首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Establishing protected areas is the primary goal and tool for preventing irreversible biodiversity loss. However, the effectiveness of protected areas that target specific species has been questioned for some time because targeting key species for conservation may impair the integral regional pool of species diversity and phylogenetic and functional diversity are seldom considered. We assessed the efficacy of protected areas in China for the conservation of phylogenetic diversity based on the ranges and phylogenies of 2279 terrestrial vertebrates. Phylogenetic and taxonomic diversity were strongly and positively correlated, and only 12.1–43.8% of priority conservation areas are currently protected. However, the patterns and coverage of phylogenetic diversity were affected when weighted by species richness. These results indicated that in China, protected areas targeting high species richness protected phylogenetic diversity well overall but failed to do so in some regions with more unique or threatened communities (e.g., coastal areas of eastern China, where severely threatened avian communities were less protected). Our results suggest that the current distribution of protected areas could be improved, although most protected areas protect both taxonomic and phylogenetic diversity.  相似文献   

2.
Cornell HV  Karlson RH  Hughes TP 《Ecology》2007,88(7):1707-1715
Community similarity is the proportion of species richness in a region that is shared on average among communities within that region. The slope of local richness (alpha diversity) regressed on regional richness (gamma diversity) can serve as an index of community similarity across regions with different regional richness. We examined community similarity in corals at three spatial scales (among transects at a site, sites on an island, and islands within an island group) across a 10 000-km longitudinal diversity gradient in the west-central Pacific Ocean. When alpha diversity was regressed on gamma diversity, the slopes, and thus community similarity, increased with scale (0.085, 0.261, and 0.407, respectively) because a greater proportion of gamma diversity was subsumed within alpha diversity as scale increased. Using standard randomization methods, we also examined how community similarity differed between observed and randomized assemblages and how this difference was affected by spatial separation of species within habitat types and specialization of species to three habitat types (reef flats, crests, and slopes). If spatial separation within habitat types and/or habitat specialization (i.e., underdispersion) occurs, fewer species are shared among assemblages than the random expectation. When the locations of individual coral colonies were randomized within and among habitat types, community similarity was 46-47% higher than that for observed assemblages at all three scales. We predicted that spatial separation of coral species within habitat types should increase with scale due to dispersal/extinction dynamics in this insular system, but that specialization of species to different habitat types should not change because habitat differences do not change with scale. However, neither habitat specialization nor spatial separation within habitat types differed among scales. At the two larger scales, each accounted for 22-24% of the difference in community similarity between observed and randomized assemblages. At the smallest scale (transect-site), neither spatial separation within habitat types nor habitat specialization had significant effects on community similarity, probably due to the small size of transect samples. The results suggest that coral species can disperse among islands in an island group as easily as they can among sites on an island over time scales that are relevant to their establishment and persistence on reefs.  相似文献   

3.
Abstract: Deer densities in forests of eastern North America are thought to have significant effects on the abundance and diversity of forest birds through the role deer play in structuring forest understories. We tested the ability of deer to affect forest bird populations by monitoring the density and diversity of vegetation and birds for 9 years at eight 4-ha sites in northern Virginia, four of which were fenced to exclude deer. Both the density and diversity of understory woody plants increased following deer exclosure. The numerical response of the shrubs to deer exclosure was significantly predicted by the soil quality (ratio of organic carbon to nitrogen) at the sites. Bird populations as a whole increased following exclosure of deer, particularly for ground and intermediate canopy species. The diversity of birds did not increase significantly following exclosure of deer, however, primarily because of replacement of species as understory vegetation proceeded through successional processes. Changes in understory vegetation accounted for most of the variability seen in the abundance and diversity of bird populations. Populations of deer in protected areas are capable of causing significant shifts in the composition and abundance of bird communities. These shifts can be reversed by increasing the density and diversity of understory vegetation, which can be brought about by reducing deer density.  相似文献   

