首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT: A bromide tracer was used to evaluate percolate water and ion movement in the upper 1.2 m of soil at a proposed sewage effluent irrigation site located in the Missouri Ozarks. Two plots representing Doniphan silt loam and Crider silt loam soils were sprinkler irrigated with local ground water at a rate of 7.62 cm/week from June through August 1976. Soil water potential, percent soil moisture by volume, and background levels of bromide in soil water, ground water, and precipitation were measured at the study plots. Bromide exchange properties and saturated hydraulic conductivity of the soils were determined in the laboratory. During two selected time periods, irrigation water, was spiked with NaBr (5.0 mg/l Br). Bromide movement through the upper profile was quantified by soil water samples and post-sampling neutron activation analysis. Soil moisture was near saturatin in both soils when the Br tracer was applied. Bromide concentrations above background levels (0.023 mg/l Br, Doniphan silt loam and 0.016 mg/l Br, Crider silt loam) were detected within 2.60 hours at 0.9 m in the Doniphan soil and within 3.75 hours at that depth in the Crider soil. The rate of Br movement in the profile was greater in both soils than the measured saturated hydraulic conductivity, Bromide concentrations above background levels were present in soil water from the study plots for a minimum of 21 days after irrigation with the Br tracer.  相似文献   

2.
Understanding water and nutrient transport through the soil profile is important for efficient irrigation and nutrient management to minimize excess nutrient leaching below the rootzone. We applied four rates of N (28, 56, 84, and 112 kg N ha(-1); equivalent to one-fourth of annual N rates being evaluated in this study for bearing citrus trees), and 80 kg Br- ha(-1) to a sandy Entisol with >25-yr-old citrus trees to (i) determine the temporal changes in NO3-N and Br- distribution down the soil profile (2.4 m), and (ii) evaluate the measured concentrations of NO3-N and Br- at various depths with those predicted by the Leaching Estimation and Chemistry Model (LEACHM). Nitrate N and Br concentrations approached the background levels by 42 and 214 d, respectively. Model-predicted volumetric water content and concentrations of NO3-N and Br- at various depths within the entire soil profile were very close to measured values. The LEACHM data showed that 21 to 36% of applied fertilizer N leached below the root zone, while tree uptake accounted for 40 to 53%. Results of this study enhance our understanding of N dynamics in these sandy soils, and provide better evaluation of N and irrigation management to improve uptake efficiency, reduce N losses, and minimize the risk of ground water nitrate contamination from soils highly vulnerable to nutrient leaching.  相似文献   

3.
Drainable lysimeters offer the possibility to integrate heterogeneous solute leaching conditions caused by row crops and transient water regime, and to conveniently measure water and solute fluxes at the drainage outlet. To compare solute leaching behavior in and around drainable lysimeters operating under a transient water regime in potato (Solanum tuberosum L.) fields, parameters of the convective lognormal transfer (CLT) function model were fitted using bromide (Br-) flux concentrations (Cf) measured in lysimeters and from Br- resident concentrations (Cr) measured in adjacent soil cores. Expected mean values Ez(I) obtained from Cr and Cf CLT parameters were equivalent and well correlated (R2 = 0.78). However, estimated median values mu of the CLT function were smaller when derived from Cr (1.05 to 1.28) compared with Cf (1.23 to 2.14). Most mu values were also smaller than previously reported values for a 30-cm reference depth, indicating that 50% of solute mass would leach more readily in these coarse sandy soils. Higher variance and dispersion of Cr compared with those of Cf could be related to a smaller sampling support (sample size/sampling area) in the case of Cr measured by soil coring, or to disruption of solute transport mechanisms in the repacked lysimeter. Retained Br- in the top soil layer after 12 to 17 cm of cumulative drainage was indicated by measured Cr. Neither CLT function simulated well residual topsoil Cr values, indicating that Br- plant cycling or preferential flow probably interfered even though tuber Br- uptake was relatively small.  相似文献   

