首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ecological modelling》2005,183(1):77-94
The island fox (Urocyon littoralis) on Santa Catalina Island is among the most imperiled species on the Channel Islands due to a recent outbreak of canine distemper virus (CDV). The western subpopulation, which was not exposed to CDV, is a crucial element in the recovery of foxes by providing a source of animals for translocation and captive breeding. Using the program VORTEX, we developed a population viability analysis for the Santa Catalina Island fox to (1) address the likelihood of population persistence, (2) estimate the current susceptibility of the population to catastrophic events, and (3) evaluate the efficacy of current restoration strategies of releasing captive bred foxes and transplanting wild animals. Overall, we found the population to be susceptible to catastrophic events; a 50% increase in mortality every 20 years was sufficient to elevate the extinction risk above 5%. Current management activities entail the transplanting of 12 juvenile foxes annually, which may reduce the viability of the western subpopulation. A minimum population size of at least 150 foxes should be maintained in each subpopulation to reduce the risk of extinction due to demographic stochasticity. Releases of translocated and captive bred animals affect the speed of recovery on the eastern half of Catalina Island, but not the probability of extinction, which is near zero under current conditions. We conducted a sensitivity analysis for demographic parameters by incrementally varying survival, fecundity and density-dependence parameters, while holding all other parameters constant. Sensitivity analyses identified mortality and mean litter size as the most sensitive parameters, while the implementation of density-dependence and environmental variation of model parameters did not seem to affect population performance. We conclude that the population of island foxes on Santa Catalina is currently at a critically low population level, but recovery of the species appears possible.  相似文献   

2.
Abstract: We examined the demographic consequences of road mortality in the cooperatively breeding Florida Scrub-Jay (Aphelocoma coerulescens ), a threatened species restricted to the oak scrub of peninsular Florida. Between May 1986 and July 1995 we monitored the survival and reproductive success of a color-banded population of jays along a two-lane highway at Archbold Biological Station. Annual mortality of breeding adults was 0.38 on road territories, significantly higher than the rate of 0.23 for breeders on nonroad territories. High mortality on road territories appeared to be a direct result of automobile traffic per se and not a consequence of road-induced changes in habitat characteristics. Mortality was especially high for immigrants without previous experience living along the road: in their first two years as breeders on road territories, naive immigrants experienced annual mortality of 0.50 and 0.45. From year 3 onward, however, annual mortality dropped to 0.29, not significantly different from the rate for birds on nonroad territories. This experience-dependent decline in road mortality could be caused either by surviving jays learning to avoid automobiles or by selective mortality operating through time (demographic heterogeneity). Proximity to the road had no effect on nesting success beyond its indirect effects on breeder experience and group size. Because the mortality of 30- to 90-day-old fledglings was significantly higher on road territories than on nonroad territories, however, breeder mortality greatly exceeded production of yearlings on road territories. Roadside territories therefore are sinks that can maintain populations of Florida Scrub-Jays only via immigration. Because Florida Scrub-Jays do not avoid roadside habitats and may even be attracted to them, road mortality presents a difficult challenge for the management and conservation of this threatened and declining species.  相似文献   

3.
Oceanic islands represent excellent systems for studying the link between geographic isolation and population divergence. Easter Island is the world’s most isolated island and exhibits a high level of endemicity in the nearshore marine environment. Yet few studies have examined the effect of such extreme isolation on the divergence of populations of widespread species that occur at Easter Island. Conus miliaris, a marine gastropod distributed throughout much of the Indo-West Pacific, occurs at Easter Island where the population is ecologically and morphologically distinct from other populations of the species. To determine whether these phenotypic differences are associated with genetic isolation of the Easter Island population, we investigated the phylogeography of this species by examining mitochondrial COI sequences obtained from 141 individuals from eight localities occurring predominantly in the western, central and southeastern Pacific. Results from our analyses show that C. miliaris at Easter Island differs genetically from other populations. We estimate that C. miliaris colonized Easter Island shortly after the origin of the island ≤0.7 million years ago and that since population founding, gene flow has occurred predominantly from Easter Island to the west and that little migration has occurred into Easter Island.  相似文献   

