首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
模拟酸雨对烤烟叶片光合特性和叶绿素荧光参数的影响   总被引:3,自引:1,他引:2  
以烤烟为供试材料,采用土培盆栽的方法研究了不同pH值的模拟酸雨(pH5.6、pH4.5、pH4.0、pH3.5、pH3.0、pH2.5、pH2.0)对烤烟叶片叶绿素含量、气体交换和叶绿素荧光参数的影响.结果表明:pH≥3.5处理的轻度酸雨对烤烟Chl.a含量影响不大,但pH≤3.5处理烤烟叶片Chl.b和总叶绿素含量显著下降.pH≤2.5模拟酸雨使烤烟叶片净光合速率(Pn)、气孔导度(Ls)、胞间CO2浓度(Ci)、叶面饱和蒸气压力亏缺(VPD)显著降低,使烤烟叶片的气孔限制值(Ls)和潜在水分利用效率(WUEi)显著升高,模拟酸雨使pH2.0处理烤烟叶片的蒸腾速率(Tr)和pH2.5处理的瞬时水分利用效率(WUE)显著降低.pH≥3.5处理的光合有效量子产量(EQY)、光合电子传递速率(ETR)和光化学猝灭(qP)与对照差异不大,但pH≤3.0处理明显降低;烤烟叶片的非光化学猝灭呈先升高后降低趋势,pH≥3.5处理的非光化学猝灭(NPQ)明显高于pH≤3.0处理.  相似文献   

2.
经模拟酸雨处理植物的试验表明,酸雨对植物叶片的直接损害是由于酸雨水滴滞留在叶面引起的。若在雨后2h内喷水(pH7.0±0.2)以驱除滞留在叶面的水滴,叶片则无受害症状,叶绿素含量、生物产量和经济产量所受的影响也将减轻甚至完全不受影响。  相似文献   

3.
应用溶液喷洒法,研究不同pH值模拟酸雨对乳源木莲在叶片健康、株高生长、生物量积累、叶绿素含量及叶汁液pH值的影响,并从正生物效应和负生物效应两方面探讨了酸雨对苗木生长的影响。研究结果表明,该植物在华南地区城市园林绿化中具有较大的应用前景。  相似文献   

4.
酸雨对3种木本植物的胁迫效应   总被引:19,自引:2,他引:19  
Zhou Q  Huang X  Liu X 《环境科学》2002,23(5):42-46
以对酸雨胁迫伤害敏感程度不同的桃树(Prunus persica)、蜡梅(Chimonanthus praecox)和木犀(Osmanthus fragrana)3种典型木本植物为试材,研究了不同pH值的模拟酸雨对3种木本植物叶片叶绿素含量,细胞质膜透性(L%),脯氨酸(Pro)及丙二醛(MDA)含量的影响,以及光、暗条件对酸雨胁迫伤害的作用。结果表明,在酸雨胁迫下,抗性植物水犀的4项生理生化指标的变幅最小,其次是蜡梅,敏感植物桃树的4项生理生化指标的变幅最高,而光、暗处理对酸雨胁迫下3种木本植物叶片叶绿素含量影响不明显。  相似文献   

5.
为探明酸雨和臭氧(O3)对作物是否存在复合影响,运用田间原位开顶气室研究了pH4.0模拟酸雨(SAR)和O3对冬小麦气体交换、生长和产量的影响.该实验包括3种处理:CF处理采用经活性炭过滤后的空气,作为对照;CF100处理采用经活性炭过滤后的空气加人恒定浓度为100 nL·L-1的O3;CF100 SAR处理为在CF100的基础上对冬小麦喷施pH 4.0模拟酸雨,喷施量为150 mL·m-2,每10d一次.结果表明:①CF100和CF100 SAR组冬小麦叶片细胞膜系统受到破坏,光合色素含量和气体交换参数降低,抑制了作物生长,导致生物量和产量下降.与CF相比,CF100和CF100 SAR处理下冬小麦产量分别降低了68.2%和63.6%;②与CF100组相比,CF100 SAR组对冬小麦细胞膜系统和叶绿素a含量产生显著的复合影响(p<0.05),而对叶绿素b和类胡萝卜素含量、气体交换、小麦生长、生物量和产量的复合影响不显著.  相似文献   

