首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
With the trend towards increasing the speed of processors in smaller sized of computers, there has been considerable interest in heat sink technologies with higher levels of performance and further miniaturization. This work addresses the fundamental heat transfer augmentation question of how to design a copper-based heat sink, when the overall dimensions of the bottom plate or fan are specified. A three-dimensional finite-volume model has been developed and applied to investigate flow and conjugate heat transfer in the copper-based heat sink. The model was produced with the commercial program FLUENT, which allows this nonlinear, highly turbulent problem to be simulated using the k-ε turbulence model. The theoretical model developed is validated by comparing the model predictions with available experimental data. The thermal performance and temperature distribution for the heat sink were analyzed and a procedure for optimizing the geometrical design parameters based on less space occupation and more efficient heat transfer coefficient is presented. Several design examples with different types of cooling methods and manufacturing processes have been analyzed. The reliability and effectiveness in heat spreading of those has been compared. It has been shown that the copper-based heat sink with louvered fins (case No.3) has an optimum design configuration.  相似文献   

2.
ABSTRACT

In this study, a three-dimension (3D) computational model was proposed to investigate the flow and heat transfer characteristics of the intake grilles of two different fuel cell vehicles. The models of the intake grilles were constructed according to the actual sizes of two vehicles, namely, Roewe 950 and Toyota Mirai, considering the heat dissipation unit to simplify the heat transfer model of the vehicle. The results showed that relative to Roewe 950, Mirai intake air flow rate was approximately 10% higher, the heat transfer capacity was approximately 7% higher, and the intake grille area was larger. The coolant outlet temperature of Mirai was lower than that of Roewe 950, which was beneficial for the long term and stable operation of a fuel cell. This comparative study provided guidance for the intake grille and radiator design of fuel cell vehicles. The only difference between fuel cell vehicles on the market and conventional vehicles was that in the former, the internal combustion engine was replaced with a fuel cell stack, which had insufficient heat transfer capacity because of the reducing temperature difference. Increasing the intake grille area and the heat exchange capacity of the radiator were the key issues for the development of fuel cell vehicles. In this study, an optimal window opening angle of the radiator fin of 23° provided a maximal heat transfer coefficient.  相似文献   

3.
The condenser is a piece of equipment used to effectively transfer heat from water to the environment. The fin and tube condenser is the most commonly used in commercial applications. The improved performance of heat transfer in the fin and tube condenser is a significant area of study all over the world because optimizing the efficiency of heat transfer in the condenser will contribute to enhancing the effectiveness of system performance. The vapor deposition, plasma spray, and thermal spray techniques are being used, and it is determined that a heat transfer enhancing coating improves condenser performance. This review discusses the nanomaterial coating over the fin and tube condenser in detail. The various nanomaterial coatings with various propositions and coating methods had been discussed with the evidence of previous researchers. At a 50-degree inclination angle on the condensate plate, the condensate over the coating surface increases by more than 30%. The thermal properties of the working fluid are improved over the condenser, and the overall effectiveness of the condenser is increased by approximately 40% over the non-coated condenser. A 1% volumetric concentration of Nanoparticles in the coated material achieves a maximum efficiency increase of 78.7%.  相似文献   

4.
This paper aims to reveal the heat transfer mechanism of low-temperature phase change material (PCM) and design PCM heat storage device in building heating environment. Firstly, low-temperature binary PCMs of lauric acid and stearic acid are prepared, and their thermal properties are investigated by DSC. Then, shell and tube latent heat thermal energy storage units are conducted, and heat transfer experiments are carried out to analyze the heat transfer mechanism of PCM. The results demonstrate that natural convection plays an important role in heat transfer process, and the heat storage efficiency of PCMs can be significantly enhanced by increasing the fin width and improving the inlet heat transfer fluid (HTF) temperature. Furthermore, some proposals are put forward to guide the design of PCM storage device in building heating environment.  相似文献   

5.
One of the important components of a car to control the temperature of a car's engine is the radiator. To increase the heat absorption capacity of the coolant/fluid used in the radiator with minimum pumping power, innovative fluids called nanofluids have become the main area of research these days. Therefore, with the development of new technologies in the field of “nano-materials” and “nano-fluids,” the physical and chemical properties of coolant/fluid can be improved which in turn improves the radiator and engine efficiency, and reduces radiator weight and size. In this article, the heat transfer by forced convection in nanofluids based on Al2O3 and SiC was studied experimentally and compared to that of base fluid in an automotive radiator. The nanofluid is mixed with ethylene glycol and the fluid is prepared by the sonication method. The nanofluids were prepared by varying the nanomaterials and the amounts of nanomaterials in the base fluid and their heat transfer performance in the radiator was analyzed using ANSYS FLUENT software. Approximately 15% and 12% increase in radiator efficiency by using Al2O3 mixed nanofluid and SiC mixed nanofluid, respectively.  相似文献   