4.
Meynard CN  Quinn JF 《Ecology》2008,89(4):981-990
Spatial structure in metacommunities and their relationships to environmental gradients have been linked to opposing theories of community assembly. In particular, while the species sorting hypothesis predicts strong environmental influences, the neutral theory, the mass effect, and the patch dynamics frameworks all predict differing degrees of spatial structure resulting from dispersal and competition limitations. Here we study the relative influence of environmental gradients and spatial structure in bird assemblages of the Chilean temperate forest. We carried out bird and vegetation surveys in South American temperate forests at 147 points located in nine different protected areas in central Chile, and collected meteorological and productivity data for these localities. Species composition dissimilarities between sites were calculated, as well as three indices of bird local diversity: observed species richness, Chao estimate of richness, and Shannon diversity. A stepwise multiple regression and partial regression analyses were used to select a small number of environmental factors that predicted bird species diversity. Although diversity indices were spatially autocorrelated, environmental factors were sufficient to account for this autocorrelation. Moreover, community dissimilarities were not significantly related to distance between sites. We then tested a multivariate hypothesis about climate, vegetation, and avian diversity interactions using a structural equation modeling (SEM) approach. The SEM showed that climate and area of fragments have important indirect effects on avian diversity, mediated through changes in vegetation structure. Given the scale of this study, the metacommunity framework provides useful insights into the mechanisms driving bird assemblages in this region. Taken together, the weak spatial structure of community composition and diversity, as well as the strong environmental effects on bird diversity, support the interpretation that species sorting has a predominant role in structuring avian assemblages in the region.  相似文献   

5.
川中半自然型防护林演替过程中的物种多样性   总被引:3,自引:0,他引:3  
四川中部绵阳官司河流域的半自然型林是长江中上游地区防护林的一个较典型类型。本文以它为研究对象,对群落的物种多样性及其在次生演替过程中的动态变化趋势进行了初步研究,并结合影响多样性的几个主要环境因子进行了相关性分析。结果表明:(1)现阶段该防护林的植物种类组成和群落结构均较简单,松、柏、栎混交的针阔叶林占绝对优势,其物种多样性较小,但随着群落次生演替的进展,各层次的多样性趋于增加;(2)用灰色系统理论的关联度分析方法研究群落的物种多样性与主要环境因子的相关性是可行的。经测定,研究区的土壤pH值,外界干扰度和土壤含水量等指标对防护林的物种多样性有显著的影响。图2表3参16  相似文献   

6.
Establishing protected areas, where human activities and land cover changes are restricted, is among the most widely used strategies for biodiversity conservation. This practice is based on the assumption that protected areas buffer species from processes that drive extinction. However, protected areas can maintain biodiversity in the face of climate change and subsequent shifts in distributions have been questioned. We evaluated the degree to which protected areas influenced colonization and extinction patterns of 97 avian species over 20 years in the northeastern United States. We fitted single-visit dynamic occupancy models to data from Breeding Bird Atlases to quantify the magnitude of the effect of drivers of local colonization and extinction (e.g., climate, land cover, and amount of protected area) in heterogeneous landscapes that varied in the amount of area under protection. Colonization and extinction probabilities improved as the amount of protected area increased, but these effects were conditional on landscape context and species characteristics. In this forest-dominated region, benefits of additional land protection were greatest when both forest cover in a grid square and amount of protected area in neighboring grid squares were low. Effects did not vary with species’ migratory habit or conservation status. Increasing the amounts of land protection benefitted the range margins species but not the core range species. The greatest improvements in colonization and extinction rates accrued for forest birds relative to open-habitat or generalist species. Overall, protected areas stemmed extinction more than they promoted colonization. Our results indicate that land protection remains a viable conservation strategy despite changing habitat and climate, as protected areas both reduce the risk of local extinction and facilitate movement into new areas. Our findings suggest conservation in the face of climate change favors creation of new protected areas over enlarging existing ones as the optimal strategy to reduce extinction and provide stepping stones for the greatest number of species.  相似文献   