4.
Abstract: Selective extinction following isolation of habitat patches may be due to biogeographical (e.g., island size or isolation) and ecological (species natural histories, interspecifc interactions) factors, or their interactions. Among the demographic and life history attributes commonly associated with high extinction probability are small populations, large size of individuals, and population variability. Long-term capture-recapture data from forest habitat in central Panama permit an examination of the association between mainland survival rates and extinction on a nearby land-bridge island Species of birds that no longer occur on Barro Colorado Island (BCI), Panama, have, on average, lower survival rates on the adjacent mainland than species that have persisted on BCI. Moreover, of the species that no longer occur on BCI, those with lower mainland survival rates generally disappeared earlier from the island. My analysis provides little evidence of a relationship between extinction and population size. Recolonization of BCI from the adjacent mainland by the forest undergrowth species studied here is unlikely. Reduced reproductive success on BCI combined with naturally low adult survival rates seems to be responsible for these BCI extinctions. High nest predation and/or altered landscape dynamics are probable agents in the low reproductive success. The methods used here could be employed in other circumstances to identify fragmentation-sensitive species.  相似文献   

5.
Darwin's Fox: A Distinct Endangered Species in a Vanishing Habitat   总被引:2,自引:0,他引:2  
The temperate rain forest of Chiloé Island, Chile, is inhabited by an endemic fox ( Dusicyon fulvipes ) first described by Charles Darwin and now designated Darwin's fox. Despite morphological differences, Darwin's fox has been considered only an insular subspecies of the mainland chilla fox ( D. griseus ). This follows the assumption that the island population, with an estimated population of less than 500, has been separated from the mainland chilla fox for only about 15,000 years and may have received occasional immigrants from the mainland. Consequently, this island population has not been protected as endangered or bred in captivity. Recently, a population of Darwin's fox was discovered on the Chilean mainland 600 km north of Chiloé Island. This population exists in sympatry with chilla and possibly culpeo ( D. culpaeus ) foxes, which suggests that Darwin's fox may be reproductively isolated. To clarify the phylogenetic position of Darwin's fox, we analyzed 344 bp of mitochondrial DNA control-region sequence of the three species of Chilean foxes. Darwin's foxes from the island and mainland populations compose a monophyletic group distinct from the two other Chilean fox species. This indicates that Darwin's fox was probably an early inhabitant of central Chile, and that its present distribution on the mainland may be a relict of a once much wider distribution. Our results highlight the ability of molecular genetic techniques to uncover historical relationships masked by recent events, such as local extinctions. The "rediscovery" of Darwin's fox as a distinct species implies that greater significance should be given to the protection of this species and its unique habitat and to documenting the extent of its mainland distribution.  相似文献   

6.
Isozyme, randomly amplified polymorphic DNA, and ribosomal DNA analyses were used to evaluate the genetic distinctness and diversity of the endangered island endemic Malacothamnus fasciculatus var. nesioticus (Santa Cruz Island bush mallow). Analysis of amplified DNA profiles and electrophoretic data indicates that var. nesioticus is genetically distinct from other varieties within the species. No isozyme or amplified DNA variation was detected among individuals of nesioticus populations, but restriction site analysis of ribosomal DNA revealed the presence of three closely related genotypes within one of the nesioticus populations. Apparent clonal structuring was found in both nesioticus populations and in one mainland population, var. nuttallli . Results from these analyses provide the background necessary for the design of conservation efforts with recovery goals that insure the long-term survival of Malacothamnus fasciculatus var. nesioticus .  相似文献   