4.
There is an important need to develop instrumentation that allows better understanding of atmospheric emission of toxic volatile compounds associated with soil management. For this purpose, chemical movement and distribution in the soil profile should be simultaneously monitored with its volatilization. A two-dimensional rectangular soil column was constructed and a dynamic sequential volatilization flux chamber was attached to the top of the column. The flux chamber was connected through a manifold valve to a gas chromatograph (GC) for real-time concentration measurement. Gas distribution in the soil profile was sampled with gas-tight syringes at selected times and analyzed with a GC. A pressure transducer was connected to a scanivalve to automatically measure the pressure distribution in the gas phase of the soil profile. The system application was demonstrated by packing the column with a sandy loam in a symmetrical bed-furrow system. A 5-h furrow irrigation was started 24 h after the injection of a soil fumigant, propargyl bromide (3-bromo-1-propyne; 3BP). The experience showed the importance of measuring lateral volatilization variability, pressure distribution in the gas phase, chemical distribution between the different phases (liquid, gas, and sorbed), and the effect of irrigation on the volatilization. Gas movement, volatilization, water infiltration, and distribution of degradation product (Br-) were symmetric around the bed within 10%. The system saves labor cost and time. This versatile system can be modified and used to compare management practices, estimate concentration-time indexes for pest control, study chemical movement, degradation, and emissions, and test mathematical models.  相似文献   

5.
Perchlorate (ClO4-) contamination of ground water and surface water is a widespread problem, particularly in the western United States. This study examined the effect of biodegradation on perchlorate fate and transport in soils. Solute transport experiments were conducted on two surface soils. Pulses of solution containing perchlorate and Br- were applied to saturated soil columns at steady state water flow. Perchlorate behaved like a nonreactive tracer in Columbia loam (coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvent) but was degraded in Yolo loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent). Batch experiments demonstrated that perchlorate removal from solution in Yolo loam was caused by biodegradation. Other batch experiments with Yolo loam surface and subsurface soils, Columbia loam surface soil, and dredge tailings demonstrated that perchlorate biodegradation required anaerobic conditions, an adequate carbon source, and an active perchlorate-degrading microbial population. The sequential reduction of perchlorate and NO3- by an indigenous soil microbial community in Yolo loam batch systems was also studied. Nitrate reduction occurred much sooner than perchlorate reduction in soils that had not been previously exposed to perchlorate, but NO3- and perchlorate were simultaneously reduced in soils previously exposed to perchlorate. The results of this study have implications for in situ remediation schemes and for agricultural soils that have been contaminated by perchlorate-tainted irrigation water.  相似文献   

6.
Viruses from contaminant sources can be transported through porous media to drinking water wells. The objective of this study was to investigate inactivation and sorption of viruses during saturated and unsaturated transport in different soils. Bacteriophages phiX174 and MS-2, and Br- tracer in a phosphate-buffered saline solution were introduced into saturated and unsaturated soil columns as a step function under constant flow rate and hydraulic conditions. Results showed that significantly greater virus removal occurred in the unsaturated columns than in the saturated columns in the two soils containing high metal oxides content. However, the increase in virus retention under unsaturated conditions was not significant in two other soils having high phosphorus and calcium contents and high pH, and in another soil with high organic matter content. The results imply that the extent of water content effect on inactivation and sorption of viruses can range from significant to minimal depending on the properties of the transport medium. We found that the presence of in situ metal oxides was a significant factor responsible for virus sorption and inactivation. Therefore, soils with high metal oxides content may have the potential to be used as hydrological barriers in preventing microbial contamination in the subsurface environments. We also found that the water content effect on virus removal and inactivation strongly depended on solid properties of the testing medium.  相似文献   

7.
论述了用国产的低压离子色谱仪、电导检测器作为测定特高含硫油气田废水中F-、Cl-、Br-、SO离子的可行性,并讨论了分析条件、最低检出限、精密度、准确度以及干扰等,及对国家标样及实际样品进行了测定。结果表明该法简单、快速、灵敏、准确,是目前较为理想的测定特高含硫油气田废水中无机阴离子的方法。  相似文献   