7.
One of the main goals of conservation biology is to understand the factors shaping variation in biodiversity across the planet. This understanding is critical for conservation planners to be able to develop effective conservation strategies. Although many studies have focused on species richness and the protection of rare and endemic species, less attention has been paid to the protection of the phylogenetic dimension of biodiversity. We explored how phylogenetic diversity, species richness, and phylogenetic community structure vary in seed plant communities along an elevational gradient in a relatively understudied high mountain region, the Dulong Valley, in southeastern Tibet, China. As expected, phylogenetic diversity was well correlated with species richness among the elevational bands and among communities. At the community level, evergreen broad‐leaved forests had the highest levels of species richness and phylogenetic diversity. Using null model analyses, we found evidence of nonrandom phylogenetic structure across the region. Evergreen broad‐leaved forests were phylogenetically overdispersed, whereas other vegetation types tended to be phylogenetically clustered. We suggest that communities with high species richness or overdispersed phylogenetic structure should be a focus for biodiversity conservation within the Dulong Valley because these areas may help maximize the potential of this flora to respond to future global change. In biodiversity hotspots worldwide, we suggest that the phylogenetic structure of a community may serve as a useful measure of phylogenetic diversity in the context of conservation planning.  相似文献   

8.
Abstract:  We evaluated the importance of small (<5 ha) forest patches for the conservation of regional plant diversity in the tropical rainforest of Los Tuxtlas, Mexico. We analyzed the density of plant species (number of species per 0.1 ha) in 45 forest patches of different sizes (1–700 ha) in 3 landscapes with different deforestation levels (4, 11, and 24% forest cover). Most of the 364 species sampled (360 species, 99%) were native to the region, and only 4 (1%) were human-introduced species. Species density in the smallest patches was high and variable; the highest (84 species) and lowest (23 species) number of species were recorded in patches of up to 1.8 ha. Despite the small size of these patches, they contained diverse communities of native plants, including endangered and economically important species. The relationship between species density and area was significantly different among the landscapes, with a significant positive slope only in the landscape with the highest deforestation level. This indicates that species density in a patch of a given size may vary among landscapes that have different deforestation levels. Therefore, the conservation value of a patch depends on the total forest cover remaining in the landscape. Our findings revealed, however, that a great portion of regional plant diversity was located in very small forest patches (<5 ha), most of the species were restricted to only a few patches (41% of the species sampled were distributed in only 1–2 patches, and almost 70% were distributed in 5 patches) and each landscape conserved a unique plant assemblage. The conservation and restoration of small patches is therefore necessary to effectively preserve the plant diversity of this strongly deforested and unique Neotropical region.  相似文献   

9.
Abstract:  Plantation forests and second-growth forests are becoming dominant components of many tropical forest landscapes. Yet there is little information available concerning the consequences of different forestry options for biodiversity conservation in the tropics. We sampled the leaf-litter herpetofauna of primary, secondary, and Eucalyptus plantation forests in the Jari River area of northeastern Brazilian Amazonia. We used four complementary sampling techniques, combined samples from 2 consecutive years, and collected 1739 leaf-litter amphibians (23 species) and 1937 lizards (30 species). We analyzed the data for differences among forest types regarding patterns of alpha and beta diversity, species-abundance distributions, and community structure. Primary rainforest harbored significantly more species, but supported a similar abundance of amphibians and lizards compared with adjacent areas of second-growth forest or plantations. Plantation forests were dominated by wide-ranging habitat generalists. Secondary forest faunas contained a number of species characteristic of primary forest habitat. Amphibian communities in secondary forests and Eucalyptus plantations formed a nested subset of primary forest species, whereas the species composition of the lizard community in plantations was distinct, and was dominated by open-area species. Although plantation forests are relatively impoverished, naturally regenerating forests can help mitigate some negative effects of deforestation for herpetofauna. Nevertheless, secondary forest does not provide a substitute for primary forest, and in the absence of further evidence from older successional stands, we caution against the optimistic claim that natural forest regeneration in abandoned lands will provide refuge for the many species that are currently threatened by deforestation .  相似文献   

