首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent research has emphasized the importance of riparian ecosystems as centers of biodiversity and links between terrestrial and aquatic systems. Riparian ecosystems also belong among the environments that are most disturbed by humans and are in need of restoration to maintain biodiversity and ecological integrity. To facilitate the completion of this task, researchers have an important function to communicate their knowledge to policy-makers and managers. This article presents some fundamental qualities of riparian systems, articulated as three basic principles. The basic principles proposed are: (1) The flow regime determines the successional evolution of riparian plant communities and ecological processes. (2) The riparian corridor serves as a pathway for redistribution of organic and inorganic material that influences plant communities along rivers. (3) The riparian system is a transition zone between land and water ecosystems and is disproportionately plant species-rich when compared to surrounding ecosystems. Translating these principles into management directives requires more information about how much water a river needs and when and how, i.e., flow variables described by magnitude, frequency, timing, duration, and rate of change. It also requires information about how various groups of organisms are affected by habitat fragmentation, especially in terms of their dispersal. Finally, it requires information about how effects of hydrologic alterations vary between different types of riparian systems and with the location within the watershed.  相似文献   

2.
Buffer strips alongside watercourses are a widely accepted method of reducing nutrient and sediment run-off from agricultural land thereby improving water quality. Little attention, however, has been paid to the ecological status of these areas despite the fact that riparian habitats in good condition can provide multiple benefits. We investigated vegetation patterns and plant-environment relationships within three categories of riparian margins in northeast Scotland. The margins were categorized as unbuffered, buffered, or reference (target), the latter representing the best sites available within the catchments. Vascular plant and soil data were collected from 41 sites along the tributaries of two rivers during 2008 and 2009. Ellenberg indicator values revealed trends of decreasing light availability ( < 0.05) and decreasing pH ( < 0.01) from unbuffered sites to buffered sites to reference sites. Multivariate analysis showed that soil parameters and channel morphology, together with canopy cover and bryophyte abundance, were discriminatory in separating species assemblages. The presence of a tree canopy layer appears to be the key instigator of change in soil conditions and corresponding plant species assemblages. An understanding of the underlying processes is important if vegetation characteristics are to be used effectively as indicators of riparian and water quality and to aid the restoration of riparian habitats.  相似文献   

3.
Like other great desert rivers, the Colorado River in the United States and Mexico is highly regulated to provide water for human use. No water is officially allotted to support the natural ecosystems in the delta of the river in Mexico. However, precipitation is inherently variable in this watershed, and from 1981-2004, 15% of the mean annual flow of the Lower Colorado River has entered the riparian corridor below the last diversion point for water in Mexico. These flows include flood releases from US dams and much smaller administrative spills released back to the river from irrigators in the US and Mexico. These flows have germinated new cohorts of native cottonwood and willow trees and have established an active aquatic ecosystem in the riparian corridor in Mexico. We used ground and remote-sensing methods to determine the composition and fractional cover of the vegetation in the riparian corridor, its annual water consumption, and the sources of water that support the ecosystem. The study covered the period 2000-2004, a flood year followed by 4 dry years. The riparian corridor occupies 30,000ha between flood control levees in Mexico. Annual evapotranspiration (ET), estimated by Moderate Resolution Imaging Spectrometer (MODIS) satellite imagery calibrated against moisture flux tower data, was about 1.1myr(-1) and was fairly constant throughout the study period despite a paucity of surface flows 2001-2004. Total ET averaged 3.4x10(8)m(3)yr(-1), about 15% of Colorado River water entering Mexico from the US Surface flows could have played only a small part in supporting these high ET losses. We conclude that the riparian ET is supported mainly by the shallow regional aquifer, derived from agricultural return flows, that approaches the surface in the riparian zone. Nevertheless, surface flows are important in germinating cohorts of native trees, in washing salts from the soil and aquifer, and in providing aquatic habitat, thereby enriching the habitat value of the riparian corridor for birds and other wildlife. Conservation and water management strategies to enhance the delta habitats are discussed in light of the findings.  相似文献   

