首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   

3.
A modeling system that includes a global chemical transport model (CTM) and a nested continental CTM (TEAM) was used to simulate the atmospheric transport, transformations and deposition of mercury (Hg). Three scenarios were used: (1) a nominal scenario, (2) a scenario conducive to local deposition and (3) a scenario conducive to long-range transport. Deposition fluxes of Hg were analyzed at three receptor locations in New York State. For the nominal scenario, the anthropogenic emission sources (including re-emission of deposited Hg) in New York State, the rest of the contiguous United States, Asia, Europe, and Canada contributed 11-1, 25-9, 13-19, 5-7, and 2-5%, respectively to total Hg deposition at these three receptors. Natural sources contributed 16-4%. The results from the local deposition and long-range transport scenarios varied only slightly from these results. However, there are still uncertainties in our understanding of the atmospheric chemistry of Hg that are likely to affect these estimates of local, regional and global contributions. Comparison of model simulation results with data from the Mercury Deposition Network suggests that local and regional contributions may currently be overestimated.  相似文献   

4.
This paper aims to extrapolate the energy consumption and environmental emissions data on the urban passenger transport system in Beijing, to assess the cost-effectiveness and emission reduction potential of promising technology options for transport systems, and to identify options with both reduction potential and cost-effectiveness. Furthermore, it identifies major barriers to the adoption of such options in Beijing. The long-range Energy Alternatives Planning model, the least-cost approach and the Analytical Hierarchy model are used for these three purposes, respectively. The results show that the fuel demand in the Beijing urban passenger transport system will increase rapidly in the future, along with travel demand and vehicle stock. For CO2 mitigation targets, diesel vehicles have both emission reduction potential and cost-effectiveness, followed by mass rapid transport systems. The ranking of barriers is similar for all three technology options, and found to be financial incentive, public awareness, lack of infrastructure, high initial cost and institutional/administrative barriers, in descending order of importance. Lack of financial incentive plays a very important role in the adoption of new technology options.  相似文献   

5.
This paper explores the relationship between road infrastructure, economic growth and road CO2 emissions. The basic premise is that many developing nations have achieved sufficient wealth to generate substantial demand for road vehicles, but that actual use is constrained by limited provision of surfaced roads. Our main result is that for comparable levels of income (GDP/capita), CO2 emissions per length of paved road are far higher in rapidly developing Asia as compared to the USA. These findings suggest existence of an 'infrastructure bottleneck', that when relieved, may influence the future trajectory of road transport CO2 emissions in developing Asia.  相似文献   

6.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter <2.5 μm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest under growth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources.

Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using “as-planned” (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event.

Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   

7.
This paper uses the Edmonds-Reilly model to explore an alternative approach for using energy-economic-environmental models when analyzing future CO2 emissions. This approach – conducting probabilistic policy experiments – can be used to investigate the effectiveness of various policy options in the context of uncertainty. The analysis builds on work by Nordhaus and Yohe (1983) and Edmonds et al. (1986). A key feature of using a probabilistic approach is that it offers both analysts and policy-makers an opportunity to move away from arguing about which scenario is the 'right', best-guess scenario, and towards a discussion of which strategies are effective across a wide range of possible futures. This paper both develops a methodology for conducting probabilistic policy experiments and presents the results of five preliminary experiments using this approach.  相似文献   

8.
Stern S  Sonesson U  Gunnarsson S  Oborn I  Kumm KI  Nybrant T 《Ambio》2005,34(4-5):402-407
To study future, sustainable production systems, a step-wise method was used to create three future scenarios for pig production based on different sustainability goals. The first scenario focused on animal welfare and the natural behavior of the animals. The second targeted low impacts on the environment and the efficient use of natural resources. The third scenario aimed at product quality and safety. Each scenario fulfilled different aspects of sustainability, but there were goal conflicts because no scenario fulfilled all sustainability goals. The scenarios were then parameterized. The environmental impact was calculated using the life-cycle assessment (LCA) methodology, and the economic cost was calculated from the same data set. The cost per kilo of pork was highest for the animal welfare scenario and similar for the other two scenarios. The environmental scenario had the lowest environmental impact, and the product-quality scenario the highest. The results are discussed based on different future priorities.  相似文献   

9.
A statistical analysis of ozone (O3) concentrations and meteorological parameters was performed to determine the relationship between meteorological changes and ambient O3 concentrations in the Southeast United States. The correlation between average daily maximum O3 concentration and various meteorological variables was analysed on a monthly basis from April through October during 1980-1994. The correlations were strongest during the summer months, particularly June, July, and August. Analysis of long term O3 concentration trends indicates increasing trends during the 1980s and decreasing trends during the early 1990s.  相似文献   