10.
In the United States, housing density has substantially increased in and adjacent to forests. Our goal in this study was to identify how housing density and human populations are associated with avian diversity. We compared these associations to those between landscape pattern and avian diversity, and we examined how these associations vary across the conterminous forested United States. Using data from the North American Breeding Bird Survey, the U.S. Census, and the National Land Cover Database, we focused on forest and woodland bird communities and conducted our analysis at multiple levels of model specificity, first using a coarse-thematic resolution (basic models), then using a larger number of fine-thematic resolution variables (refined models). We found that housing development was associated with forest bird species richness in all forested ecoregions of the conterminous United States. However, there were important differences among ecoregions. In the basic models, housing density accounted for < 5% of variance in avian species richness. In refined models, 85% of models included housing density and/or residential land cover as significant variables. The strongest guild response was demonstrated in the Adirondack-New England ecoregion, where 29% of variation in richness of the permanent resident guild was associated with housing density. Model improvements due to regional stratification were most pronounced for cavity nesters and short-distance migrants, suggesting that these guilds may be especially sensitive to regional processes. The varying patterns of association between avian richness and attributes associated with landscape structure suggested that landscape context was an important mediating factor affecting how biodiversity responds to landscape changes. Our analysis suggested that simple, broadly applicable, land use recommendations cannot be derived from our results. Rather, anticipating future avian response to land use intensification (or reversion to native vegetation) has to be conditioned on the current landscape context and the species group of interest. Our results show that housing density and residential land cover were significant predictors of forest bird species richness, and their prediction strengths are likely to increase as development continues.  相似文献   

11.
Belmaker J  Ziv Y  Shashar N  Connolly SR 《Ecology》2008,89(10):2829-2840
The size of the regional species pool may influence local patterns of diversity. However, it is unclear whether certain spatial scales are less sensitive to regional influences than others. Additive partitioning was used to separate coral-dwelling fish diversity to its alpha and beta components, at multiple scales, in several regions across the Indo-Pacific. We then examined how the relative contribution of these components changes with increased regional diversity. By employing specific random-placement null models, we overcome methodological problems with local-regional regressions. We show that, although alpha and beta diversities within each region are consistently different from random-placement null models, the increase in beta diversities among regions was similar to that predicted once heterogeneity in coral habitat was accounted for. In contrast, alpha diversity within single coral heads was limited and increased less than predicted by the null models. This was correlated with increased intraspecific aggregation in more diverse regions and is consistent with ecological limitations on the number of coexisting species at the local scale. These results suggest that, apart from very small spatial scales, variation in the partitioning of fish diversity along regional species richness gradients is driven overwhelmingly by the corresponding gradients in coral assemblage structure.  相似文献   

12.
Abstract:  Effective management of biodiversity in production landscapes requires a conservation approach that acknowledges the complexity of ecological and cultural systems in time and space. Fennoscandia has experienced major loss of forest biodiversity caused by intensive forestry. Therefore, the Countdown 2010 initiative to halt the loss of biodiversity in Europe is highly relevant to forest management in this part of the continent. As a contribution to meeting the challenge posed by Countdown 2010, we developed a spatially explicit conservation-planning exercise that used regional knowledge on forest biodiversity to provide support for managers attempting to halt further loss of biological diversity in the region. We used current data on the distribution of 169 species (including 68 red-listed species) representing different forest habitats and ecologies along with forest data within the frame of modern conservation software to devise a map of priority areas for conservation. The top 10% of priority areas contained over 75% of red-listed species locations and 41% of existing protected forest areas, but only 58% of these top priorities overlapped with core areas identified previously in a regional strategy that used more qualitative methods. We argue for aggregating present and future habitat value of single management units to landscape and regional scales to identify potential bottlenecks in habitat availability linked to landscape dynamics. To address the challenge of Countdown 2010, a general framework for forest conservation planning in Fennoscandia needs to cover different conservation issues, tools, and data needs.  相似文献   