4.
Data collected from 172 sites in 20 major river basins between 1993 and 1995 as part of the US Geological Survey's National Water-Quality Assessment Program were analyzed to assess relations among basinwide land use (agriculture, forest, urban, range), water physicochemistry, riparian condition, and fish community structure. A multimetric approach was used to develop regionally referenced indices of fish community and riparian condition. Across large geographic areas, decreased riparian condition was associated with water-quality constituents indicative of nonpoint source inputs—total nitrogen and suspended sediment and basinwide urban land use. Decreased fish community condition was associated with increases in total dissolved solids and rangeland use and decreases in riparian condition and agricultural land use. Fish community condition was relatively high even in areas where agricultural land use was relatively high (>50% of the basin). Although agricultural land use can have deleterious effects on fish communities, the results of this study suggest that other factors also may be important, including practices that regulate the delivery of nutrients, suspended sediments, and total dissolved solids into streams. Across large geographic scales, measures of water physicochemistry may be better indicators of fish community condition than basinwide land use. Whereas numerous studies have indicated that riparian restorations are successful in specific cases, this analysis suggests the universal importance of riparian zones to the maintenance and restoration of diverse fish communities in streams.  相似文献   

5.
Abstract: The increase of coverage of forest/vegetation is imperative to improve the environment in dry‐land areas of China, especially for protecting soil against serious erosion and sandstorms. However, inherent severe water shortages, drought stresses, and increasing water use competition greatly restrict the reforestation. Notably, the water‐yield reduction after afforestation generates intense debate about the correct approach to afforestation and forest management in dry‐land areas. However, most studies on water‐yield reduction of forests have been at catchment scales, and there are few studies of the response of total evapotranspiration (ET) and its partitioning to vegetation structure change. This motivates us to learn the linkage between hydrological processes and vegetation structure in slope ecosystems. Therefore, an ecohydrological study was carried out by measuring the individual items of water balance on sloping plots covered by different vegetation types in the semiarid Liupan Mountains of northwest China. The ratio of precipitation consumed as ET was about 60% for grassland, 93% for shrubs, and >95% for forestland. Thus, the water yield was very low, site‐specific, and sensitive to vegetation change. Conversion of grassland to forest decreased the annual water yield from slope by 50‐100 mm. In certain periods, the plantations at lower slopes even consumed the runon from upper slopes. Reducing the density of forests and shrubs by thinning was not an efficient approach to minimize water use. Leaf area index was a better indicator than plant density to relate ET to vegetation structure and to evaluate the soil water carrying capacity for vegetation (i.e., the maximum amount of vegetation that can be supported by the available soil water for an extended time). Selecting proper vegetation types and plant species, based on site soil water condition, may be more effective than the forest density regulation to minimize water‐yield reduction by vegetation coverage increase and notably by reforestation. Finally, the focuses in future research to improve the forest‐water relations in dry‐land areas are recommended as follows: vegetation growth dynamics driven by environment especially water conditions, coupling of ecological and hydrological processes, further development of distributed ecohydrological models, quantitative relation of eco‐water quota of ecosystems with vegetation structures, multi‐scaled evaluation of soil water carrying capacity for vegetation, and the development of widely applicable decision support tools.  相似文献   

6.
Loss of Louisiana's coastal wetlands has reached catastrophic proportions. The loss rate is approximately 150 km2/yr (100 acres/day) and is increasing exponentially. Total wetland loss since the turn of the century has been almost 0.5 million ha (1.1 million acres) and represents an area larger than Rhode Island. The physical cause of the problem lies in man's attempts to control the Mississippi River's flooding, while enhancing navigation and extracting minerals. Levee systems and control structures confine sediments that once nourished the wetlands to the river channel. As a consequence, the ultimate sediment deposition is in deep Gulf waters off the Louisiana coast. The lack of sediment input to the interdistributary wetlands results in an accretion deficit. Natural and human-induced subsidence exceeds accretion so that the wetlands sink below sea level and convert to water. The solution is to provide a thin veneer of sediment (approximately 0.6 cm/yr; an average of 1450 g m?2 yr?1) over the coastal marshes and swamps and thus prevent the submergence of vegetation. The sediment source is the Mississippi River system. Calculations show that 9.2% of the river's annual suspended sediment load would be required to sustain the deltaic plain wetlands. It should be distributed during the six high-water months (December–June) through as disaggregated a network as possible. The problem is one of distribution: how can the maximum acres of marsh be nourished with the least cost? At present, the river is managed through federal policy for the benefit of navigation and flood control. A new policy structure, recognizing the new role for the river-sediment distribution, is recommended.  相似文献   

