首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effectiveness of emissions control programs designed to reduce concentrations of airborne particulate matter with an aerodynamic diameter < 2.5 microm (PM2.5) in California's San Joaquin Valley was studied in the year 2030 under three growth scenarios: low, medium, and high population density. Base-case inventories for each choice of population density were created using a coupled emissions modeling system that simultaneously considered interactions between land use and transportation, area source, and point source emissions. The ambient PM2.5 response to each combination of population density and emissions control was evaluated using a regional chemical transport model over a 3-week winter stagnation episode. Comparisons between scenarios were based on regional average and population-weighted PM2.5 concentrations. In the absence of any emissions control program, population-weighted concentrations of PM2.5 in the future San Joaquin Valley are lowest undergrowth scenarios that emphasize low population density. A complete ban on wood burning and a 90% reduction in emissions from food cooking operations and diesel engines must occur before medium- to high-density growth scenarios result in lower population-weighted concentrations of PM2.5. These trends partly reflect the fact that existing downtown urban cores that naturally act as anchor points for new high-density growth in the San Joaquin Valley are located close to major transportation corridors for goods movement. Adding growth buffers around transportation corridors had little impact in the current analysis, since the 8-km resolution of the chemical transport model already provided an artificial buffer around major emissions sources. Assuming that future emissions controls will greatly reduce or eliminate emissions from residential wood burning, food cooking, and diesel engines, the 2030 growth scenario using "as-planned" (medium) population density achieves the lowest population-weighted average PM2.5 concentration in the future San Joaquin Valley during a severe winter stagnation event. Implications: The San Joaquin Valley is one of the most heavily polluted air basins in the United States that are projected to experience strong population growth in the coming decades. The best plan to improve air quality in the region combines medium- or high-density population growth with rigorous emissions controls. In the absences of controls, high-density growth leads to increased population exposure to PM2.5 compared with low-density growth scenarios (urban sprawl).  相似文献   

2.
Future air pollution emissions in the year 2030 were estimated for the San Joaquin Valley (SJV) in central California using a combined system of land use, mobile, off-road, stationary, area, and biogenic emissions models. Four scenarios were developed that use different assumptions about the density of development and level of investment in transportation infrastructure to accommodate the expected doubling of the SJV population in the next 20 years. Scenario 1 reflects current land-use patterns and infrastructure while scenario 2 encouraged compact urban footprints including redevelopment of existing urban centers and investments in transit. Scenario 3 allowed sprawling development in the SJV with reduced population density in existing urban centers and construction of all planned freeways. Scenario 4 followed currently adopted land use and transportation plans for the SJV. The air quality resulting from these urban development scenarios was evaluated using meteorology from a winter stagnation event that occurred on December 15th, 2000 to January 7th 2001. Predicted base-case PM2.5 mass concentrations within the region exceeded 35 μg m?3 over the 22-day episode. Compact growth reduced the PM2.5 concentrations by ~1 μg m?3 relative to the base-case over most of the SJV with the exception of increases (~1 μg m?3) in urban centers driven by increased concentrations of elemental carbon (EC) and organic carbon (OC). Low-density development increased the PM2.5 concentrations by 1–4 μg m?3 over most of the region, with decreases (0.5–2 μg m?3) around urban areas. Population-weighted average PM2.5 concentrations were very similar for all development scenarios ranging between 16 and 17.4 μg m?3. Exposure to primary PM components such as EC and OC increased 10–15% for high density development scenarios and decreased by 11–19% for low-density scenarios. Patterns for secondary PM components such as nitrate and ammonium ion were almost exactly reversed, with a 10% increase under low-density development and a 5% decrease under high density development. The increased human exposure to primary pollutants such as EC and OC could be predicted using a simplified analysis of population-weighted primary emissions. Regional planning agencies should develop thresholds of population-weighted primary emissions exposure to guide the development of growth plans. This metric will allow them to actively reduce the potential negative impacts of compact growth while preserving the benefits.  相似文献   

3.
The dynamics of ozone in the San Joaquin Valley of central California are studied by systematic diagnostic runs of the three-dimensional SARMAP Air Quality Model. Air quality in the San Joaquin Valley is the result of a complex combination of local and transported emissions. Simulations show that relatively brisk winds at points of inflow to the Valley produce a strong dependence of ozone in the Valley on upwind conditions. Furthermore, NOx influx from boundaries and local emissions has significantly greater impact on ozone production than ROG influx and emissions.  相似文献   