13.
Preserving biodiversity over time is a pressing challenge for conservation science. A key goal of marine protected areas (MPAs) is to maintain stability in species composition, via reduced turnover, to support ecosystem function. Yet, this stability is rarely measured directly under different levels of protection. Rather, evaluations of MPA efficacy generally consist of static measures of abundance, species richness, and biomass, and rare measures of turnover are limited to short-term studies involving pairwise (beta diversity) comparisons. Zeta diversity is a recently developed metric of turnover that allows for measurement of compositional similarity across multiple assemblages and thus provides more comprehensive estimates of turnover. We evaluated the effectiveness of MPAs at preserving fish zeta diversity across a network of marine reserves over 10 years in Batemans Marine Park, Australia. Snorkel transect surveys were conducted across multiple replicated and spatially interspersed sites to record fish species occurrence through time. Protection provided by MPAs conferred greater stability in fish species turnover. Marine protected areas had significantly shallower decline in zeta diversity compared with partially protected and unprotected areas. The retention of harvested species was four to six times greater in MPAs compared with partially protected and unprotected areas, and the stabilizing effects of protection were observable within 4 years of park implementation. Conversely, partial protection offered little to no improvement in stability, compared with unprotected areas. These findings support the efficacy of MPAs for preserving temporal fish diversity stability. The implementation of MPAs helps stabilize fish diversity and may, therefore, support biodiversity resilience under ongoing environmental change.  相似文献   

14.
The variety of local animal sounds characterizes a landscape. We used ecoacoustics to noninvasively assess the species richness of various biotopes typical of an ecofriendly forest plantation with diverse ecological gradients and both nonnative and indigenous vegetation. The reference area was an adjacent large World Heritage Site protected area (PA). All sites were in a global biodiversity hotspot. Our results showed how taxa segregated into various biotopes. We identified 65 singing species, including birds, frogs, crickets, and katydids. Large, natural, protected grassland sites in the PA had the highest mean acoustic diversity (14.1 species/site). Areas covered in nonnative timber or grass species were devoid of acoustic species. Sites grazed by native and domestic megaherbivores were fairly rich (5.1) in acoustic species but none were unique to this habitat type, where acoustic diversity was greater than in intensively managed grassland sites (0.04). Natural vegetation patches inside the plantation mosaic supported high mean acoustic diversity (indigenous forests 7.6, grasslands 8.0, wetlands 9.1), which increased as plant heterogeneity and patch size increased. Indigenous forest patches within the plantation mosaic contained a highly characteristic acoustic species assemblage, emphasizing their complementary contribution to local biodiversity. Overall, acoustic signals determined spatial biodiversity patterns and can be a useful tool for guiding conservation.  相似文献   

15.
Techniques and Guidelines for Monitoring Neotropical Butterflies   总被引:11,自引:0,他引:11  
Long-term monitoring of selected species can identify changes in biological diversity, permitting the timely adjustment of management activities to reverse or avoid undesired trends. This paper addresses several related issues bearing on the development of inexpensive and easily implemented monitoring programs for tropical butterflies. First, we discuss the use of butterflies as ecological indicators. Next, we present field evaluations of butterfly sampling techniques, indicating that: (1) light-gap size greatly affects sampling results in forests and should be of critical concern in site selection and sampling design; (2) baited traps and visual censuses provide complementary data on butterfly abundances; (3) monitoring a subset of locally common butterfly species can provide data for comparing community composition and relative abundance of species in areas where species inventories are incomplete. Drawing on these results, we develop guidelines for designing monitoring programs. These address the formulation of explicit questions to be addressed through monitoring and the selection of appropriate study sites, study species, sampling techniques, and sampling frequency. A protocol for the ongoing butterfly monitoring program that emerged from these studies is appended. The techniques and guidelines presented here are intended to serve as an adaptable model for biologists designing monitoring projects to help guide applied conservation efforts in the tropics.  相似文献   

16.
Abstract:  To better understand responses of reptiles and amphibians to forest fragmentation in the lowland Neotropics, we examined community and population structure of frogs and lizards in the fragmented landscape surrounding La Selva Biological Station in the Sarapiquí region of northeastern Costa Rica. We used diurnal quadrats and nocturnal transects to sample frogs and lizards in nine forest fragments (1–7 ha each) and La Selva (1100 ha). Species richness in all fragments combined was 85% of that found in La Selva with comparable sampling effort. Richness varied from 10 to 24 species among forest fragments, compared with 36 species at La Selva. Lizard density was higher and frog density was lower in forest fragments than in La Selva. Community composition varied among sites and by fragment size class, and species occurrence was nested with respect to fragment area. Isolation and habitat variables did not significantly affect species richness, composition, or nestedness. We classified 34% of species as fragmentation sensitive because they were absent or occurred at low densities in fragments. Nevertheless, the relatively high diversity observed in the entire set of fragments indicates that preserving a network of small forest patches may be of considerable conservation value to the amphibians and reptiles of this region.  相似文献   