8.
The prospect of using wastewater containing high loads of soluble organic matter (OM) for removing residual agricultural chemicals (fertilizer, pesticide, or herbicide) in farm soil, although promising, could have adverse effects on soil agricultural quality as a result of development of redoximorphic features in the soil profile. In this study, the effect of organic carbon supplement for bioremediation of residual fertilizer nitrate on soil properties, redox potential (Eh), pH, and metal ion mobilization was studied using sandy soils packed in columns. The study was included in a general project, described elsewhere (Ugwuegbu et al., 2000), undertaken to evaluate use of controlled water table management (WTM) systems to supply organic carbon for creating a reduced environment conducive to denitrification of residual fertilizer nitrate leaching from the farm to subsurface water. The columns were subjected to subirrigation with water containing soluble organic carbon in the form of glucose. The work was carried out in two experimental setups and the long-term effect of a range of glucose concentrations on the Eh, pH, and soluble levels of Fe and Mn was investigated. From the results obtained, it could be concluded that excessive organic carbon supplement to soil can have adverse effects on soil quality and that Eh and soluble Fe are the two most practical parameters for monitoring soil health during treatment of farm chemicals.  相似文献   

9.
The purpose of the study is to use soil particles labeled with the radioactive tracer cesium-134 (134Cs) as a method for studying soil erosion and sedimentation pattern within a small catchment with buffer zones. Cesium is adsorbed to soil particles, and by measuring changes in the 134Cs activity on the soil surface, erosion, sedimentation, and pathways for particles can be traced. A harrowed area was surface-contaminated with 134CsCl, while the buffer zone was left uncontaminated. A grid net in the tilled plot and buffer zone was established for in situ measurements of the 134Cs activity after major runoff events from October 1993 to May 1996. In addition, 134Cs activity and suspended solids in runoff were followed during the events. At the end of the experiment, the vertical distribution of 134Cs in soil profiles and uptake of 134Cs in vegetation within the buffer zone were determined. At the end of the experiment, about 54% of the applied tracer remained at the soil surface. Surface soil erosion occurred relatively uniformly across the hillslope due to sheet flow. Most of the tracer was transported vertically into the soil profile, probably during the first heavy rainfall 3 wk after application when the soil was newly tilled. Sedimentation occurred in the upper part of the buffer zone. The correlation between suspended particles in runoff and 134Cs activity was good (R2=0.76). The study also demonstrates the benefit of utilizing 134Cs2+ tracer for investigating transport pathways for contaminated partic1les within a hillslope system without disturbing the surface soil system.  相似文献   

10.
长庆油田学一联合站油田采出水经三级处理后,出水水质达到低渗透、特低渗透油田回注指标,但不久水质变浑浊,并伴有大量的红棕色沉淀物生成。取样分析,红棕色沉淀物为氢氧化铁,水中pH值为6.0~6.5,铁含量在50~100mg/L。文章针对含铁量过高为主的高矿化度油田采出水可能带来的危害进行分析,并提出解决方法。  相似文献   