7.
Since its isolation from the mainland more than 85 years ago, 65 bird species have disappeared from Barro Colorado Island, Panama. Because of these extinctions the island is often used as a model for the study of faunal relaxation, or loss of species through time. The most recent survey of the island's bird community was completed in 1970. Between June 1994 and May 1996 I surveyed the island and observed 218 species, including 5 species never before recorded. Three relatively sedentary species have experienced severe population declines since Willis's 1970 survey and may be on the brink of disappearing from the island. Willis estimated 500 Slate-colored Grosbeaks ( Pitylus grossus ), whereas I found only two pairs of this conspicuous midstory-dwelling finch. Two cotingas—Speckled Mourner ( Laniocera rufescens ) and Rufous Piha ( Lipaugus unirufus )—have declined by 85–95%. I did not locate any individuals of 36 other species that were present during the 1970s. Most (21) of these are uncommon aquatic or nocturnal species, which I may have missed during my surveys, or are rare to uncommon edge species that probably move frequently to and from the island. Seven species, however, are primarily inhabitants of second-growth forest and have been lost probably because of continuing successional maturation of the forest, including changes in land use around the laboratory clearing. Seven forest-dwelling species disappeared during the 1970s and have not recolonized. I detected only one sedentary forest-dwelling species, Great Currasow ( Crax rubra ), that previously had been reported as missing from the island. The nearly complete lack of recolonizations by such forest-interior species suggests that local extinction from tropical forest isolates may be extremely persistent. Tropical forest reserves as small as Barro Colorado Island (1600 ha) may not preserve high levels of regional avian diversity over long periods of time.  相似文献   

8.
Allozyme variation in the intertidal limpet Siphonaria kurracheensis was examined in 11 populations from the Houtman Abrolhos Islands, Western Australia, and four from the adjacent mainland, to test if the effects of these islands on genetic subdivision should include species with high dispersal. Consistent with extensive planktonic dispersal, genetic subdivision was low, with an average standardized variance in allelic frequencies (FST) of 0.010 over 400 km along the mainland, and 0.009 over 70 km in the Abrolhos Islands. Nevertheless, subdivision was statistically significant at the smallest scale examined (about 10 km), showing a pattern of local heterogeneity and large-scale homogeneity, which is common in planktonic dispersers. Among the island populations, heterozygosity was positively correlated with a multivariate index of exposure. The level of heterozygosity at the most exposed island sites is equivalent to that at the (also exposed) mainland sites, whereas it is lower in the most sheltered island sites. Although this indicates that some island populations are less well connected to the major pool of larvae, the overall effect of the archipelago on genetic subdivision is no greater than occurs on the mainland coast. This is contrary to findings in previously studied species with less potential for dispersal, suggesting that the local impediments to dispersal are selective in their effects, and are unlikely to be broadly important for genetic divergence in widely dispersing species.  相似文献   

9.
Relationship of Genetic Variation to Population Size in Wildlife   总被引:44,自引:0,他引:44  
Genetic diversity is one of three levels of biological diversity requiring conservation. Genetic theory predicts that levels of genetic variation should increase with effective population size. Soulé (1976) compiled the first convincing evidence that levels of genetic variation in wildlife were related to population size, but this issue remains controversial. The hypothesis that genetic variation is related to population size leads to the following predictions: (1) genetic variation within species should be related to population size; (2) genetic variation within species should be related to island size; (3) genetic variation should be related to population size within taxonomic groups; (4) widespread species should have more genetic variation than restricted species; (5) genetic variation in animals should be negatively correlated with body size; (6) genetic variation should be negatively correlated with rate of chromosome evolution; (7) genetic variation across species should be related to population size; (8) vertebrates should have less genetic variation than invertebrates or plants; (9) island populations should have less genetic variation than mainland populations; and (10) endangered species should have less genetic variation than nonendangered species. Empirical observations support all these hypotheses. There can be no doubt that genetic variation is related to population size, as Soulé proposed. Small population size reduces the evolutionary potential of wildlife species.  相似文献   