7.
Land uses such as forestry and agriculture are presumed to degrade the biodiversity of riparian wetlands in the northern temperate regions of the United States. In order to improve land use decision making in this landscape, floral and faunal communities of 15 riparian wetlands associated with low-order streams were related to their surrounding land cover to establish which organismal groups are affected by anthropogenic disturbance and whether these impacts are scale-specific. Study sites were chosen to represent a gradient of disturbance. Vascular plants of wet meadow and shrub carr communities, aquatic macro-invertebrates, amphibians, fish and birds were surveyed, and total abundance, species richness and Shannon diversity were calculated. For each site, anthropogenic disturbances were evaluated at local and landscape scales (500, 1000, 2500 and 5000 m from the site and the site catchment) from field surveys and a geographic information system (GIS). Land use data were grouped into six general land use types: urban, cultivated, rangeland, forest, wetland and water. Shrub carr vegetation, bird and fish diversity and richness generally decrease with increasing cultivation in the landscape. Amphibian abundance decreases and fish abundance increases as the proportions of open water and rangeland increases; bird diversity and richness increase with forest and wetland extent in the landscape. Wet meadow vegetation, aquatic macro-invertebrates, amphibians and fish respond to local disturbances or environmental conditions. Shrub carr vegetation, amphibians and birds are influenced by land use at relatively small landscape scales (500 and 1000 m), and fish respond to land use at larger landscape scales (2500, 5000 m and the catchment). Effective conservation planning for these riparian wetlands requires assessment of multiple organismal groups, different types of disturbance and several spatial scales.1998 Academic Press  相似文献   

8.
Australian reporting requirements for native vegetation require improved spatial and temporal information on the anthropogenic effects on vegetation. This includes better linkage of information on vegetation type (e.g., native vegetation association), extent and change, vegetation condition, or modification. The Vegetation Assets, States and Transitions (VAST) framework is presented as a means for ordering vegetation by degree of anthropogenic modification as a series of condition states, from a residual or base-line condition through to total removal. The VAST framework facilitates mapping and accounting for change and trends in the status and condition of vegetation. The framework makes clear the links between land management and vegetation condition states, provides a mechanism for describing the consequences of land management practices on vegetation condition, and contributes to an understanding of resilience. VAST is a simple communication and reporting tool designed to assist in describing and accounting for anthropogenic modification of vegetation. A benchmark is identified for each vegetation association. Benchmarks are based on structure, composition, and current regenerative capacity. This article describes the application of the VAST framework as a consistent national framework to translate and compile existing mapped information on the modification of native vegetation. We discuss the correspondence between these compiled VAST datasets at national and regional scales and describe their relevance for natural resource policy and planning.  相似文献   

9.
Although changes in depth to groundwater occur naturally, anthropogenic alterations may exacerbate these fluctuations and, thus, affect vegetation reliant on groundwater. These effects include changes in physiology, structure, and community dynamics, particularly in arid regions where groundwater can be an important water source for many plants. To properly manage ecosystems subject to changes in depth to groundwater, plant responses to both rising and falling groundwater tables must be understood. However, most research has focused exclusively on riparian ecosystems, ignoring regions where groundwater is available to a wider range of species. Here, we review responses of riparian and other species to changes in groundwater levels in arid environments. Although decreasing water tables often result in plant water stress and reduced live biomass, the converse is not necessarily true for rising water tables. Initially, rising water tables kill flooded roots because most species cannot tolerate the associated low oxygen levels. Thus, flooded plants can also experience water stress. Ultimately, individual species responses to either scenario depend on drought and flooding tolerance and the change in root system size and water uptake capacity. However, additional environmental and biological factors can play important roles in the severity of vegetation response to altered groundwater tables. Using the reviewed information, we created two conceptual models to highlight vegetation dynamics in areas with groundwater fluctuations. These models use flow charts to identify key vegetation and ecosystem properties and their responses to changes in groundwater tables to predict community responses. We then incorporated key concepts from these models into EDYS, a comprehensive ecosystem model, to highlight the potential complexity of predicting community change under different fluctuating groundwater scenarios. Such models provide a valuable tool for managing vegetation and groundwater use in areas where groundwater is important to both plants and humans, particularly in the context of climate change.  相似文献   