4.
ABSTRACT

The 1995 Integrated Monitoring Study (IMS95) is part of the Phase 1 planning efforts for the California Regional PM10/PM2.5 Air Quality Study. Thus, the overall objectives of IMS95 are to (1) fill information gaps needed for planning an effective field program later this decade; (2) develop an improved conceptual model for pollution buildup (PM10, PM2.5, and aerosol precursors) in the San Joaquin Valley; (3) develop a uniform air quality, meteorological, and emissions database that can be used to perform initial evaluations of aerosol and fog air quality models; and (4) provide early products that can be used to help with the development of State Implementation Plans for PM10. Consideration of the new particulate matter standards were also included in the planning and design of IMS95, although they were proposed standards when IMS95 was in the planning process.  相似文献   

5.
Quantitative information from the 1995 Integrated Monitoring Study (IMS95) is used to develop a conceptual model, which describes the chemical characteristics and the physical processes responsible for the accumulation of PM in the San Joaquin Valley of California. One significant finding of the conceptual model is the sensitivity of ammonium nitrate (46% of winter PM2.5) and nitric acid to oxidants, which may be VOC-sensitive rather than NOx-sensitive. Key gaps in current knowledge are identified using the conceptual model, e.g., the relative sensitivity of winter oxidants to VOC and NOx, mechanistic details of secondary organic aerosol formation, mechanisms of dispersion under calm conditions, and the importance of dry deposition. Some recommendations are also provided for the formulation of air quality models suitable to address the accumulation of PM in the San Joaquin Valley.  相似文献   

6.
Aerosol distributions from two aircraft lidar campaigns conducted in the California Central Valley are compared in order to identify seasonal variations. Aircraft lidar flights were conducted in June 2003 and February 2007. While the ground PM2.5 (particulate matter with diameter  2.5 μm) concentration was highest in the winter, the aerosol optical depth (AOD) measured from the MODIS and lidar instruments was highest in the summer. A multiyear seasonal comparison shows that PM2.5 in the winter can exceed summer PM2.5 by 68%, while summer AOD from MODIS exceeds winter AOD by 29%. Warmer temperatures and wildfires in the summer produce elevated aerosol layers that are detected by satellite measurements, but not necessarily by surface particulate matter monitors. Temperature inversions, especially during the winter, contribute to higher PM2.5 measurements at the surface. Measurements of the mixing layer height from lidar instruments provide valuable information needed to understand the correlation between satellite measurements of AOD and in situ measurements of PM2.5. Lidar measurements also reflect the ammonium nitrate chemistry observed in the San Joaquin Valley, which may explain the discrepancy between the MODIS AOD and PM2.5 measurements.  相似文献   

7.
Abstract

Air quality data collected in the California Regional PM10/PM2.5 Air Quality Study (CRPAQS) are analyzed to qualitatively assess the processes affecting secondary aerosol formation in the San Joaquin Valley (SJV). This region experiences some of the highest fine particulate matter (PM2.5) mass concentrations in California (≤188 μg/m3 24-hr average), and secondary aerosol components (as a group) frequently constitute over half of the fine aerosol mass in winter. The analyses are based on 15 days of high-frequency filter and canister measurements and several months of wintertime continuous gas and aerosol measurements. The phase-partitioning of nitrogen oxide (NOx)-related nitrogen species and carbonaceous species shows that concentrations of gaseous precursor species are far more abundant than measured secondary aerosol nitrate or estimated secondary organic aerosols. Comparisons of ammonia and nitric acid concentrations indicate that ammonium nitrate formation is limited by the availability of nitric acid rather than ammonia. Time-resolved aerosol nitrate data collected at the surface and on a 90-m tower suggest that both the daytime and nighttime nitric acid formation pathways are active, and entrainment of aerosol nitrate formed aloft at night may explain the spatial homogeneity of nitrate in the SJV. NOx and volatile organic compound (VOC) emissions plus background O3 levels are expected to determine NOx oxidation and nitric acid production rates, which currently control the ammonium nitrate levels in the SJV. Secondary organic aerosol formation is significant in winter, especially in the Fresno urban area. Formation of secondary organic aerosol is more likely limited by the rate of VOC oxidation than the availability of VOC precursors in winter.  相似文献   

8.
ABSTRACT

The spatial and temporal distributions of particle mass and its chemical constituents are essential for understanding the source-receptor relationships as well as the chemical, physical, and meteorological processes that result in elevated particulate concentrations in California’s San Joaquin Valley (SJV). Fine particulate matter (PM2.5), coarse particulate matter (PM10), and aerosol precursor gases were sampled on a 3-hr time base at two urban (Bakersfield and Fresno) and two non-urban (Kern Wildlife Refuge and Chowchilla) core sites in the SJV during the winter of 1995–1996.