6.
Ca2+浸种对酸雨伤害玉米幼苗的影响   总被引:15,自引:0,他引:15  
通过砂培实验,研究了钙浸种对酸雨伤害玉米幼苗的防护效应.结果表明,酸雨胁迫下,玉米幼苗叶绿素含量减少,叶绿素a/b比值下降,叶片汁液的pH值降低,SOD(超氧化物歧化酶)活性先升高,而在pH值2.5的酸雨胁迫下转而下降,CAT(过氧化氢酶)活性水平下降,POD(过氧化物酶)活性明显增加,脂质过氧化加剧;而在同一强度酸雨胁迫下,经CaCl  相似文献   

7.
在贵州龙里地区开展降雨连续监测,依据监测结果,配置不同pH值梯度的模拟酸雨;选择杨梅、油茶等10种贵州典型森林群落优势种,对植物叶片开展模拟酸雨喷淋试验;并利用便携式光合仪LI-6400观测喷淋前后叶片的光合作用,研究酸雨对贵州典型森林群落植物叶片的直接伤害作用.实验结果显示:①pH值5.0和4.0的模拟酸雨基本不会影响供试树种冠层叶片的光合作用;pH值3.0的模拟酸雨使小果红椿、枫树冠层叶片的净光合作用速率不同程度地升高,升高率为11.03%和0.62%,其他树种效果不明显;②pH值2.0的模拟酸雨使供试树种冠层叶片的净光合作用速率降低,其中小果红椿、枫树、白栗和香叶树尤为明显,降低率为28.32%、30.32%、12.21%和11.37%;pH值2.0的模拟酸雨使小果红椿叶片出现可见直接伤害,叶缘和脉间出现黄白色斑点,有穿孔,其他树种未发现可见直接伤害症状.研究表明,研究区典型森林群落植物叶片出现可见直接伤害的酸雨pH值阈值在2.0~3.0之间;同时,在酸雨对叶片造成可见直接伤害之前,存在隐性直接伤害,对叶片造成隐性直接伤害的酸雨pH值阈值为3.0.依据试验结果,从研究区监测数据分析,目前酸雨对该区植物冠层叶片的直接伤害有限.  相似文献   

8.
酸雨对环境及农作物的影响,在国内外已为人们所关注。本文研究了模拟酸雨对小麦的影响。一、材料与方法本试验为盆栽试验。供试土壤为滨海相菜园土。土壤pH8.23,有机质含量0.86%,全氮含量0.048%,全磷(P_2O_5)0.187%,全钾(K_2O)1.8%。供试作物选用辐选2号冬小麦。(一)试验处理为探讨不同浓度模拟酸雨对小麦生长全期可能产生的影响,以pH 5.6、4.0、3.5、3.0、2.05种不同酸度的模拟酸雨进行处理。试验采用5次重复。(二)模拟酸雨的制备根据上海地区酸雨的化学组份,制备模拟酸雨(表1)。以混合酸(硝酸∶硫酸=1∶6,当量浓度)调节pH为5.6、4.0、3.5、3.0、2.0,即  相似文献   

9.
模拟酸雨对水稻叶片荧光光谱特性的影响   总被引:17,自引:0,他引:17  
通过水稻盆栽试验,研究了不同pH值的模拟酸雨对水稻叶片荧光光谱特性的影响。结果表明,高酸度的酸雨对450nm处的峰强以及685nm和740nm处的峰强比值产生较为明显的影响,且该影响随水稻生育期而变化,这揭示出利用激光诱导荧光技术监测酸雨影响作物生长的可行性  相似文献   

10.
不同类型模拟酸雨对油菜营养品质的影响   总被引:7,自引:0,他引:7  
采用完全随机区组设计方法,在大田试验条件下研究了混合模拟酸雨(MAR)、硫酸模拟酸雨(SAR)和硝酸模拟酸雨(NAR)对油菜营养品质的影响作用及其机制,旨在为防治酸雨对我国农业生产的影响提供科学依据.试验结果表明,在弱酸性条件下,3种不同类型酸雨均能促进油菜籽总游离氨基酸和可溶性蛋白质的合成,而在强酸性条件下,NAR和MAR对以上2种组分会有较强的抑制作用,且以NAB的抑制作用较明显.3种不同类型模拟酸雨作用下,油菜籽粗脂肪含量随着pH值的上升呈先增加后下降的变化趋势,其中在较强酸性条件下NAB和MAR即能抑制作物粗脂肪的合成,而SAR的影响明显不及前两者.随着酸雨酸度的增强,3种不同酸雨均能使油菜籽硫苷总量持续增加,且在较强酸性条件下NAB和MAR的促进作用影响较大.3种不同类型酸雨均能一定程度地降低作物油酸含量,但NAB在pH≤4.1时能较大地促进亚油酸、亚麻酸和芥酸的合成,从而使作物品质下降.  相似文献   