10.
ABSTRACT. The Bureau of Reclamation was created to implement the Reclamation Act of 1902 and subsequent legislation to conserve and develop the water resources of the western states for maximum efficient use. This has been accomplished by the planning and construction of major multiple use projects which now supply water to approximately eight million acres of land which annually produce 52 million tons of food and fiber with a gross crop value of approximately $2 billion. Fifteen million people are served with municipal and industrial water supplies and hydroelectric power from Bureau projects now returns $160 million annually to the Treasury. Flood control, recreation, and fish and wildlife enhancement are other major benefits. The Bureau of Reclamation is now undertaking a Westwide Survey of water resources and of the needs of the future which is more far-reaching than anything heretofore accomplished. The information accumulated during this ten-year survey will determine whether there is a necessity for consideration of major interbasin transfer of water supply.  相似文献   

11.
Denitrification potential in urban riparian zones   总被引:3,自引:0,他引:3  
Denitrification, the anaerobic microbial conversion of nitrate (NO3-) to nitrogen (N) gases, is an important process contributing to the ability of riparian zones to function as "sinks" for NO3- in watersheds. There has been little analysis of riparian zones in urban watersheds despite concerns about high NO3- concentrations in many urban streams. Vegetation and soils in urban ecosystems are often highly disturbed, and few studies have examined microbial processes like denitrification in these ecosystems. In this study, we measured denitrification potential and a suite of related microbial parameters (microbial biomass carbon [C] and N content, potential net N mineralization and nitrification, soil inorganic N pools) in four rural and four urban riparian zones in the Baltimore, MD metropolitan area. Two of the riparian zones were forested and two had herbaceous vegetation in each land use context. There were few differences between urban and rural and herbaceous and forest riparian zones, but variability was much higher in urban than rural sites. There were strong positive relationships between soil moisture and organic matter content and denitrification potential. Given the importance of surface runoff in urban watersheds, the high denitrification potential of the surface soils that we observed suggests that if surface runoff can be channeled through areas with high denitrification potential (e.g., stormwater detention basins with wetland vegetation), these areas could function as important NO3- sinks in urban watersheds.  相似文献   

12.
A study of the impact of two flood control reservoirs and pollution influx was conducted on two streams within the Sandy Creek Watershed, Mercer County, Pennsylvania, USA. Fecal coliforms were significantly reduced in the outflows without affecting water chemistry, thereby improving the overall water quality. The size and composition of the aquatic communities as well as stream metabolism varied seasonably among the different sampling stations. Pollution influx primarily from communities and agricultural drainage had a greater impact on the stream ecosystem than did impounding of the streams. Natural wetlands and riparian vegetation were important factors in reducing the pollution load in these streams. The reestablishment and maintenance of riparian vegetation should therefore be an integral part of the land-use plan for watersheds in order to improve water quality and wildlife habitats. In the future, the maintenance of riparian vegetation should be given prime consideration in the development of watershed projects.  相似文献   

13.
An observational study was conducted at the watershed scale using land cover (vegetation) data to assess the absence or presence of riparian buffers in three northeastern Missouri watersheds. Forests and grasslands lying within a 61 m (200 ft) parallel band directly adjacent to streams were considered “buffers” for improving or protecting water quality and were characterized according to their length, width, and vegetation type. Results indicated that riparian buffers were abundant throughout the watersheds but were typically narrow along first‐order and second‐order streams; in many cases they may not have been wide enough to provide adequate stream protection. At least 90 percent of all streams had buffer vegetation immediately adjacent to the streambanks, but as few as 31 percent of first‐order streams had buffers extending to 61 m from the stream on at least one side. On‐site evaluations are needed to determine the condition of these forests and grasslands and their ability to process nonpoint source pollutants. The results will be useful for providing natural resource managers with knowledge of current watershed conditions as well as in identifying specific locations for future conservation efforts within each watershed.  相似文献   