Day-to-day variations of PM2.5 and PM10 and their chemical constituents were influenced by the synoptic-scale meteorology and were coherent among the four core sites. Under non-rainy conditions, similar diurnal variations of PM2.5 and coarse aerosol were found at the two urban sites, with concentrations peaking during the nighttime hours. Conversely, PM2.5 and coarse aerosol peaked during the morning and afternoon hours at the two non-urban sites. Under rainy and foggy conditions, these diurnal patterns were absent or greatly suppressed.

In the urban areas, elevated concentrations of primary pollutants (e.g., organic and elemental carbons) during the late afternoon and nighttime hours reflected the impact from residential wood combustion and motor vehicle exhaust. During the daytime, these concentrations decreased as the mixed layer deepened. Increases of secondary nitrate and sulfate concentrations were found during the daylight hours as a result of photochemical reactions. At the non-urban sites, the same increases in secondary aerosol concentrations occurred during the daylight hours but with a discernable lag time. Concentrations of the primary pollutants also increased at the non-urban sites during the daytime. These observations are attributed to mixing aloft of primary aerosols and secondary precursor gases in urban areas followed by rapid transport aloft to non-urban areas coupled with photochemical conversion.  相似文献   

9.
A winter PM2.5 episode that achieved a maximum 24-h average of 138 μg m−3 at the Fresno Supersite in California's San Joaquin Valley between 2 and 12 January, 2000 is examined using 5-min to 1-h continuous measurements of mass, nitrate, black carbon, particle-bound PAH, and meteorological measurements. Every day PM2.5 sampling showed that many episodes, including this one, are missed by commonly applied sixth-day monitoring, even though quarterly averages and numbers of US air quality standard exceedances are adequately estimated. Simultaneous measurements at satellite sites show that the Fresno Supersite represented PM2.5 within the city, and that half or more of the urban concentrations were present at distant, non-urban locations unaffected by local sources. Most of the primary particles accumulated during early morning and nighttime, decreasing when surface temperatures increased and the shallow radiation inversion coupled to a valleywide layer. When this coupling occurred, nitrate levels increased rapidly over a 10–30 min period as black carbon and gaseous concentrations dropped. This is consistent with a conceptual model in which secondary aerosol forms above the surface layer and is effectively decoupled from the surface for all but the late-morning and early afternoon period. Primary pollutants, such as organic and black carbon, accumulate within the shallow surface layer in urban areas where wood burning and vehicle exhaust emissions are high. Such a model would explain why earlier studies find nitrate concentrations to be nearly the same among widely separated sites in urban areas, as winds aloft of 1 to 6 m s−1 could easily disperse the elevated aerosol throughout the valley.  相似文献   

10.
With the promulgation of the National Ambient Air Quality Standards (NAAQS or standard) for 8-hr ozone (O3), the U.S. Environmental Protection Agency (EPA) issued modeling guidance that advocated the use of results from photochemical air quality models in a relative sense. In doing so, the EPA provided guidance on how to calculate relative response factors (RRFs) that can project current design value (DV) mixing ratios into the future for the purpose of determining the attainment status with respect to the O3 standard. The RRFs recommended by the EPA represent the average response of the photochemical model over a broad range of O3 mixing ratios above a specified cutoff threshold. However, it is known that O3 response to emission reductions of limiting precursors (i.e., NOx and/or VOC) is greater on days with higher O3 mixing ratios compared to days with lower mixing ratios. In this study, we present a segmented RRF concept termed band-RRF, which takes into account the different model responses at different O3 mixing ratios. The new band-RRF concept is demonstrated in the San Joaquin Valley (SJV) region of California for the 1-hr and 8-hr O3 standards. The 1-hr O3 analysis is relevant to work done in support of the SJV O3 State Implementation Plan (SIP) submitted to the EPA in 2013. The 8-hr example for the future year of 2019 is presented for illustrative purposes only. Further work will be conducted with attainment deadline of 2032 as part of upcoming SIPs for the 0.075 parts per million (ppm) 8-hr O3 standard. The applicability of the band-RRF concept to the particulate matter (PM2.5) standards is also discussed.
Implications:Results of photochemical models are used in regulatory applications in a relative sense using relative response factors (RRFs), which represent the impacts of emissions reductions over a wide range of ozone (O3) values. It is possible to extend the concept of RRFs to account for the fact that higher O3 mixing ratios (both 1-hr and 8-hr) respond more to emissions controls of limiting precursors than do lower O3 mixing ratios. We demonstrate this extended concept, termed band-RRF, for the 1-hr and 8-hr O3 National Ambient Air Quality Standard (NAAQS or standard) in the San Joaquin Valley of California. This extension can also be made applicable to the 24-hr PM2.5 and annual PM2.5 standards.  相似文献   