11.
酸雨致使菠菜光合作用下降机理初探   总被引:4,自引:0,他引:4  
谢田  李庆新 《环保科技》1994,16(1):9-11
利用酸雨或模拟酸雨对塑料棚里或盆栽的菠菜进行喷洒、浸泡,实验结果重复表明:酸雨致使植物光合作用下降初期,并不以叶片叶绿素下降为前提条件;酸雨影响下,光合放氧下降与希尔反应活性下降有同步趋势。  相似文献   

12.
以棉花子叶圆片为材料,研究了酸雨在伤害叶绿素过程中的胁迫强度、胁迫时间(胁程)和胁变量三者相互间的数量关系.结果表明,叶绿素含量下降率和可见伤害指数与酸雨pH值之间具有拟合度很高的Logistic曲线关系;Logistic拟合方程中的拐点处pH值和曲线降低率及A,b等参数均是时间的函数,分别与胁程有一定的相关性;在pH值为2.5酸雨胁迫下,叶绿素含量下降率在24h内、可见伤害指数在4h内与胁程之间具有拟合度很高的直角双曲线关系;根据这些关系建立植物酸雨伤害模型.  相似文献   

13.
以棉花子叶圆片为材料,研究了酸雨在伤害叶绿素过程中的胁迫强度、胁迫时间(胁程)和胁变量三者相互间的数量关系.结果表明,叶绿素含量下降率和可见伤害指数与酸雨pH值之间具有拟合度很高的Logistic曲线关系;Logistic拟合方程中的拐点处pH值和曲线降低率及A,b等参数均是时间的函数,分别与胁程有一定的相关性;在pH值为2.5酸雨胁迫下,叶绿素含量下降率在24h内、可见伤害指数在4h内与胁程之间具有拟合度很高的直角双曲线关系;根据这些关系建立植物酸雨伤害模型.  相似文献   

14.
重庆是我国酸雨频率高,酸度较强的地区,研究酸雨对生物生长的影响是人们迫切关心的问题。1984年重庆市环保局委托重庆市农科所开展“模拟酸雨对水稻生长及水稻土壤的影响研究”,经过两年(两季水稻作物生长)的实验,得出了pH为3.0以上的模拟酸雨虽然对水稻植株(不包括根部)和产量无直接的影响,但模拟酸雨对水稻土壤的酸度、交换性能、微生物活性及养分含量都有显著的影响,并通过土壤的影响进而影响水稻的分孳生长、营养代谢、光合性能及粒籽品质,即水稻粗蛋白减少。实验还表明汕优二号较桂潮二号敏感,即碱  相似文献   

15.
模拟酸雨引起水体pH下降导致Zn对金鱼藻的毒害   总被引:4,自引:0,他引:4  
用模拟酸雨沉降方式研究了水体酸度增加条件下,50 mg@L -1Zn2+对金鱼藻的毒害,以探讨酸雨沉降下重金属对植物伤害的作用机理.结果表明,随着pH降低,金鱼藻的细胞膜透性增加,叶绿素含量和叶绿素a/b值逐渐降低,游离脯氨酸含量明显增加;O2与脂质过氧化产物丙二醛(MDA)含量,均随酸度增加而升高,且两者极显著性相关.在低pH下50 mg@L -1Zn对金鱼藻的胁迫过程中,过氧化物酶(POD)活性发生大幅度应激性升高;CAT活性则在pH3.5以下明显下降.金鱼藻对Zn的富集量在pH5.5时最高,随着酸度加大,富集量呈明显下降趋势.提示,酸度增加使Zn离子化程度升高,是Zn对金鱼藻细胞毒性趋于明显的直接原因之一.  相似文献   