10.
Many ecosystems are influenced by disturbances that create specific successional states and habitat structures that species need to persist. Estimating transition probabilities between habitat states and modeling the factors that influence such transitions have many applications for investigating and managing disturbance-prone ecosystems. We identify the correspondence between multistate capture-recapture models and Markov models of habitat dynamics. We exploit this correspondence by fitting and comparing competing models of different ecological covariates affecting habitat transition probabilities in Florida scrub and flatwoods, a habitat important to many unique plants and animals. We subdivided a large scrub and flatwoods ecosystem along central Florida's Atlantic coast into 10-ha grid cells, which approximated average territory size of the threatened Florida Scrub-Jay (Aphelocoma coerulescens), a management indicator species. We used 1.0-m resolution aerial imagery for 1994, 1999, and 2004 to classify grid cells into four habitat quality states that were directly related to Florida Scrub-Jay source-sink dynamics and management decision making. Results showed that static site features related to fire propagation (vegetation type, edges) and temporally varying disturbances (fires, mechanical cutting) best explained transition probabilities. Results indicated that much of the scrub and flatwoods ecosystem was resistant to moving from a degraded state to a desired state without mechanical cutting, an expensive restoration tool. We used habitat models parameterized with the estimated transition probabilities to investigate the consequences of alternative management scenarios on future habitat dynamics. We recommend this multistate modeling approach as being broadly applicable for studying ecosystem, land cover, or habitat dynamics. The approach provides maximum-likelihood estimates of transition parameters, including precision measures, and can be used to assess evidence among competing ecological models that describe system dynamics.  相似文献   

11.
Hybridization in the Island Endemic, Catalina Mahogany   总被引:3,自引:0,他引:3  
Abstract: Allozyme data, combined with traditional morphological and anatomical data, were used to evaluate the genetic status of the island endemic, Cercocarpus traskiae (Catalina mahogany). Comprising only seven adult plants and close to 70 seedlings, C. traskiae is confined to Wild Boar Gully on the southwest side of Santa Catalina Island in Los Angeles County, California Electrophoretic examination of 22 enzyme loci revealed that all but two of the seven adult C. traskiae trees were unique allozymically. Furthermore four of the seven C. traskiae individuals were morphologically and/or anatomically intermediate between "true" C. traskiae and the more abundant Cercocarpus species on Santa Catalina, C. betuloides var, blancheae . Further electrophoretic analyses revealed that two of these four individuals possessed an additive "hybrid" enzyme phenotype indicating that these individuals were hybrid. Twenty-five of the seedlings were also assayed but none of the seedlings displayed hybrid enzyme phenotypes.
Given the evidence for hybridization described herein, we make two suggestions to enhance the long-term preservation of C. traskiae . First, it may be desirable to eliminate the single C. betuloides var.: blancheae individual in Wild Boar Gully. Second, we suggest that established cuttings of true C. traskiae be transplanted to areas on Santa Catalina where the probability of hybridization is minimal Our data further demonstrate that accurate taxonomic identification and an understanding of population genetic structure are necessary for the enlightened management of small relict populations or island endemics.  相似文献   

12.
Lingfeng Kong  Qi Li 《Marine Biology》2009,156(7):1507-1515
Coelomactra antiquata is a commercially important bivalve species, but has been suffering from severe population decline due to over-exploitation and the deterioration of environmental conditions. Previous genetic survey of C. antiquata conducted with allozymes combined with morphology revealed high levels of genetic differentiation between northern and southern populations which suggests a cryptic species might exist in C. antiquata. To test this hypothesis, amplified fragment length polymorphisms (AFLPs) and 16S rRNA gene sequence were used to re-evaluate the spatial genetic structure of six populations of C. antiquata along the coast of China. Both genetic markers display a sharp genetic break between the four northern populations (northern lineage) and two southern population (southern lineage). Large numbers of private alleles (AFLP) were found within the northern or southern populations and a deep divergence of about 6.5% in 16S rRNA gene sequence between the northern and southern lineages suggests the occurrence of potential cryptic or sibling species of C. antiquata. Applying previously published rates of mutation, divergence between the two lineages is estimated to have occurred approximately 3 million years ago and may be due to allopatric isolation during the middle Pliocene times. While no genetic differentiation was found within the northern or southern populations in both AFLP and 16S mtDNA markers, the results indicate that the northern and southern lineage should be managed separately and any translocation between the two areas should be avoided.  相似文献   