10.
This paper analyses the flexible instruments Joint Implementation (JI) and Clean Development Mechanism (CDM) with regard to achieving CO2 emission reduction targets in a sustainable way. In a first step, an optimising energy and material flow model is used to elaborate emission reduction strategies for Germany. The same methodology is then applied to Indonesia in order to determine the emission baseline for this country, which is an indispensable requirement for the evaluation of project-based flexible instruments. Then, models for Germany, Russia and Indonesia are linked using a decomposition algorithm with the aim to elaborate emission reduction strategies for Germany, including JI and CDM projects. The results show substantial potential to limit emission reduction costs by multilateral cooperation. The most favourable types of cooperation project for the considered countries are CO2 sequestration and power plant projects. Finally, an approach to how to include the criterion of sustainable development is described.  相似文献   

11.
Transport affects climate directly and indirectly through mechanisms that operate on very different timescales and cause both warming and cooling. We calculate contributions to the historical development in global mean temperature for the main transport sectors (road transport, aviation, shipping and rail) based on estimates of historical emissions and by applying knowledge about the various forcing mechanisms from detailed studies. We also calculate the development in future global mean temperature for four transport scenarios consistent with the IPCC SRES scenarios, one mitigation scenario and one sensitivity test scenario. There are large differences between the transport sectors in terms of sign and magnitude of temperature effects and with respect to the contributions from the long- and short-lived components. Since pre-industrial times, we calculate that transport in total has contributed 9% of total net man-made warming in the year 2000. The dominating contributor to warming is CO2, followed by tropospheric O3. By sector, road transport is the largest contributor; 11% of the warming in 2000 is due to this sector. Likewise, aviation has contributed 4% and rail ~1%. Shipping, on the other hand, has caused a net cooling up to year 2000, with a contribution of ?7%, due to the effects of SO2 and NOx emissions. The total net contribution from the transport sectors to total man-made warming is ~15% in 2050, and reaches 20% in 2100 in the A1 and B1 scenarios. For all scenarios and throughout the century, road transport is the dominating contributor to warming. Due to the anticipated reduction in sulphur content of fuels, the net effect of shipping changes from cooling to warming by the end of the century. Significant uncertainties are related to the estimates of historical and future net warming mainly due to cirrus, contrails and aerosol effects, as well as uncertainty in climate sensitivity.  相似文献   

12.
During the last decade, there has been worldwide concern with global climate change, which has been induced by greenhouse gases (GHGs) due to the use of fossil fuels. The CO2 emissions from fossil fuel combustion have been identified as the single most significant source of GHG emissions into the atmosphere. Realising the need to control and regulate emissions of pollutants, the objective of the present study estimates the trend of CO2, SO2 and NOx between the periods 1991-92 and 1996-97. An input-output structural decomposition analysis approach is used to determine their sources of change. It also provides a set of alternative scenarios for the year 2001-2 and 2006-7. The sources of changes in the amount of CO2, SO2 and NOx emissions are categorised into four factors: the ecoefficiency, the structure of production, the structure of demand, and the volume of demand. Results indicate that the electricity sector contributes more towards direct, as well as indirect, emission coefficients. The petroleum product sector also contributes more in this respect. The dominant role is played by the structure of demand and the volume of demand.  相似文献   

13.
As is the case in most developing countries, China relies on command-and-control regulation to control air pollution. While it has instituted a modest air pollution levy system in the past 20 years for emissions in excess of standards, the effect on emission levels has been minimal. This paper focuses on how to use emissions trading as a policy instrument to achieve cost-effective reductions in air pollution in Beijing. Emissions or allowance trading has been widely applied to air pollution control in the USA during the past 25 years. Three of the most recent programmes will be examined, which provide applicable experience for possible SO2 and NOx trading in the Beijing region. A trading strategy for Beijing will be proposed by comparing the economic and political institutional differences between the USA and China, which could eventually facilitate acceptance of an international greenhouse gas trading system.  相似文献   

14.
In order to comply in 2010 with the emission ceilings proposed by European commission under the convention on transboundary air pollution, Greece has to develop and implement a cohesive strategy affecting all the sectors of the economy. The RAINS model was used for the evaluation of the environmental and economic impacts arising from the use of a number of control technologies under alternative energy scenarios. To this purpose a number of modifications regarding the input databases of RAINS were made. The analysis clearly reveals that the reduction of SO2 emissions can be achieved in a lower cost compared to the reduction of NOx emissions. Moreover, the complementarity of CO2 abatement policies and the SO2/NOx abatement policies is also accented.  相似文献   