11.
12.
ABSTRACT

Data from the 1990 San Joaquin Valley Air Quality Study/ Atmospheric Utility Signatures, Predictions, and Experiments (SJVAQS/AUSPEX) field program in California's San Joaquin Valley (SJV) suggest that both urban and rural areas would have difficulty meeting an 8-hr average O3 standard of 80 ppb. A conceptual model of O3 formation and accumulation in the SJV is formulated based on the chemical, meteorological, and tracer data from SJVAQS/ AUSPEX. Two major phenomena appear to lead to high O3 concentrations in the SJV: (1) transport of O3 and precursors from upwind areas (primarily the San Francisco Bay Area, but also the Sacramento Valley) into the SJV, affecting the northern part of the valley, and (2) emissions of precursors, mixing, transport (including long-range transport), and atmospheric reactions within the SJV responsible for regional and urban-scale (e.g., downwind of Fresno and Bakersfield) distributions of O3. Using this conceptual model, we then conduct a critical evaluation of the meteorological model and air quality model. Areas of model improvements and data needed to understand and properly simulate O3 formation in the SJV are highlighted.  相似文献   

13.
In order to estimate the health benefits of reducing mobile source emissions, analysts typically use detailed atmospheric models to estimate the change in population exposure that results from a given change in emissions. However, this may not be feasible in settings where data are limited or policy decisions are needed in the short term. Intake fraction (iF), defined as the fraction of emissions of a pollutant or its precursor that is inhaled by the population, is a metric that can be used to compare exposure assessment methods in a health benefits analysis context. To clarify the utility of rapid-assessment methods, we calculate particulate matter iFs for the Mexico City Metropolitan Area using five methods, some more resource intensive than others. First, we create two simple box models to describe dispersion of primary fine particulate matter (PM2.5) in the Mexico City basin. Second, we extrapolate iFs for primary PM2.5, ammonium sulfate, and ammonium nitrate from US values using a regression model. Third, we calculate iFs by assuming a linear relationship between emissions and population-weighted concentrations of primary PM2.5, ammonium nitrate, and ammonium sulfate (a particle composition method). Finally, we estimate PM iFs from detailed atmospheric dispersion and chemistry models run for only a short period of time. Intake fractions vary by up to a factor of five, from 23 to 120 per million for primary PM2.5. Estimates of 60, 7, and 0.7 per million for primary PM, secondary ammonium sulfate, and secondary ammonium nitrate, respectively, represent credible central estimates, with an approximate factor of two uncertainty surrounding each estimate. Our results emphasize that multiple rapid-assessment methods can provide meaningful estimates of iFs in resource-limited environments, and that formal uncertainty analysis, with special attention to model biases and uncertainty, would be important for health benefits analyses.  相似文献   