13.
Threats to Avifauna on Oceanic Islands   总被引:1,自引:0,他引:1  
Abstract:  Results of the study by Blackburn et al. (2004 a ) of avifauna on oceanic islands suggest that distance from the mainland and time since European colonization have major influences on species extinctions and that island area is a significant but secondary contributing factor. After augmenting the data of the study on geographical properties for some of the islands they examined, we used a causal analysis approach with structural equation modeling to reexamine their conclusions. In our model geographical properties of islands, such as island area and isolation, were considered constraints on biological factors, such as the number of introduced mammalian predators and existing number of avifauna, that can directly or indirectly influence extinction. Of the variables we tested, island area had the greatest total influence on the threat of extinction due to its direct and indirect effects on the size of island avifauna. Larger islands had both a greater number of threatened bird species and more avifauna, increasing the number of species that could become threatened with extinction. Island isolation also had a significant, positive, and direct effect on threats to island avifauna because islands farther from the mainland had fewer current extant avifauna. Time since European colonization had a significant negative, but relatively weaker, influence on threats compared with the traditional biogeographic factors of island area and distance to the mainland. We also tested the hypothesis that the amount of threat is proportionally lower on islands that have had more extinctions (i.e., there is a "filter effect"). Because the proportion of bird extinctions potentially explained only 2.3% of the variation in the proportion of threatened species on islands, our results did not support this hypothesis. Causal modeling provided a powerful tool for examining threat of extinction patterns of known and hypothesized pathways of influence.  相似文献   

14.
Interspecific interactions are often difficult to elucidate, particularly with large vertebrates at large spatial scales. Here, we describe a methodology for estimating interspecific interactions by combining stable isotopes with bioenergetics. We illustrate this approach by modeling the population dynamics and species interactions of a suite of vertebrates on Santa Cruz Island, California, USA: two endemic carnivores (the island fox and island spotted skunk), an exotic herbivore (the feral pig), and their shared predator, the Golden Eagle. Sensitivity analyses suggest that our parameter estimates are robust, and natural history observations suggest that our overall approach captures the species interactions in this vertebrate community. Nonetheless, several factors provide challenges to using isotopes to infer species interactions. Knowledge regarding species-specific isotopic fractionation and diet breadth is often lacking, necessitating detailed laboratory studies and natural history information. However, when coupled with other approaches, including bioenergetics, mechanistic models, and natural history, stable isotopes can be powerful tools in illuminating interspecific interactions and community dynamics.  相似文献   

15.
Touchton JM  Smith JN 《Ecology》2011,92(5):1126-1136
When a community loses species through fragmentation, its total food consumption may drop. Compensatory responses of remaining species, whereby survivors assume roles of extinct competitors, may reduce the impact of species loss through numerical or functional responses. We measured compensatory responses in two remaining antbird species on Barro Colorado Island, Panama, four decades after the loss of their dominant competitor, the Ocellated Antbird, Phaenostictus mcleannani. We compared current abundances and behavior of these two species on Barro Colorado to those reported before the island lost Ocellated Antbirds, and to those in a nearby mainland population where all three species still exist as a space-for-time substitution. The smaller, more subordinate Spotted Antbird, Hylophylax naevioides, responded far more strongly than the larger Bicolored Antbird, Gymnopithys leucaspis, which is functionally more like the Ocellated Antbird. Islandwide density of Spotted Antbirds has more than doubled since the loss of Ocellated Antbirds. Moreover, Spotted Antbirds now spend so much more of their time following ant swarms that their metabolic biomass at these swarms has more than tripled since Ocellated Antbirds disappeared. These responses in Spotted Antbirds were apparently delayed by >20 years. Bicolored Antbirds have not increased substantially in islandwide density or metabolic biomass at ant swarms. We hypothesize that behavioral flexibility, as shown by Spotted Antbirds on Barro Colorado Island, is a major factor governing the extent to which fragmented ecosystems can buffer the impacts of species loss.  相似文献   