6.
ABSTRACT

This paper discusses about the effect of feeder height and heat flux on the heat transfer characteristics of horizontal tube falling film evaporation in the thermal regimes. In order to investigate this, a two- dimensional CFD model was developed to perform simulation and results were compared and validated with published data available in the literature. Heat transfer co-efficients in the thermal regimes were determined from the CFD simulation and the results were recorded, analyzed and validated with the mathematical models available in the literature. The novelty of the current study is to predict the commencement of the fully developed thermal region over the tube from the simulation model under varying feeder height and heat flux. An effort was also made to measure the liquid film thickness around the tube from the CFD model in the thermal regimes. It is observed that angle of thermally developing region contracts and fully developed thermal region extends with the increase of the feeder height and heat flux. It is observed from the study that increase of heat flux by 10 kW/m2 resulted in increase of heat transfer co-efficient value by 10–12% average in thermally developing region and 12–15% average in fully developed region. Thinnest liquid film thickness observed between 85 and 127°angle. Shifting of thinnest region of liquid film upward from the mid tube with the increase of the feeder height and heat flux is noted.  相似文献   

7.
ABSTRACT

Aquaculture raceway temperature has a direct impact on the aquatic specie being reared. In regions that undergo significant seasonal temperature variations, the thermal management of the raceway temperature becomes a challenge, directly impacting the production yield. This study investigates a novel approach to regulate the raceway temperature in a sustainable way by utilizing geothermal energy. A numerical energy model was developed to simulate heat transfer in a geothermal system encompassing both the individual borehole heat exchangers and their thermal interactions. Simulations were conducted for different configurations of the geothermal system over a complete seasonal cycle. Results show that flow rate, number of boreholes and the borehole spacing influence the temperature of the fluid at the raceway inlet. An increase in the number of boreholes provided better thermal regulation but an increase in the flow rate through the boreholes provided less thermal regulation. A borehole spacing of 6 m was found to be appropriate to reduce thermal interference. It was also observed that an increase in the fraction of the fluid passed through the geothermal system enhances the overall thermal regulation, with higher thermal regulation at lower flow rates. Results show that when 100% of the fluid passed through a 64 boreholes geothermal system, the average regulated raceway inlet temperature was 23% higher in winter months and 16% lower in summer months at the flow rate of 21.5 L/s compared to than at 43 L/s.  相似文献   

8.
In this study, the effects of geometric properties such as baffle spacing, baffle cut, sealing strips, gaps between heat exchanger components, number of tubes and tube passes have been investigated for shell and tube heat exchangers (STHE). For this purpose, geometrical dimensions and data of a specific heat exchanger (HE) used in an industrial application have been obtained. The HTRI Xchanger Suite Educational software was utilized to analyze the reference HE, to verify the results of the software and the output temperatures of the fluids, the shell side heat transfer coefficient (HTC) and the pressure loss (PL) values were compared with the experimental data. After confirming that the results of the software were within the acceptable deviation values, the geometric dimensions of the reference design were changed and new analyzes were carried out to examine the effects of several dimension options on the performance of STHE. Results were discussed in a detailed and comprehensive manner via curves.  相似文献   

9.
ABSTRACT

Al2O3/water nanofluid has been numerically examined for the first time with different nanoparticle shapes including, cylindrical, blade, brick, platelet and spherical, on the flat and triangular-corrugated impinging surfaces. The volume fractions of 1.0%, 2.0% and 3.0% nanoparticles have been used. The Reynolds number is between 100–500 depending on the slot diameter. The finite volume method is utilized to determine the governing equations. The study is analyzed to determine how the flow features, heat transfer features and entropy production were affected by the diversity of nanoparticle shape, nanoparticle volume fraction, and shape of impinging surface. Darcy friction factor and Nusselt number are studied in detail for different conditions. The temperature contours are presented in the case of different nanoparticle volume fractions, nanoparticle shapes and both impinging surfaces. The results of the study suggest that the nanoparticle shape of the platelet shows the highest heat transfer development due to the thinner thermal boundary layer. Heat transfer augments with increasing volume fraction of nanoparticles. In addition, the study is consistent with the results of the literature on heat transfer and flow properties.  相似文献   

10.
Abstract

In this work, gas flow and heat transfer have been numerically investigated and analyzed for both cathode/anode ducts of proton exchange membrane (PEM) fuel cells. The simulation is conducted by solving a set of conservation equations for the whole domain consisting of a porous medium, solid structure, and flow duct. A generalized extended Darcy model is employed to investigate the flow inside the porous layer. This model accounts for the boundary-layer development, shear stress, and microscopic inertial force as well. Effects of inertial coefficient, together with permeability, effective thermal conductivity, and thickness of the porous layer on gas flow and heat transfer are investigated.  相似文献   