11.
Leaching to ground water and tile drains are important parts of the environmental assessment of pesticides. The aims of the present study were to (i) assess the significance of preferential flow for pesticide leaching under realistic worst-case conditions for Dutch agriculture (soil profile with thick clay layer and high rainfall) and (ii) collect a high-quality data set that is suitable for testing pesticide leaching models. The movement of water, bromide, and the pesticides bentazon [3-isopropyl-1H-2, 1,3-benzothiadiazine-4(3H)-one-2,2-dioxide] and imidacloprid [1-[(6-chloro-3-pyridinyl)-methyl]-N-nitro-2-imidazolidinimine] was monitored in a clay soil for about 1 yr. The 1.2-ha field was located in the central part of the Netherlands (51 degrees 53' N, 5 degrees 43' E). The soil was a Eutric Fluvisol cropped with winter wheat (Triticum aestivum L.). Tile drains were present at a 0.8- to 0.9-m depth and the ground water level fluctuated between a 0.5- and 2-m depth. All chemicals were applied in spring. None of the soil concentration profiles showed bimodal concentration distributions. However, for each substance the highest concentration in drain water was found in the first drainage event after its application, which indicates preferential flow. This preferential flow is probably caused by permanent macropores that were present in the 0.3- to 1.0-m layer. At the time of the first drainage event, the drain water concentration of each substance was about an order of magnitude higher than its ground water concentration. Thus, the flux concentrations in drain water proved to be a more sensitive detector of preferential flow than the resident concentrations in the soil profile and the ground water.  相似文献   

12.
Soil treatment of wastewater has the potential to achieve high purification efficiency, yet the understanding and predictability of purification with respect to removal of viruses and other pathogens is limited. Research has been completed to quantify the removal of virus and bacteria through the use of microbial surrogates and conservative tracers during controlled experiments with three-dimensional pilot-scale soil treatment systems in the laboratory and during the testing of full-scale systems under field conditions. The surrogates and tracers employed included two viruses (MS-2 and PRD-1 bacteriophages), one bacterium (ice-nucleating active Pseudomonas), and one conservative tracer (bromide ion). Efforts have also been made to determine the relationship between viruses and fecal coliform bacteria in soil samples below the wastewater infiltrative surface, and the correlation between Escherichia coli concentrations measured in percolating soil solution as compared with those estimated from analyses of soil solids. The results suggest episodic breakthrough of virus and bacteria during soil treatment of wastewater and a 2 to 3 log (99-99.9%) removal of virus and near complete removal of fecal coliform bacteria during unsaturated flow through 60 to 90 cm of sandy medium. Results also suggest that the fate of fecal coliform bacteria may be indicative of that of viruses in soil media near the infiltrative surface receiving wastewater effluent. Concentrations of fecal coliform in percolating soil solution may be conservatively estimated from analysis of extracted soil solids.  相似文献   

13.
Contamination of water often results from the heavy use of agricultural chemicals, and the disposal of aqueous pesticide waste is a concern. Anodic Fenton treatment (AFT) has been shown to be a successful remediation method for pesticides in solution, but the effect of soil on the degradation kinetics of pesticides using this method has not been determined. The purpose of this study was to study the effect of humic acid, as a soil surrogate, on the degradation kinetics of alachlor [2-chloro-N-(2,6-diethylphenyl-N-(methoxymethyl) acetamide], a heavily used herbicide that has been studied in pure aqueous solution by AFT. The AFT consists of a controlled constant delivery of Fenton reagents, using an electrochemical half-cell to deliver ferrous iron. Alachlor was quickly degraded by AFT, and the kinetics were found to obey the previously developed AFT model well. Degradation of alachlor by AFT in humic acid slurry showed that when the amount of humic acid was increased, alachlor degradation was significantly slowed down and the degradation kinetics were shifted from the AFT model to a first-order model. Further experimentation indicated that humic acid not only competes with alachlor for hydroxyl radicals, reducing the degradation rate of the target compound, but also buffers the slurry at near neutral pH, blocking regeneration of ferrous ion from ferric ion and subsequently shifting the kinetics to first order. Degradation of several other pesticides in humic acid slurry also followed first-order kinetics. These results imply that higher concentrations of Fenton reagents will be required for soil remediation.  相似文献   

