 15-cm depth. Soil sampling showed that the mean annual temperature (MAT) was negatively correlated with SOC concentration. Additionally, a nonlinear interaction was observed between mean annual precipitation (MAP) and SOC concentration with optimal sequestration occurring in soils receiving 60–70?cm of precipitation per year. Furthermore, soil properties also influenced SOC concentration. Soil nitrogen (N) had a high positive correlation with SOC concentration, as a 0.1?% increase in N concentration led to a 0.99?% increase in SOC concentration. Additionally, soil bulk density (ρb) had a curvilinear interaction with SOC concentration, with an increase in ρb indicating a positive effect on SOC concentration until a ρb of ~1.4–1.5?Mg?m?3 was attained, after which, inhibition of SOC sequestration occurred. Finally, no correlation between SOC concentration or pool was observed with texture. Based upon these results, highest SOC pools within this study are observed in regions of low MAT, moderate MAP (60–70?cm?year?1), high soil N concentration, and moderate ρb (1.4–1.5?Mg?m?3). In order to maximize the C storage capacity of home lawns, non C-intensive management practices should be used to maintain soils within these conditions.  相似文献   

10.
The importance of preserving both protected areas and their surrounding landscapes as one of the major conservation strategies for tigers has received attention over recent decades. However, the mechanism of how land-use surrounding protected areas affects the dynamics of tiger populations is poorly understood. We developed Panthera Population Persistence (PPP)—an individual-based model—to investigate the potential mechanism of the Sumatran tiger population dynamics in a protected area and under different land-use scenarios surrounding the reserve. We tested three main landscape compositions (single, combined and real land-uses of Tesso-Nilo National Park and its surrounding area) on the probability of and time to extinction of the Sumatran tiger over 20 years in Central Sumatra. The model successfully explains the mechanisms behind the population response of tigers under different habitat landscape compositions. Feeding and mating behaviours of tigers are key factors, which determined population persistence in a heterogeneous landscape. All single land-use scenarios resulted in tiger extinction but had a different probability of extinction within 20 years. If tropical forest was combined with other land-use types, the probability of extinction was smaller. The presence of agroforesty and logging concessions adjacent to protected areas encouraged the survival of tiger populations. However, with the real land-use scenario of Tesso-Nilo National Park, tigers could not survive for more than 10 years. Promoting the practice of agroforestry systems surrounding the park is probably the most reasonable way to steer land-use surrounding the Tesso-Nilo National Park to support tiger conservation.  相似文献   

11.
Soil organic C (SOC) content can increase by managing land use practices in which the rates of organic C input exceed those of organic C mineralization. Understanding the changes in SOC content of Black soils (mainly Typic Halpudoll) in northeast China is necessary for sustainable using of soil resources there. We used the RothC model to estimate SOC levels of Black soils under monoculture cropping corn in a long-term fertilization trial at Gongzhuling, Jilin Province, China. The model outputs for the changes in SOC were compared with measured data in this long-term fertilization/manure trial. The sound performance of model in simulating SOC changes suggests that RothC is feasible with Black soils in the temperate climatic region of northeast China. The modeled and measured results indicated that the treatment without fertilizer/farmyard manure (FYM) addition led to a continuous decline in SOC during the study period and N and NPK fertilization were inadequate to maintain the SOC levels in the plow layer (upper 20 cm) unless FYM was added under the current conventional management associated with no above-ground crop residues returning into the soil. Soil organic carbon could follow the same path of decline if the same management practices are maintained. Model results indicate that returning above-ground crop residues to the soil from 2002 to 2022 would increase SOC by 26% for the treatment without fertilization addition, 40% for N treatment, 45% for NPK treatment, and 38% and 46% for N and NPK treatments with FYM addition, compared to the levels in the corresponding treatments in 2002. The simulation results suggest that the RothC model is a feasible tool to assess SOC trend under different management practices, and returning above-ground crop residues into the soil would lead to a remarkable increase in SOC of Black soils in the region.  相似文献   