15.
Natural attenuation of an acidic plume in the aquifer underneath a uranium mill tailings pond in Wyoming, USA was simulated using the multi-component reactive transport code PHREEQC. A one-dimensional model was constructed for the site and the model included advective-dispersive transport, aqueous speciation of 11 components, and precipitation-dissolution of six minerals. Transport simulation was performed for a reclamation scenario in which the source of acidic seepage will be terminated after 5 years and the plume will then be flushed by uncontaminated upgradient groundwater. Simulations show that successive pH buffer reactions with calcite, Al(OH)3(a), and Fe(OH)3(a) create distinct geochemical zones and most reactions occur at the boundaries of geochemical zones. The complex interplay of physical transport processes and chemical reactions produce multiple concentration waves. For SO4(2-) transport, the concentration waves are related to advection-dispersion, and gypsum precipitation and dissolution. Wave speeds from numerical simulations compare well to an analytical solution for wave propagation.  相似文献   

16.
A database of global agricultural primary production has been constructed and used to estimate its energy content. The portion of crops available for food and biofuel after postharvest losses was evaluated. The basic conditions for agriculture and plant growth were studied, to ensure sustainable scenarios regarding use of residues. The available energy contents for the world and EU27 was found to be 7,200–9,300 and 430 TWh, respectively, to be compared with food requirements of 7,100 and 530 TWh. Clearly, very little, or nothing, remains for biofuel from agricultural primary crops. However, by using residues and bioorganic waste, it was found that biofuel production could theoretically replace one-fourth of the global consumption of fossil fuels for transport. The expansion potential for global agriculture is limited by availability of land, water, and energy. A future decrease in supply of fossil energy and ongoing land degradation will thus cause difficulties for increased biofuel production from agriculture.  相似文献   

17.
Jansson A  Colding J 《Ambio》2007,36(8):650-656
Urban dwellers depend on the generation of ecosystem services for their welfare. The city of Stockholm is growing, and a 25% increase in population is projected by 2030. The effects of urban development were estimated through the quantification of nitrogen (N) leakage to the Baltic Sea under two urban development scenarios. We found that total net N load will increase by 6% or 8%, depending on which growth scenario is applied, and population increase by itself will contribute at least 15% of the point source N leakage. Technical improvements in sewage treatment could, according to our results, decrease total N load to the Baltic Sea by 4%. Based on our results, we conclude that proactive measures such as spatial urban planning can provide a constructive tool for sustainable urban development on regional as well as national and international scales, depending on geographical context as well as the ecosystem services' scale of operation.  相似文献   

18.
Numerical reactive transport models are often used as tools to assess aquifers contaminated with reactive groundwater solutes as well as investigating mitigation scenarios. The ability to accurately simulate the fate and transport of solutes, however, is often impeded by a lack of information regarding the parameters that define chemical reactions. In this study, we employ a steady-state Ensemble Kalman Filter (EnKF), a data assimilation algorithm, to provide improved estimates of a spatially-variable first-order rate constant λ through assimilation of solute concentration measurement data into reactive transport simulation results. The methodology is applied in a steady-state, synthetic aquifer system in which a contaminant is leached to the saturated zone and undergoes first-order decay. Multiple sources of uncertainty are investigated, including hydraulic conductivity of the aquifer and the statistical parameters that define the spatial structure of the parameter field. For the latter scenario, an iterative method is employed to identify the statistical mean of λ of the reference system. Results from all simulations show that the filter scheme is successful in conditioning the λ ensemble to the reference λ field. Sensitivity analyses demonstrate that the estimation of the λ values is dependent on the number of concentration measurements assimilated, the locations from which the measurement data are collected, the error assigned to the measurement values, and the correlation length of the λ fields.  相似文献   

19.
In this paper, the development of a three-dimensional numerical pollutant transport model, which is coupled with a previously developed hydrodynamic model, is delineated in details. Special features of the model include orthogonal curvilinear coordinate in the horizontal direction and sigma coordinate in the vertical direction. Besides, a simple but efficient open boundary condition of pollutant transport is adopted. It is then applied to simulate the transport of a representative water quality parameter chemical oxygen demand in Manganese (CODMn) in the Pearl river estuary, which is the largest estuary in South China. It can be shown, from the simulated results, that there exists a transboundary action between Guangdong province and Hong Kong special administrative region for the pollutants in the wastewater discharged from Pearl river delta region.  相似文献   

20.
This study focused on establishing trends in the period 1988–2001 in PM2.5, PM10 and ozone concentrations in Santiago, Chile, and linking those to population exposure. There is strong seasonality in the concentration levels, driven by prevailing meteorological conditions, with the concentration of particulates peaking at the beginning of winter, whereas the ozone concentration is highest during the summer. The levels of PM2.5 and PM10 have substantially decreased since the late 1980s and so has the population exposure. Nevertheless, the majority of the population is still exposed to annual average levels that are above standard values. The situation with ozone exposure is different; no substantial decrease can be observed in the data. If anything, certain parts of Santiago, notably the south-east, have shown increased levels of ozone. Overall population exposure indicates that the average person was more at risk of ozone in the year 2000 than they were in 1993.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号