14.
The White method has been routinely used to estimate evapotranspiration using diurnal variations in groundwater levels. Applications to surface water systems (e.g., wetlands) are less common. For applications to surface water systems, a stage‐dependent specific yield function must be defined. This is especially important for small wetlands formed in topographic depressions with bowl shaped bathymetries. Existing formulations of the specific yield function include weighting factors that impact the relative importance of the soil and open water specific yields on the composite value. Three formulations of the specific yield function from the literature were compared and found to produce varied results. Based on a comparison with empirical estimates of specific yield based on observed ratios of net precipitation to water level rise, one of the existing formulations is generalized and recommended for general use. The recommended function is dependent on wetland bathymetry, magnitude of the diurnal fluctuation, spatial extent of the equilibration area, and soil‐specific yield. A sensitivity analysis was conducted to examine the relative importance of these variables. The specific yield function is independent of wetland size and is strongly dependent on the basin profile coefficient (p), an indication of wetland shape. For most natural wetlands, bathymetry strongly influences specific yield.  相似文献   

15.
Abstract: The objective of this study was to use applied and naturally occurring geochemical tracers to study the hydrology of clay settling areas (CSAs) and the hydrological connectivity between CSAs and surrounding hydrological landscapes. The study site is located on the Fort Meade Mine in Polk County, Florida. The CSA has a well‐developed, subangular‐blocky, clay‐rich surface layer with abundant desiccation cracks and other macropores, and a massive, clay‐rich sublayer that is saturated below ~1.0‐2.5 m. A bromide tracer was applied to study hydrological processes in the upper part of the CSA. Bromide infiltrated rapidly and perched on a massive, clay‐rich sublayer. Bromide concentrations decreased in the upper part of the profile without being transported vertically down through the lower part of the profile suggesting that bromide was lost to lateral rather than to vertical transport. Infiltration and lateral flow were rapid suggesting that preferential flow through desiccation cracks and other macropores likely dominates flow in the upper part of the CSA. Naturally occurring solute and stable isotope tracers were used to study the hydrological connectivity between the CSA and the surrounding hydrological landscape. Three‐end mass‐balance mixing model results indicate that shallow and/or deep CSA water can be found in all downgradient waters and must be as much as ~50% of some downgradient waters. Discharge from the CSA to the surrounding surface water‐bodies and surficial aquifer occurs laterally through the berms and/or vertically through the massive, clay‐rich sublayer. However, the precise flow paths from the CSA to the surrounding hydrological landscape are unclear and the fluxes remain unquantified, so the precise effects of CSAs on the hydrology of the surrounding hydrological landscape also remain unquantified.  相似文献   

16.
Land application of manure can exacerbate nutrient and contaminant transfers to the aquatic environment. This study examined the effect of injecting a dairy cattle (Bostaurus L.) manure slurry on mobilization and leaching of dissolved, nonreactive slurry components across a range of agricultural soils. We compared leaching of slurry-applied bromide through intact soil columns (20 cm diam., 20 cm high) of differing textures following surface application or injection of slurry. The volumetric fraction of soil pores >30 microm ranged from 43% in a loamy sand to 28% in a sandy loam and 15% in a loam-textured soil. Smaller active flow volumes and higher proportions of preferential flow were observed with increasing soil clay content. Injection of slurry in the loam soil significantly enhanced diffusion of applied bromide into the large fraction of small pores compared with surface application. The resulting physical protection against leaching of bromide was reflected by 60.2% of the bromide tracer was recovered in the effluent after injection, compared with 80.6% recovery after surface application. No effect of slurry injection was observed in the loamy sand and sandy loam soils. Our findings point to soil texture as an important factor influencing leaching of dissolved, nonreactive slurry components in soils amended with manure slurry.  相似文献   