14.
Legitimizing Fluvial Ecosystems as Users of Water: An Overview   总被引:6,自引:0,他引:6  
We suggest that fluvial ecosystems are legitimate users of water and that there are basic ecological principles guiding the maintenance of long-term ecological vitality. This article articulates some fundamental relationships between physical and ecological processes, presents basic principles for maintaining the vitality of fluvial ecosystems, identifies several major scientific challenges and opportunities for effective implementation of the basic ecological principles, and acts as an introduction to three specific articles to follow on biodiversity, biogeochemistry, and riparian communities. All the objectives, by necessity, link climate, land, and fresh water. The basic principles proposed are: (1) the natural flow regime shapes the evolution of aquatic biota and ecological processes, (2) every river has a characteristic flow regime and an associated biotic community, and (3) aquatic ecosystems are topographically unique in occupying the lowest position in the landscape, thereby integrating catchment-scale processes. Scientific challenges for the immediate future relate to quantifying cumulative effects, linking multidisciplinary knowledge and models, and formulating effective monitoring and assessment procedures. Additionally, forecasting the ecological consequences of changing water regimes is a fundamental challenge for science, especially as environmental issues related to fresh waters escalate in the next two to three decades.  相似文献   

15.
State-and-transition models are increasingly being used to guide rangeland management. These models provide a relatively simple, management-oriented way to classify land condition (state) and to describe the factors that might cause a shift to another state (a transition). There are many formulations of state-and-transition models in the literature. The version we endorse does not adhere to any particular generalities about ecosystem dynamics, but it includes consideration of several kinds of dynamics and management response to them. In contrast to previous uses of state-and-transition models, we propose that models can, at present, be most effectively used to specify and qualitatively compare the relative benefits and potential risks of different management actions (e.g., fire and grazing) and other factors (e.g., invasive species and climate change) on specified areas of land. High spatial and temporal variability and complex interactions preclude the meaningful use of general quantitative models. Forecasts can be made on a case-by-case basis by interpreting qualitative and quantitative indicators, historical data, and spatially structured monitoring data based on conceptual models. We illustrate how science- based conceptual models are created using several rangeland examples that vary in complexity. In doing so, we illustrate the implications of designating plant communities and states in models, accounting for varying scales of pattern in vegetation and soils, interpreting the presence of plant communities on different soils and dealing with our uncertainty about how those communities were assembled and how they will change in the future. We conclude with observations about how models have helped to improve management decision-making.  相似文献   

16.
ABSTRACT: Economic models sometimes indicate that irrigation water is misallocated in agriculture, especially when it appears that the marginal value product is higher in other uses (such as for hydro-power). Historically, trends tend to contradict this reasoning, however, especially since irrigation has grown from 20 million acres in 1940 to over 50 million acres in 1980. Results of this study tend to indicate that as agriculture becomes more and more intensive (in terms of inputs), irrigation is part of that long term trend. Further, major economic variables, such as output and investments in agriculture, appear to be more highly correlated with irrigated land than with dryland agriculture. Recent data indicate an upper limit of about 320 million acres for dryland farming in the United States, while no such constraint is apparent for irrigated agriculture.  相似文献   

17.
ABSTRACT: Forestation of riparian areas has long been promoted to restore stream ecosystems degraded by agriculture in central North America. Although trees and shrubs in the riparian zone can provide many benefits to streams, grassy or herbaceous riparian vegetation can also provide benefits and may be more appropriate in some situations. Here we review some of the positive and negative implications of grassy versus wooded riparian zones and discuss potential management outcomes. Compared to wooded areas, grassy riparian areas result in stream reaches with different patterns of bank stability, erosion, channel morphology, cover for fish, terrestrial runoff, hydrology, water temperature, organic matter inputs, primary production, aquatic macroinvertebrates, and fish. Of particular relevance in agricultural regions, grassy riparian areas may be more effective in reducing bank erosion and trapping suspended sediments than wooded areas. Maintenance of grassy riparian vegetation usually requires active management (e.g., mowing, burning, herbicide treatments, and grazing), as successional processes will tend ultimately to favor woody vegetation. Riparian agricultural practices that promote a dense, healthy, grassy turf, such as certain types of intensively managed livestock grazing, have potential to restore degraded stream ecosystems.  相似文献   