17.
Abstract:  Ecological change is often hard to document because of a lack of reliable baseline data. Several recent then-versus-now surveys of temperate forest and grassland communities demonstrate losses of local plant species, but most are based on data from a single site. We resurveyed understory communities in 62 upland forest stands in northern Wisconsin (U.S.A.) for which quantitative baseline data exist from 50 years ago. These stands are within a largely unfragmented region but vary in species composition and successional stage. We collected data on changes in (1) total and native species richness, (2) the ratio of exotic to native species, (3) the relative abundance of habitat generalists, and (4) community similarity among sites. We also compared how these rates of change varied over time. Over the past 50 years, native species density declined an average of 18.5% at the 20-m2 scale, whereas the ratio of exotic species to native species increased at 80% of all sites. Habitat generalists increased, and habitat specialists declined, accounting in part for an 8.7% rise in average similarity in species composition among sites. Most of these changes cannot be related to succession, habitat loss, or invasion by exotic species. Areas without deer hunting showed the greatest declines in native species density, with parks and research natural areas faring no better than unprotected stands. Animal-pollinated and animal-dispersed species also declined, particularly at unhunted sites. These results demonstrate the power of quantitative multistand data for assessing ecological change and identify overabundant deer as a key driver of community change. Because maintaining forest habitats alone fails to preserve plant diversity at local scales, local biotic simplification seems likely to continue in the region unless active efforts are taken to protect diversity.  相似文献   

18.
19.
Abstract:  Regional conservation planning increasingly draws on habitat suitability models to support decisions regarding land allocation and management. Nevertheless, statistical techniques commonly used for developing such models may give misleading results because they fail to account for 3 factors common in data sets of species distribution: spatial autocorrelation, the large number of sites where the species is absent (zero inflation), and uneven survey effort. We used spatial autoregressive models fit with Bayesian Markov Chain Monte Carlo techniques to assess the relationship between older coniferous forest and the abundance of Northern Spotted Owl nest and activity sites throughout the species' range. The spatial random-effect term incorporated in the autoregressive models successfully accounted for zero inflation and reduced the effect of survey bias on estimates of species–habitat associations. Our results support the hypothesis that the relationship between owl distribution and older forest varies with latitude. A quadratic relationship between owl abundance and older forest was evident in the southern portion of the range, and a pseudothreshold relationship was evident in the northern portion of the range. Our results suggest that proposed changes to the network of owl habitat reserves would reduce the proportion of the population protected by up to one-third, and that proposed guidelines for forest management within reserves underestimate the proportion of older forest associated with maximum owl abundance and inappropriately generalize threshold relationships among subregions. Bayesian spatial models can greatly enhance the utility of habitat analysis for conservation planning because they add the statistical flexibility necessary for analyzing regional survey data while retaining the interpretability of simpler models.  相似文献   

20.
对广东汕头海岸湿地的鸟类资源进行了调查,共记录鸟类100种,隶属15目31科,其中古北界鸟类43种,东洋界鸟类45种,广布种鸟类12种.区系组成呈南北鸟类混杂分布,鸟类的多样性表现出明显的季节性.该湿地有国家二级重点保护鸟类10种,中日候鸟保护协定名录中的鸟类43种.对5个湿地样区的主要鸟类种类和数量进行了调查,结果反映汕头海岸湿地是水鸟类重要的越冬栖息场,鸟类群落多样性指数以三屿围和六合围两个样区较高,分别为3.2306和3.2283,濠江口的多样性指数较低,为1.981.群落多样性指数的高低主要受物种数量和各物种数量均匀度的影响.本文还提出了对鸟类资源保护和管理的建议.表3参9  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号