11.
The paper presents the novel design of double glazing helical coil solar cavity receiver for solar thermal applications. Performance model has been developed for the experimental setup based on energy balance equations. The results obtained were compared with horizontal tube receiver for the same experimental setup. The result shows that the 87.96% improvement in the convective heat transfer coefficient for the double glazing helical coil solar cavity receiver. Maximum conversion efficiency achieved is 21% more than that would be obtained for horizontal tube receiver. This paper also investigates how the quality of vacuum degraded with the temperature of the glass cover.  相似文献   

12.
Single-pass solar air heaters (SAHs) with two and six fins attached and packed with wire mesh layers were experimentally investigated. Wire mesh layers were used between the fins in the place of an absorber plate. The effects of air mass flow rate on the outlet temperature and thermal efficiency were studied. The results showed an increase in the thermal efficiency as the air mass flow rate was increased. The range of the mass flow rate used in this work was between 0.0121and 0.042 kg/s. It was found that for the same mass flow rate the SAH having six fins has higher efficiency compared to the system that has two fins. The maximum efficiencies for the SAHs were obtained at the mass flow rate of 0.042 kg/s. The maximum efficiencies for the six-finned and two-finned SAHs were 79.81% and 71.8%, respectively. In addition, the maximum temperature difference between the inlet and the outlet, ΔT, for the SAH with six fins exceeded the two-finned SAH for the same mass flow rates. The maximum ΔT was 51.1°C for the six-finned SAH and 44.2°C for the two-finned SAH. As expected, the maximum ΔT for each SAH was obtained at the lowest air mass flow rate (i.e., 0.0121 kg/s). A substantial enhancement in the thermal efficiency was achieved in comparison to the results of a single-flow packed bed collector with those of conventional collectors.  相似文献   

13.
In this paper, the power output of the cycle is taken as objective for performance optimization of an irreversible regenerated closed Brayton cycle coupled to constant-temperature thermal energy reservoirs in the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulae about the relations between power output and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the regenerator, the irreversible compression and expansion losses in the compressor and turbine, and the pressure drop loss in the piping. The maximum power output optimization is performed by searching the optimum heat conductance distribution corresponding to the optimum power output among the hot- and cold-side heat exchangers and the regenerator for the fixed total heat exchanger inventory. The influence of some design parameters, including the temperature ratio of the heat reservoirs, the total heat exchanger inventory, the efficiencies of the compressor and the turbine, and the pressure recovery coefficient, on the optimum heat conductance distribution and the maximum power output are provided. The power plant design with optimization leads to smaller size including the compressor, turbine, and the hot- and cold-side heat exchangers and the regenerator.  相似文献   

14.
Experiments are described to investigate the thermal performance of a discharging heat exchanger for a small storage tank filled with oil. Experimental results are presented in terms of the discharging energy rates (power) and the discharging exergy rates for low (~4 ml/s) and high discharging flow rates (~8 ml/s). Water heating energy rates, which are respectively maximized at approximately 600 W and 1200 W at low and high flow-rate discharging, are found to be higher than the discharging energy rates, which are respectively maximized at 450 W and 900 W. These results indicate that the energy rates do not accurately evaluate the thermal performance of the discharging heat exchanger since the energy heating rate of the water is greater than that for the oil that heats it, which is thermodynamically inconsistent. The energy rates should thus be used with caution when the thermal performance of the heat exchanger is evaluated. Water heating exergy rates, which are respectively maximized at approximately 45 W and 130 W at low and high flow-rate discharging, are generally smaller than the discharging exergy rates, which are respectively maximized at 65 W and 170 W. Exergy rate results are thus more consistent in the physical process of water heating, and an exergy factor is suggested as a proper measure for evaluating the performance of the discharging heat exchanger. The maximum value of the exergy factor is found to increase from 0.15 at low flow rates to a maximum value of approximately 0.19 at high flow rates. This implies that to extract more energy from a storage tank to a discharging heat exchanger, the flow rate has to be high, which is consistent with the physical process of heating water faster to higher temperatures. The exergy factor can thus be used as a design parameter for discharging heat exchangers.  相似文献   

15.
Abstract

This article describes a novel flat plate heat-pipe solar collector, namely, the hybrid heat-pipe solar collector. An analytical model has been developed to calculate the collector efficiency as well as simulate the heat transfer processes occurring in the collector. The effects of heat pipes/absorber, top cover, flue gas channel geometry, and flue gas temperature and flow rate, on the collector efficiency were investigated based on three modes of operation, i.e., solar only operation, solar/exhaust gas combined, and solar, exhaust gas and boiler combined. Experimental testing of the collector was also carried out for each of these modes of operation under real climatic conditions. The results were used to estimate the efficiency of the collector and determine the relation between the efficiency and general external parameter. The modeling and experimental results were compared and a correlation factor was used to modify the theoretical predictions. It was found that the efficiency of the collector was increased by about 20–30% compared to a conventional flat-plate heat pipe solar collector.  相似文献   

16.
This paper describes a mathematical model for the pyrolysis of a small dry pine wood cylinder. The computational domain is axisymmetric and involves the heating chamber, with the wood cylinder vertically situated in the centre of the chamber. The model simulates the laminar flow around the particle and the laminar flow inside the wood/char matrix by applying a two-phase transport model where the solid wood/char matrix acts as one phase and the various gases produced from the pyrolysis process is assembled in the other phase.