14.
Abstract

Air quality monitoring was conducted at a rural site with a tower in the middle of California’s San Joaquin Valley (SJV) and at elevated sites in the foothills and mountains surrounding the SJV for the California Regional PM10/M2.5 Air Quality Study. Measurements at the surface and on a tower at 90 m were collected in Angiola, CA, from ecember 2000 through February 2001 and included hourly black carbon (BC), particle counts from optical particle counters, nitric oxide, ozone, temperature, relative humidity, wind speed, and direction. Boundary site measurements were made primarily using 24-hr integrated particulate matter (PM) samples. These measurements were used to understand the vertical variations of PM and PM precursors, the effect of stratification in the winter on concentrations and chemistry aloft and at the surface, and the impact of aloft-versus-surface transport on PM concentrations. Vertical variations of concentrations differed among individual species. The stratification may be important to atmospheric chemistry processes, particularly nighttime nitrate formation aloft, because NO2 appeared to be oxidized by ozone in the stratified aloft layer. Additionally, increases in accumulation-mode particle concentrations in the aloft layer during a fine PM (PM2.5) episode corresponded with increases in aloft nitrate, demonstrating the likelihood of an aloft nighttime nitrate formation mechanism. Evidence of local transport at the surface and regional transport aloft was found; transport processes also varied among the species. The distribution of BC appeared to be regional, and BC was often uniformly mixed vertically. Overall, the combination of time-resolved tower and surface measurements provided important insight into PM stratification, formation, and transport.  相似文献   

15.
Vertical profiling with point samplers is an accepted method for quantifying the fluxes of PM10 from non-point fugitive dust sources, but is limited by uncertainty in estimates of the actual height of the dust plume, especially for plumes that exceed the highest sampling height. Agricultural land preparation operations in the San Joaquin Valley were monitored using upwind–downwind vertical PM10 profiles and data collected during the first successful experiment to include light detection and ranging (lidar), in 1998, were analyzed to provide modeling criteria for the 1996 and 1997 data. A series of six comprehensive PM10 tests with concurrent lidar data was examined to: (a) develop a framework for analyzing upwind–downwind point PM10 concentration profiles of land preparation operations (disking, listing, root cutting, and ripping) and (b) identify conditions under which the field sampling strategies affect the reproducibility of PM10 concentration measurements. Lidar data were used to verify that the plume heights and shapes extrapolated from the point sampler vertical profiles adequately described the plumes. The shortcomings of the vertical profiling technique and lidar methods are discussed in the light of developing efficient robust methods for accurate PM10 emissions quantification from complex non-point sources.  相似文献   

16.
PM2.5 and PM2.5–10 aerosol samples were collected in four seasons during November 2010, January, April, and August 2011 at 13 urban/suburban sites and one background site in Western Taiwan Straits Region (WTSR), which is the coastal area with rapid urbanization, high population density, and deteriorating air quality. The 10 days average PM2.5 concentrations were 92.92, 51.96, 74.48, and 89.69 μg/m3 in spring, summer, autumn, and winter, respectively, exceeding the Chinese ambient air quality standard for annual average value of PM2.5 (grade II, 35 μg/m3). Temporal distribution of water-soluble inorganic ions (WSIIs) in PM2.5 was coincident with PM2.5 mass concentrations, showing highest in spring, lowest in summer, and middle in autumn and winter. WSIIs took considerable proportion (42.2~50.1 %) in PM2.5 and PM2.5–10. Generally, urban/suburban sites had obviously suffered severer pollution of fine particles compared with the background site. The WSIIs concentrations and characteristics were closely related to the local anthropogenic activities and natural environment, urban sites in cities with higher urbanization level, or sites with weaker diffuse condition suffered severer WSIIs pollution. Fossil fuel combustion, traffic emissions, crustal/soil dust, municipal constructions, and sea salt and biomass burnings were the major potential sources of WSIIs in PM2.5 in WTSR according to the result of principal component analysis.  相似文献   

17.
To elucidate the macro-structure of the PM2.5 emissions generated by Japan's economic activities, this paper presents an emission inventory of primary particles of PM2.5 with high sectoral resolution based on the Japanese Input–Output Tables, comprising some 400 sectors. These primary PM2.5 emissions were estimated by multiplying the estimated energy consumption associated with each fuel type by a PM10 emission factor incorporating the technological level of dust collection in each sector and the mass ratio of PM2.5 to PM10. Non-energy emissions from agricultural open burning were also determined. Total PM2.5 emissions in 2000 were 252 kt, 49% of which were due to mobile emission sources. Changes in total PM2.5 emissions between 1990 and 2000 were also calculated. This showed that a substantial increase in energy sector emissions due to rising coal consumption was offset by a sharp decline in emissions from road vehicles and shipping vessels, resulting in an overall decrease in total emissions. In addition, the emissions induced by economic demand in each sector were quantified by means of input–output analysis, which revealed that demand for construction, foods and communications and services constituted the principal causes of real domestic emissions. An assessment of sectoral contributions to PM2.5 emissions that takes into account the effects of human exposure, expressed as external costs, suggests that the contribution of transportation is greater than indicated on the grounds of direct emissions alone.  相似文献   