12.
Poverty, hunger and demand for agricultural land have driven local communities to overexploit forest resources throughout Ethiopia. Forests surrounding the township of Humbo were largely destroyed by the late 1960s. In 2004, World Vision Australia and World Vision Ethiopia identified forestry-based carbon sequestration as a potential means to stimulate community development while engaging in environmental restoration. After two years of consultation, planning and negotiations, the Humbo Community-based Natural Regeneration Project began implementation—the Ethiopian organization’s first carbon sequestration initiative. The Humbo Project assists communities affected by environmental degradation including loss of biodiversity, soil erosion and flooding with an opportunity to benefit from carbon markets while reducing poverty and restoring the local agroecosystem. Involving the regeneration of 2,728 ha of degraded native forests, it brings social, economic and ecological benefits—facilitating adaptation to a changing climate and generating temporary certified emissions reductions (tCERs) under the Clean Development Mechanism. A key feature of the project has been facilitating communities to embrace new techniques and take responsibility for large-scale environmental change, most importantly involving Farmer Managed Natural Regeneration (FMNR). This technique is low-cost, replicable, and provides direct benefits within a short time. Communities were able to harvest fodder and firewood within a year of project initiation and wild fruits and other non-timber forest products within three years. Farmers are using agroforestry for both environmental restoration and income generation. Establishment of user rights and local cooperatives has generated community ownership and enthusiasm for this project—empowering the community to more sustainably manage their communal lands.  相似文献   

13.
Crab samples, both male and female specie, were purchased from fishermen at the Ojo Rivers, Lagos, Nigeria. The samples separated into abdomen, muscle tissue, and thorax were oven dried at 80°C for 3 days. The dried samples were then pulverized in a clean acid-washed mortar and pestle. Approximately 1.00 g each of the pulverized samples was weighed and Zn, Cr, Pb, and Cd were determined in the solution of the aqua regia digested samples by means of AAS (Buck Scientific 210 GVP model). The results obtained showed Zn metal to be consistently higher in all the female parts compared to the male with values of 12.92 ± 3.65 μg/g to 16.03 ± 1.08 μg/g and 9.33 ± 1.77 μg/g to 15.75 ± 1.02 μg/g, respectively. Mean values of 0.39 ± 0.09 μg/g and 0.22 ± 0.02 μg/g cadmium were found in the abdomen and tissue of the male crab as against 0.35 ± 0.07 μg/g and 0.17 ± 0.07 μg/g in the female crab. The tissues of both species have comparable value of chromium. Lead was below the detection limit of 0.05 μg/g in the tissues of male crab but the female tissue contained 0.83 ± 0.13 μg/g and in other parts identified, lead was consistently higher than the 2.00 μg/g permissible level of WHO in foods. A simple pair t-test did not demonstrate any significant difference in the distribution of metals between the male and female crabs. The coefficient of variation (CV) calculated for each metal with respect to the studied parts showed Pb to be widely distributed (56.23–89.54%) while Cr did not vary widely (4.17–8.20%).  相似文献   

14.
Vegetation fires may alter the quantity and quality of organic matter inputs to soil, rates of organic matter decay, and environmental factors that influence those processes. However, few studies have evaluated the impacts of this land management technique on soil organic carbon (SOC) and total N in grasslands and savannas. We evaluated the impact of repeated fires and their season of occurrence on SOC and total N storage in a temperate mixed-grass-mesquite savanna where fire is used to control woody plant encroachment. Four fire treatments varying in season of occurrence were examined: summer only (SF), winter only (WF), alternate summer and winter fires (SWF), and unburned controls. In each treatment, soils were sampled to 1 m under three vegetation types: C3 grasses, C4 grasses, and mesquite trees. The SOC storage at 0 to 20 cm was significantly greater in SF (2693 g C m(-2)) and SWF (2708 g C m(-2)) compared to WF (2446 g C m(-2)) and controls (2445 g C m(-2)). The SWF treatment also increased soil total N (271 g N m(-2)) relative to all other treatments (228-244 g N m(-2)) at 0 to 20 cm. Fire had no effect on SOC or total N at depths of > 20 cm. Vegetation type had no significant influence on SOC or total N stocks. The delta13C value of SOC was not affected by fire, but increased from -21 per thousand at 0 to 10 cm to -15 per thousand at depths of > 20 cm indicating that all treatments were once dominated by C4 grasses before woody plant encroachment during the past century. These results have implications for scientists, land managers, and policymakers who are now evaluating the potential for land uses to alter ecosystem C storage and influence atmospheric CO2 concentrations and global climate.  相似文献   