16.
The vegetation mosaic hypothesis suggests that medium-sized mammals occupying arid and semi-arid areas of Australia require a habitat that is a fine-grained mosaic of different vegetation types or seral stages. This mosaic is believed to have been created in the spinifex deserts of central Australia by Aboriginal burning practices. Its loss in the period 1940–1960 is postulated to be a primary reason for both major reductions in range and mainland extinctions of many species of medium-sized mammals at this time. This study measured the responses of three species of medium-sized mammals to vegetation patterns within spinifex grasslands that ranged from comparatively uniform to highly diverse. The abundance, condition, and reproductive status of golden bandicoots (Isoodon auratus) , northern brush-tailed possums (Trichosurus vulpecula arnhemensis) , and burrowing bettongs (Bettongia lesueur) were assessed within vegetation mosaics of various scales on Barrow Island, off the northwest coast of Australia. Scale of mosaic proved to have no significant effect on the numbers, condition, or reproductive status of any of the three species. Similarly, the creation of fine-grained mosaics of early seral-stage vegetation mixed within climax vegetation by extensive oil-field operations over nearly half the island had no significant effect on the number or condition of animals. Hence, scale of mosaic seems unlikely to be related to the mainland decline or extinction of these species. The pattern of decline and extinction on the mainland but continued survival on offshore islands is more consistent with the presence (mainland) or absence (islands) of introduced predators (foxes and cats) and herbivores (rabbits and stock).  相似文献   

17.
Evolutionary diversification of the broadly distributed copepod sibling species complex Eurytemora affinis has been documented in the northern hemisphere. However, the fine scale geographic distribution, levels of genetic subdivision, evolutionary, and demographic histories of European populations have been less explored. To gain information on genetic subdivision and to evaluate heterogeneity among European populations, we analyzed samples from 8 locations from 58° to 45°N and 0° to 23°E, using 549 base pairs of the mitochondrial cytochrome oxidase subunit I (COI) gene. We discovered three distinct lineages of E. affinis in Western Europe, namely the East Atlantic lineage, the North Sea/English Channel (NSEC) lineage, and the Baltic lineage. These geographically separated lineages showed sequences divergence of 1.7–2.1%, dating back 1.9 million years (CI: 0.9–3.0 My) with no indication of isolation by distance. Genetic divergence in Europe was much lower than among North American lineages. Interestingly, genetic structure varied distinctively among the three lineages: the East Atlantic lineage was divided between the Gironde and the Loire populations, the NSEC lineage comprised one single population unit spanning the Seine, Scheldt and Elbe rivers and the third lineage was restricted to the Baltic Proper (Sweden). We revealed high haplotype diversity in the East Atlantic and the Baltic lineages, whereas in the NSEC lineage haplotype diversity was comparatively low. All three lineages showed signs of at least one demographic expansion event during Pleistocene glaciations that marked their genetic structure. These results provide a preliminary overview of the genetic structure of E. affinis in Europe.  相似文献   