Convective, conductive and thermal radiation transfer modes are included in the model. A two-step pyrolysis reaction scheme is used for the modelling of the conversion from wood to tar and gas. Both the thermal conductivity and the permeability of the wood/char matrix are modelled anisotropically in order to capture the directional differences in heat and mass transport, existing in real wood.

Results from simulations are compared with measurements from literature for the centre core solid temperature and the conversion from wood to char, tar and pyrolysis gas in the particle during heating. The results show very good agreement with the measured temperature profile. The simulated conversion profile shows an overall good agreement with the measurements, however with discrepancies in the early stage of the process. Besides the successful validation with the experimental data, it provides us with all the details of the distribution of the migrating pyrolysis gas and tar, the temperature, the velocity flow field and pressure in the wood/char cylinder.  相似文献   

17.
Abstract: A numerical model has been developed to simulate the hydraulic and heat transfer properties of a stormwater detention pond, as part of a simulation tool to evaluate thermal pollution of coldwater streams from stormwater runoff. The model is dynamic (unsteady) and based on principles of fluid mechanics and heat transfer. It is driven by hourly weather data, and specified inflow rates and temperatures. To calibrate and validate the pond model field data were collected on a commercial site in Woodbury, Minnesota. The relationship between pond inflow and outflow rates to precipitation was effectively calibrated using continuously recorded pond levels. Algorithms developed for surface heat transfer in lakes were found to be applicable to the pond with some modification, resulting in agreement of simulated and observed pond surface temperature within 1.0°C root mean square error. The use of an unshaded pond for thermal mitigation of runoff from paved surfaces was evaluated using the pond model combined with simulated runoff from an asphalt parking lot for six years of observed rainfall events. On average, pond outflow temperature was 1.2°C higher than inflow temperature, but with significant event‐to‐event variation. On average, the pond added heat energy to runoff from an asphalt parking lot. Although the pond added total heat energy to runoff, it did reduce the rate of heat outflow from the pond by an order of magnitude due to reductions in volumetric outflow rate compared with the inflow rate. By reducing the rate of heat flow, the magnitude of temperature impacts in a receiving stream were also reduced, but the duration of impacts was increased.  相似文献   

18.
Shark finning is prohibited in many countries, but high prices for fins from the Asian market help maintain the international black-market and poaching. Traditional shark fin bans fail to recognize that the main driver of fin exploitation is linked to cultural beliefs about sharks in traditional Chinese culture. Therefore, shark finning should be addressed considering the social science approach as part of the fishery management scheme. This paper investigates the cultural significance of sharks in traditional Chinese and Hawaiian cultures, as valuable examples of how specific differences in cultural beliefs can drive individuals’ attitudes toward the property of shark finning. We suggest the use of a social science approach that can be useful in the design of successful education campaigns to help change individuals’ attitudes toward shark fin consumption. Finally, alternative management strategies for commercial fishers are provided to maintain self-sustainability of local coastal communities.  相似文献   

19.
The study of the heat transfer enhancement for the recycling double-pass V-corrugated solar air heaters, which implement the external recycle of flowing air, was investigated experimentally and theoretically. The comparison among different designs of V-corrugated, baffled and fins attached, and flat-plate collectors was made to show the device performance improvement with various operating parameters under the same working dimensions. The recycling double-pass V-corrugated device developed here was proposed in aiming to strengthen the convective heat-transfer coefficient and enlarge the heat transfer area. The error analysis of experimental results deviate by 0.85–2.46% from the theoretical predictions with the fairly good agreement, and both results show that the device performance of the recycling double-pass V-corrugated operation is better than those of the other configurations under various recycle ratios and mass flow rates. The suitable selections were obtained for operating recycling double-pass V-corrugated devices while considering with an economic viewpoint by both the collector efficiency enhancement and the power consumption increment.  相似文献   

20.
基于B公司的整车道路耐久试验中水箱的失效模式,综合分析热应力导致的失效机理,结合实车水箱内部实际温度交变幅度和温度交变频率,设计了一种针对水箱热应力失效的新型热循环台架试验方法。试验结果表明本新型热循环试验工况能对失效模式进行很好的复现。通过台架试验,证明了本方法的可行性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号