18.
Out study deals with the demand for water and alternative agricultural production and land use patterns under varying prices for both surface and ground water. We derive irrigation water demands for both the United States and regions of it. Not only is a different amount of water used at each set of water prices but also a different mix of crops, livestock, and production technology develops among the different regions. Under the highest set of prices used, more than fourteen million acres are converted into dryland farming. Total irrigated water use decreases by more than 25 million acre-feet. Irrigated crop yields are reduced and cropping patterns shift away from irrigation. Commodity shadow prices increase as much as 15 percent under high prices for both surface and ground water. A redistribution of farm income occurs between irrigated and dryland regions.  相似文献   

19.
This study assessed the relationship among land use, riparian vegetation, and avian populations at two spatial scales. Our objective was to compare the vegetated habitat in riparian corridors with breeding bird guilds in eight Rhode Island subwatersheds along a range of increasing residential land use. Riparian habitats were characterized with fine-scale techniques (used field transects to measure riparian vegetation structure and plant species richness) at the reach spatial scale, and with coarse-scale landscape techniques (a Geographic Information System to document land-cover attributes) at the subwatershed scale. Bird surveys were conducted in the riparian zone, and the observed bird species were separated into guilds based on tolerance to human disturbance, habitat preference, foraging type, and diet preference. Bird guilds were correlated with riparian vegetation metrics, percent impervious surface, and percent residential land use, revealing patterns of breeding bird distribution. The number of intolerant species predominated below 12% residential development and 3% impervious surface, whereas tolerant species predominated above these levels. Habitat guilds of edge, forest, and wetland bird species correlated with riparian vegetation. This study showed that the application of avian guilds at both stream reach and subwatershed scales offers a comprehensive assessment of effects from disturbed habitat, but that the subwatershed scale is a more efficient method of evaluation for environmental management.  相似文献   

20.
The growing use of global freshwater supplies is increasing the need for improved modeling of the linkage between groundwater and riparian vegetation. Traditional groundwater models such as MODFLOW have been used to predict changes in regional groundwater levels, and thus riparian vegetation potential attributable to anthropogenic water use. This article describes an approach that improves on these modeling techniques through several innovations. First, evapotranspiration from riparian/wetland systems is modeled in a manner that more realistically reflects plant ecophysiology and vegetation complexity. In the authors’ model programs (RIP-ET and PRE-RIP-ET), the single, monotonically increasing evapotranspiration flux curve in traditional groundwater models is replaced with a set of ecophysiologically based curves, one for each plant functional group present. For each group, the curve simulates transpiration declines that occur both as water levels decline below rooting depths and as waters rise to levels that produce anoxic soil conditions. Accuracy is further improved by more effective spatial handling of vegetation distribution, which allows modeling of surface elevation and depth to water for multiple vegetation types within each large model cell. The use of RIP-ET in groundwater models can improve the accuracy of basin scale estimates of riparian evapotranspiration rates, riparian vegetation water requirements, and water budgets. Two case studies are used to demonstrate that RIP-ET produces significantly different evapotranspiration estimates than the traditional method. When combined with vegetation mapping and a supporting program (RIP-GIS), RIP-ET also enables predictions of riparian vegetation response to water use and development scenarios. The RIP-GIS program links the head distribution from MODFLOW with surface digital elevation models, producing moderate- to high-resolution depth-to-groundwater maps. Together with information on plant rooting depths, these can be used to predict vegetation response to water allocation decisions. The different evapotranspiration outcomes produced by traditional and RIP-ET approaches affect resulting interpretations of hydro-vegetation dynamics, including the effects of groundwater pumping stress on existing habitats, and thus affect subsequent policy decisions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号