16.
通过盆栽试验研究了模拟酸雨(pH分别为3.5、4.5、5.6)和Pb(0~2000 mg·kg-1)复合污染对芥菜型油菜紫叶芥的生理特性和Pb富集的影响.结果表明,在酸雨和Pb复合污染下,紫叶芥生物量和叶绿素含量均有不同程度的下降,叶和根中的超氧化物歧化酶(SOD)和过氧化物酶(POD)活性随着Pb含量和酸雨强度的增加是先升后降,脯氨酸含量随着Pb含量和酸雨强度的增加而升高.芥菜型油菜以通过调节抗氧化酶系统和提高脯氨酸含量来应对酸雨和重金属胁迫,芥菜型油菜对酸雨和Pb的复合污染有很强的耐受能力.芥菜型油菜根和地上部分Pb含量随Pb处理含量水平的增大而增加,其中,根对Pb的富集能力大于地上部分,酸雨能够促进芥菜型油菜对Pb的吸收.因此,在酸雨地区可以选用芥菜型油菜作为Pb污染土壤的修复植物.  相似文献   

17.
卢正全  相汉宸  时彗娟 《环境科技》2008,21(1):37-39,44
试验采用几种不同药剂对皖草2号幼苗进行叶面喷施处理.测定其在模拟酸雨条件下对皖草2号幼苗营养生长和生理特性的影响。结果表明:在模拟酸雨条件下除CaCl2药剂处理外,其它药剂处理均可提高叶绿素和脯氨酸的含量,增加根系活力,促进根系的生长,抑制丙二醛增生等,进而增强皖草2号的抵抗能力。其中以0.25mL/L的爱多收药剂处理效果为最好,其次是0.67mL/LBR溶液。  相似文献   

18.
模拟酸雨对菜豆叶片的伤害和Mefluidide保护效应的研究   总被引:18,自引:0,他引:18       下载免费PDF全文
酸雨的污染和危害已成为一个世界性的问题,我国的酸雨危害也日渐引起关注.由于酸雨所涉及到的地区不少是农作区,必然会危及农作物的产量.近年来对酸雨危害作物的机理已有报道,但关于寻求保护作物免于酸雨危害的研究则不多见.已有报道,Mefluidide(N-[2,4-dimethyl-5-[(trifluoromethyl)sulfonyl]amino]phenylacetamide)(N-[2,4-二甲基-5-[(三氟甲基)磺酰]氨基]苯乙酰胺),一种合成的植物生长调节物质,对植物生长和发育以及物质代谢都有影响,尤其是能有效地保护低温敏感作物免于冷害,而且发现Mefluidide处理的植物,在冷害期间不表现细胞膜透性的增加.另外,有人发现pH2.0—4.0的模拟酸雨喷洒植株(青菜、菠菜和萝卜等)也会导致膜透性增加.我们以模拟酸雨引起菜豆叶片的伤害症状和一些生理指标为依据,  相似文献   

19.
模拟酸雨对土壤微生物活性的影响   总被引:3,自引:0,他引:3  
本文通过对广西南宁、柳州山地森林土壤(0~5cm)进行模拟酸雨(pH5.6~3.1)土柱淋溶试验,连续淋溶1280mm模拟酸雨,研究了酸雨对土壤微生物活性的影响。酸雨对土壤呼吸作用抑制的程度与土壤特性及雨水酸度有关。pH3.1的模拟酸雨使硝化作用受到显著抑制。pH3.7、pH3.1的模拟酸雨连续淋溶有机氨的矿化作用激活或抑制取决于土壤本身特性。对土壤酶活性产生激活、抑制或无影响,与土壤及酶特性有关。   相似文献   

20.
为探索酸雨胁迫对大豆种子萌发过程中能量代谢的影响,采用pH2.0,2.5,4.0模拟酸雨处理大豆(台湾292)种子,研究不同强度酸雨胁迫对大豆种子呼吸速率,CAT活性,线粒体蛋白与ATP含量及能荷的影响.结果表明,随着酸雨胁迫强度增加(pH≤2.5),上述指标均呈下降趋势.高强度酸雨(pH为2.0)对大豆种子萌发时能量代谢的影响是最大的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号