18.
Management of soils to reduce the amount of PM10 emitted during agricultural tillage operations is important for attainment of air quality standards in California's San Joaquin Valley (SJV). The purpose of this study was to improve and expand upon earlier work of predicting tillage-generated dust emissions based on soil properties. We focus on gravimetric soil water content (GWC) and soil texture. A mechanical laboratory dust generator was used to test 23 soils collected for this study. Averaged results showed PM10 concentrations (mg m?3) increased logarithmically as GWC decreased below soil water potentials of ?1500 kPa. Soils with clay contents less than about 10% by weight began to emit PM10 at GWCs 1.5–4 times their GWC at ?1500 kPa. Soils with clay contents greater than about 10% began to emit PM10 at GWC values closer to ?1500 kPa. We found no correlation between maximum PM10 concentrations, measured at low GWC values, and the %sand, %silt, or %clay in a soil. However, there was a significant correlation between the %silt to %clay ratio and PM10 concentrations. This not only suggests the dependence of dust emission magnitudes on the supply of particles of PM10 size, but also the importance of clay in stabilizing aggregates and maintaining higher amounts of capillary water at lower water potentials. Based on modeled results of pooled data, PM10 concentrations increased linearly (slope = 564) for every unit increase in the %silt to %clay ratio. However, when soils were separated into groups based on clay content, the slopes for PM10 concentrations vs. %silt to %clay ratio were texture dependent. The slope for soils with <10% clay (slope = 727) was 3.3 times greater than for soils with >20% clay (slope = 221). Improved PM10 emission prediction based on soil properties should improve management decisions aimed at reducing tillage-generated PM10.  相似文献   

19.
Daily measurements of PM10 mass and chemical composition were obtained for the period 1–14 November 1995 from a saturation monitoring network around Corcoran, and for varying portions of the period 9 December 1995–6 January 1996 for three networks around Bakersfield, Fresno, and the Kern Wildlife Refuge, in California's San Joaquin Valley. During the latter period, monitoring locations were also operated along the boundaries and across the width of the Valley. The Corcoran, Bakersfield, and Fresno networks consisted of 12–25 sites, located in areas of about 300–800 km2. Each network also included one core site, situated at a pre-existing monitoring location, with more extensive and more temporally resolved measurements. Mean concentrations of PM10 and its constituents varied from core-site concentrations by 20% or more over distances ranging from 4 to 14 km. Local source influences were observed to affect sites over distances of less than 1 km, but primary particulate emissions were also transported over urban or sub-regional scales of approximately 10–30 km during the winter and greater than 30 km in the fall. During winter, gas-phase precursors of secondary aerosol may have been transported over distances of approximately 100 km, but little evidence was found for transport of primary PM on such a scale.  相似文献   

20.
To identify major PM2.5 (particulate matter ≤2.5 μm in aerodynamic diameter) sources with a particular emphasis on the ship engine emissions from a major port, integrated 24 h PM2.5 speciation data collected between 2000 and 2005 at five United State Environmental Protection Agency's Speciation Trends Network monitoring sites in Seattle, WA were analyzed. Seven to ten PM2.5 sources were identified through the application of positive matrix factorization (PMF). Secondary particles (12–26% for secondary nitrate; 17–20% for secondary sulfate) and gasoline vehicle emissions (13–31%) made the largest contributions to the PM2.5 mass concentrations at all of the monitoring sites except for the residential Lake Forest site, where wood smoke contributed the most PM2.5 mass (31%). Other identified sources include diesel vehicle emissions, airborne soil, residual oil combustion, sea salt, aged sea salt, metal processing, and cement kiln. Residual oil combustion sources identified at multiple monitoring sites point clearly to the Port of Seattle suggesting ship emissions as the source of oil combustion particles. In addition, the relationship between sulfate concentrations and the oil combustion emissions indicated contributions of ship emissions to the local sulfate concentrations. The analysis of spatial variability of PM2.5 sources shows that the spatial distributions of several PM2.5 sources were heterogeneous within a given air shed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号