17.
Comparative mobility of sulfonamides and bromide tracer in three soils   总被引:1,自引:0,他引:1  
In animal agriculture, sulfonamides are one of the routinely used groups of antimicrobials for therapeutic and sub-therapeutic purposes. It is observed that, the animals when administered the antimicrobials, often do not completely metabolize them; and excrete the partially metabolized forms into the environment. Due to the continued use of antimicrobials and disposal of untreated waste, widespread occurrence of partially metabolized antimicrobials in aquatic and terrestrial environments has been reported in various scientific journals. In this research, the mobility of two sulfonamides - sulfamethazine (SMN), sulfathiazole (STZ) and a conservative bromide tracer was investigated in three soils collected from regions in the United States with large number of concentrated animal-feed operations. Results of a series of column studies indicate that the mobility of these two sulfonamides was dependent on pH, soil charge density, and contact time. At low pH and high charge density, substantial retention of sulfonamides was observed in all three soils investigated, due to the increased fraction of cationic and neutral forms of the sulfonamides. Conversely, enhanced mobility was observed at high pH, where the sulfonamides are predominantly in the anionic form. The results indicate that when both SMN and STZ are predominantly in anionic forms, their mobility approximates the mobility of a conservative bromide tracer. This observation is consistent for the mobility of both SMN and STZ individually, and also in the presence of several other antimicrobials in all three soils investigated. Higher contact time indicates lower mobility due to increased interaction with soil material.  相似文献   

18.
放射性同位素示踪法测吸水剖面工艺在油田已应用很久了。吉林油田应用低毒性同位素(113) ̄In测吸水剖面工艺,较好地解决了安全与环境污染问题。叙述了(113) ̄In的产生原理,在吉林油田的试验应用以及使用(113) ̄In测吸水剖面对环境的影响等。对从事油田测井的工程技术人员有一定的借鉴、指导作用。  相似文献   

19.
To prevent residues of veterinary medicinal products (VMPs) from contaminating surface waters and ground water, an environmental impact assessment is required before a new product is allowed on the market. Physically based simulation models are advocated for the calculation of predicted environmental concentrations at higher tiers of the assessment process. However, the validation status of potentially useful models is poor for VMP transport. The objective of this study was to evaluate the dual-permeability model MACRO for simulation of transport of sulfonamide antibiotics in surface runoff and soil. Special focus was on effects of solute application in liquid manure, which may alter the hydraulic properties at the soil surface. To this end we used data from a microplot runoff experiment and a field experiment, both conducted on the same clay loam soil prone to preferential flow. Results showed that the model could accurately simulate concentrations of sulfadimidine and the nonreactive tracer bromide in runoff and in soil from the microplot experiments. The use of posterior parameter distributions from calibrations using the microplot data resulted in poor simulations for the field data of total sulfadimidine losses. The poor results may be due to surface runoff being instantly transferred off the field in the model, whereas in reality re-infiltration may occur. The effects of the manure application were reflected in smaller total and micropore hydraulic conductivities compared with the application in aqueous solution. These effects could easily be accounted for in regulatory modeling.  相似文献   

20.
To quantify ground water denitrification in discrete locations of riparian aquifers, we modified and evaluated an in situ method based on conservative tracers and 15N-enriched nitrate. Ground water was "pushed" (i.e., injected) into a mini-piezometer and then "pulled" (i.e., extracted) from the same mini-piezometer after an incubation period. This push-pull method was applied in replicate mini-piezometers at two Rhode Island riparian sites, one fresh water and one brackish water. Conservative tracer pretests were conducted to determine incubation periods, ranging from 5 to 120 h, to optimize recovery of introduced plumes. For nitrate push-pull tests, we used two conservative tracers, sulfur hexafluoride and bromide, to provide insight into plume recovery. The two conservative tracers behaved similarly. The dosing solutions were amended with 15N-enriched nitrate that enabled us to quantify the mass of denitrification gases generated during the incubation period. The in situ push-pull method detected substantial denitrification rates at a site where we had previously observed high denitrification rates. At our brackish site, we found high rates of ground water denitrification in marsh locations and minimal denitrification in soils fringing the marsh. The push-pull method can provide useful insights into spatial and temporal patterns of denitrification in riparian zones. The method is robust and results are not seriously affected by dilution or degassing from ground water to soil air. In conjunction with measurements of ground water flow-paths, this method holds promise for evaluating the influence of site and management factors on the ground water nitrate removal capacity of riparian zones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号