18.
Islands present a unique scenario in conservation biology, offering refuge yet imposing limitations on insular populations. The Kimberley region of northwestern Australia has more than 2500 islands that have recently come into focus as substantial conservation resources. It is therefore of great interest for managers to understand the driving forces of genetic structure of species within these island archipelagos. We used the ubiquitous bar‐shouldered skink (Ctenotus inornatus) as a model species to represent the influence of landscape factors on genetic structure across the Kimberley islands. On 41 islands and 4 mainland locations in a remote area of Australia, we genotyped individuals across 18 nuclear (microsatellite) markers. Measures of genetic differentiation and diversity were used in two complementary analyses. We used circuit theory and Mantel tests to examine the influence of the landscape matrix on population connectivity and linear regression and model selection based on Akaike's information criterion to investigate landscape controls on genetic diversity. Genetic differentiation between islands was best predicted with circuit‐theory models that accounted for the large difference in resistance to dispersal between land and ocean. In contrast, straight‐line distances were unrelated to either resistance distances or genetic differentiation. Instead, connectivity was determined by island‐hopping routes that allow organisms to minimize the distance of difficult ocean passages. Island populations of C. inornatus retained varying degrees of genetic diversity (NA = 1.83 – 7.39), but it was greatest on islands closer to the mainland, in terms of resistance‐distance units. In contrast, genetic diversity was unrelated to island size. Our results highlight the potential for islands to contribute to both theoretical and applied conservation, provide strong evidence of the driving forces of population structure within undisturbed landscapes, and identify the islands most valuable for conservation based on their contributions to gene flow and genetic diversity.  相似文献   

19.
Abstract: It has been argued that demographic and environmental factors will cause small, isolated populations to become extinct before genetic factors have a significant negative impact. Islands provide an ideal opportunity to test this hypothesis because they often support small, isolated populations that are highly vulnerable to extinction. To assess the potential negative impact of isolation and small population size, we compared levels of genetic variation and fitness in island and mainland populations of the black-footed rock-wallaby ( Petrogale lateralis [Marsupialia: Macropodidae]). Our results indicate that the Barrow Island population of P. lateralis has unprecedented low levels of genetic variation (  H e = 0.053, from 10 microsatellite loci) and suffers from inbreeding depression (reduced female fecundity, skewed sex ratio, increased levels of fluctuating asymmetry). Despite a long period of isolation ( ∼ 1600 generations) and small effective population size (  N e ∼ 15), demographic and environmental factors have not yet driven this population to extinction. Nevertheless, it has been affected significantly by genetic factors. It has lost most of its genetic variation and become highly inbred (  F e = 0.91), and it exhibits reduced fitness. Because several other island populations of P. lateralis also exhibit exceptionally low levels of genetic variation, this phenomenon may be widespread. Inbreeding in these populations is at a level associated with high rates of extinction in populations of domestic and laboratory species. Genetic factors cannot then be excluded as contributing to the extinction proneness of small, isolated populations.  相似文献   

20.
The intentional and unintentional movement of plants and animals by humans has transformed ecosystems and landscapes globally. Assessing when and how a species was introduced are central to managing these transformed landscapes, particularly in island environments. In the Gulf of Alaska, there is considerable interest in the history of mammal introductions and rehabilitating Gulf of Alaska island environments by eradicating mammals classified as invasive species. The Arctic ground squirrel (Urocitellus parryii) is of concern because it affects vegetation and seabirds on Gulf of Alaska islands. This animal is assumed to have been introduced by historic settlers; however, ground squirrel remains in the prehistoric archaeological record of Chirikof Island, Alaska, challenge this timeline and suggest they colonized the islands long ago. We used 3 lines of evidence to address this problem: direct radiocarbon dating of archaeological squirrel remains; evidence of prehistoric human use of squirrels; and ancient DNA analysis of dated squirrel remains. Chirikof squirrels dated to at least 2000 years ago, and cut marks on squirrel bones suggested prehistoric use by people. Ancient squirrels also shared a mitochondrial haplotype with modern Chirikof squirrels. These results suggest that squirrels have been on Chirikof longer than previously assumed and that the current population of squirrels is closely related to the ancient population. Thus, it appears ground squirrels are not a recent, human‐mediated introduction and may have colonized the island via a natural dispersal event or an ancient human translocation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号