15.
Samples of some popular brands of canned sardines in soybean oil in the Nigerian market were analyzed for levels of cadmium, lead, iron, cobalt, nickel, manganese, chromium, copper and zinc after wet digestion with acids by graphite furnace atomic absorption spectrophotometry. The mean concentrations for the metals in the different brands were as follows: cadmium 0.11–0.26 μg/g, iron 8.04–48.18 μg/g, cobalt 0.01–7.23 μg/g, nickel 0.04–3.26 μg/g, manganese 0.64–1.37 μg/g, chromium 0.01–0.10 μg/g, copper 0.10 μg/g and zinc 0.09–4.63 μg/g. Significant differences were observed in the heavy metal levels in the different brands of canned sardines except for copper and chromium. Cadmium, nickel and lead exceeded statutory safe limits.  相似文献   

16.
Soil organic carbon (SOC) is one of the most important carbon stocks globally and has large potential to affect global climate. Distribution patterns of SOC in Denmark constitute a nation-wide baseline for studies on soil carbon changes (with respect to Kyoto protocol). This paper predicts and maps the geographic distribution of SOC across Denmark using remote sensing (RS), geographic information systems (GISs) and decision-tree modeling (un-pruned and pruned classification trees). Seventeen parameters, i.e. parent material, soil type, landscape type, elevation, slope gradient, slope aspect, mean curvature, plan curvature, profile curvature, flow accumulation, specific catchment area, tangent slope, tangent curvature, steady-state wetness index, Normalized Difference Vegetation Index (NDVI), Normalized Difference Wetness Index (NDWI) and Soil Color Index (SCI) were generated to statistically explain SOC field measurements in the area of interest (Denmark). A large number of tree-based classification models (588) were developed using (i) all of the parameters, (ii) all Digital Elevation Model (DEM) parameters only, (iii) the primary DEM parameters only, (iv), the remote sensing (RS) indices only, (v) selected pairs of parameters, (vi) soil type, parent material and landscape type only, and (vii) the parameters having a high impact on SOC distribution in built pruned trees. The best constructed classification tree models (in the number of three) with the lowest misclassification error (ME) and the lowest number of nodes (N) as well are: (i) the tree (T1) combining all of the parameters (ME = 29.5%; N = 54); (ii) the tree (T2) based on the parent material, soil type and landscape type (ME = 31.5%; N = 14); and (iii) the tree (T3) constructed using parent material, soil type, landscape type, elevation, tangent slope and SCI (ME = 30%; N = 39). The produced SOC maps at 1:50,000 cartographic scale using these trees are highly matching with coincidence values equal to 90.5% (Map T1/Map T2), 95% (Map T1/Map T3) and 91% (Map T2/Map T3). The overall accuracies of these maps once compared with field observations were estimated to be 69.54% (Map T1), 68.87% (Map T2) and 69.41% (Map T3). The proposed tree models are relatively simple, and may be also applied to other areas.  相似文献   

17.
Juglone (5-hydroxy-1,4-napthoquinone) is a chemical released by walnut trees, which can be toxic at various levels to several plant species. A balance among competing source and sink mechanisms and rates will ultimately determine whether juglone is capable of attaining sufficient levels to be allelopathic to intercrops in a walnut tree agroforestry system. In this study, juglone's release, accumulation, and decline in soil are explored using data from soil beneath a black walnut tree (Juglans nigra L) alley cropping system, greenhouse pot studies, and laboratory sorption/degradation studies. Juglone pore water concentrations estimated from extracts of surficial soil from beneath the alley cropping system exceeded the lowest solution culture toxicity levels reported for some plants of 10(-7) M, but did not exceed the inhibition threshold reported for typical intercrops such as maize and soybeans 10(-5) M. Further assessment of the likely persistence of juglone in soils indicated that juglone is both microbially and abiotically degraded, and that it will be particularly short-lived in soils supporting microbial activity. However, walnut seedlings planted in sand-filled pots clearly showed that juglone is released in measurable quantities to the soil's rhizosphere. Therefore, juglone accumulation in low fertility soils is plausible, and may still be worthy of consideration in management of alley agroforestry systems.  相似文献   

18.
Soils in the Mediterranean area are very prone to erosion due to the loss of organic matter and the consequent lack of protective vegetation. In this experiment a Mediterranean degraded soil with a 15% slope was amended at a rate of 250 t ha–1 wet weight with sewage sludge and with a mixture of sewage sludge and barley straw (70% carbon from sewage sludge and 30% from the straw) in order to study their influence on soil structure recovery and hence the soilss resistance to erosion processes. Both types of organic amendment led to an improvement in several soil properties (physical, biological, and microbiological) as a result of the spontaneous growth plant covering that became evident three months after amendment. This vegetation remained throughout the two years of the experiment and prevented the water erosion processes that normally precede soil degradation. Amendment by sewage sludge alone reduced soil loss by 80% compared with the control soil, while the mixture that included both sewage sludge and barley straw reduced losses by 84%, both reducing runoff by 57%. The amended soils showed increases in the percentage of stable aggregates, the levels of the total and water-soluble C fractions, microbial biomass C, basal respiration, and the activity of the different enzymes involved in the biogeochemical cycles of C, N, and P. The results confirm the usefulness of sewage sludge as an organic amendment for recovering damaged soils.  相似文献   

19.
At any time, the phosphorus (P) concentration in surface waters is determined by a complex interaction of inputs of soluble P and sorption-desorption reactions of P with sediments. This study investigated what factors control P in solution when various soil aggregates were mixed, seen as being analogous to selective soil erosion events, transport, and mixing within river systems. Fifteen soils with widely differing properties were each separated into three aggregate size fractions (2-52 microm, 53-150 microm, and 151-2,000 microm). Resin P, water-soluble phosphorus (WSP), and the phosphorus buffer capacity (PBC = resin P/WSP) were measured for each aggregate size fraction and WSP was also measured for 11 mixes of the aggregate fractions. The smallest aggregates tended to be enriched with resin P relative to the larger aggregates and the whole soils, while the opposite was true for WSP. As the PBC was a function of resin P and WSP, the PBC was greatest in the 2- to 52-microm aggregate size fraction in most cases. When two aggregate size fractions were mixed, the measured WSP was always lower than the predicted WSP (i.e., the average of the WSP in the two individual aggregates), indicating that WSP released by one aggregate fraction could be resorbed by another aggregate fraction. This resorption of P may result in lower than expected solution P concentration in some surface waters. The strength with which an eroded aggregate can release or resorb P to or from solution is in part determined by that aggregate's PBC.  相似文献   

20.
Land-use change from one type to another affects soil carbon (C) stocks which is associated with fluxes of CO2 to the atmosphere. The 10-years converted land selected from previously cultivated land in hilly areas of Sichuan, China was studied to understand the effects of land-use conversion on soil organic casrbon (SOC) sequestration under landscape position influences in a subtropical region of China. The SOC concentrations of the surface soil were greater (P < 0.001) for converted soils than those for cultivated soils but lower (P < 0.001) than those for original uncultivated soils. The SOC inventories (1.90–1.95 kg m?2) in the 0–15 cm surface soils were similar among upper, middle, and lower slope positions on the converted land, while the SOC inventories (1.41–1.65 kg m?2) in this soil layer tended to increase from upper to lower slope positions on the cultivated slope. On the whole, SOC inventories in this soil layer significantly increased following the conversion from cultivated land to grassland (P < 0.001). In the upper slope positions, converted soils (especially in 0–5 cm surface soil) exhibited a higher C/N ratio than cultivated soils (P = 0.012), implying that strong SOC sequestration characteristics exist in upper slope areas where severe soil erosion occurred before land conversion. It is suggested that landscape position impacts on the SOC spatial distribution become insignificant after the conversion of cultivated land to grassland, which is conducive to the immobilization of organic C. We speculate that the conversion of cultivated land to grassland would markedly increase SOC stocks in soil and would especially improve the potential for SOC sequestration in the surface soil over a moderate period of time (10 years).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号