首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Using the ionic liquid(IL)1-octyl-3-methylimidazolium hexafluorophosphate as the extractant and methanol as the dispersion solvent,a dispersive liquid–liquid microextraction method was developed to extract silver nanoparticles(AgN Ps)from environmental water samples.Parameters that influenced the extraction efficiency such as IL concentration,pH and extraction time were optimized.Under the optimized conditions,the highest extraction efficiency for AgN Ps was above 90% with an enrichment factor of 90.The extracted AgN Ps in the IL phase were identified by transmission electron microscopy and ultraviolet–visible spectroscopy,and quantified by inductively coupled plasma mass spectrometry after microwave digestion,with a detection limit of 0.01 μg/L.The spiked recovery of AgN Ps was 84.4% with a relative standard deviation(RSD)of 3.8%(n = 6)at a spiked level of 5 μg/L,and 89.7% with a RSD of 2.2%(n = 6)at a spiked level of 300 μg/L,respectively.Commonly existed environmental ions had a very limited influence on the extraction efficiency.The developed method was successfully applied to the analysis of Ag NPs in river water,lake water,and the influent and effluent of a wastewater treatment plant,with recoveries in the range of 71.0%–90.9% at spiking levels of 0.11–4.7 μg/L.  相似文献   

2.
Drinking water treatment sludge, characterized as accumulated suspended solids and organic and inorganic matter, is produced in large quantities during the coagulation process. The proper disposal, regeneration or reuse of sludge is, therefore, a significant environmental issue. Reused sludge at low temperatures is an alternative method to enhance traditional coagulation efficiency. In the present study, the recycling mass of mixed sludge and properties of raw water (such as pH and turbidity) were systematically investigated to optimize coagulation efficiency. We determined that the appropriate dosage of mixed sludge was 60 mL/L, effective initial turbidity ranges were below 45.0 NTU, and optimal pH for DOMs and turbidity removal was 6.5--7.0 and 8.0, respectively. Furthermore, by comparing the flocs characteristics with and without recycling sludge, we found that floc structures with sludge were more irregular with average size growth to 64.7 μupm from 48.1 μupm. Recycling sludge was a feasible and successful method for enhancing pollutants removal, and the more irregular flocs structure after recycling might be caused by breakage of reused flocs and incorporation of powdered activated carbon into larger flocs structure. Applied during the coagulation process, recycling sludge could be significant for the treatment of low temperature and micro-polluted source water.  相似文献   

3.
Excess nitrogenous compounds are detrimental to natural water systems and to human health. To completely realize autohy- drogenotrophic nitrogen removal, a novel 3-dimensional biofilm-electrode reactor was designed. Titanium was electroplated with ruthenium and used as the anode. Activated carbon fiber felt was used as the cathode. The reactor was separated into two chambers by a permeable membrane. The cathode chamber was filled with granular graphite and glass beads. The cathode and cathode chamber were inhabited with domesticated biofilm. In the absence of organic substances, a nitrogen removal efficiency of up to 91% was achieved at DO levels of 3.42 ± 0.37 mg/L when the applied current density was only 0.02 mA/cm^2. The oxidation of ammonium in biofilmelectrode reactors was also investigated. It was found that ammonium could be oxidized not only on the anode but also on particle electrodes in the cathode chamber of the biofilm-electrode reactor. Oxidation rates of ammonium and nitrogen removal efficiency were found to be affected by the electric current loading on the biofilm-electrode reactor. The kinetic model of ammonium at different electric currents was analyzed by a first-order reaction kinetics equation. The regression analysis implied that when the current density was less than 0.02 mA/cm^2, ammonium removal was positively correlated to the current density. However, when the current density was more than 0.02 mA/cm^2, the electric current became a limiting factor for the oxidation rate of ammonium and nitrogen removal efficiency.  相似文献   

4.
A study on the elemental composition of aerosol, water and soil in the Mt. Namjagbarwa region, Tibet, was carried out in the period of 1982 to 1984. Samples of aerosol particles were collected by cascade impactor and analyzed for 10 elements by PIXE. Samples of ice, snow and water were collected and analyzed for trace metals, major cations and anions. The pH values of water were at quasi-neutrality or neutrality, and the hardness of water was low. Contents and physico-chemical composition of 20 elements in the major types of soil were determined by physico-chemical methods. Levels of elements in soil varied with soil type and their parent materials. Contents of some elements were higher in the substratum soil derived from in situ than in the surface soil. The region was in a remote area with negligible pollution and could be considered as a good location for measuring the baskground value of environmental sample.  相似文献   

5.
Preliminary characterization of bound extracellular polymeric substances(bEPS) of cyanobacteria is crucial to obtain a better understanding of the formation mechanism of cyanobacterial bloom. However,the characterization of bEPS can be affected by extraction methods. Five sets(including the control) of bEPS from Microcystis extracted by different methods were characterized using three-dimensional excitation and emission matrix(3DEEM) fluorescence spectroscopy combined chemical spectrophotometry; and the characterization results of bEPS samples were further compared. The agents used for extraction were NaOH,pure water and phosphate buffered saline(PBS) containing cationic exchange resins,and hot water. Extraction methods affected the fluorescence signals and intensities in the bEPS. Five fluorescence peaks were observed in the excitation and emission matrix fluorescence spectra of bEPS samples. Two peaks(peaks T1 and T2) present in all extractions were identified as protein-like fluorophores,two(peaks A and C) as humic-like fluorophores,and one(peak E) as a fulvic-like substance.Among these substances,the humic-like and fulvic-like fluorescences were only seen in the bEPS extracted with hot water. Also,NaOH solution extraction could result in strong fluorescence intensities compared to the other extraction methods. It was suggested that NaOH at pH 10.0 was the most appropriate method to extract bEPS from Microcystis. In addition,dialysis could affect the yields and characteristics of extracted bEPS during the determination process. These results will help us to explore the issues of cyanobacterial blooms.  相似文献   

6.
Capillary electrophoresis coupled to mass spectrometry(CE–MS) was used for the analysis of naphthenic acid fraction compounds(NAFCs) of oil sands process-affected water(OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE–MS in less than 15 min. Time of flight MS analysis(TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800 m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs(between 100 and 450 m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide(EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30%(V/V) methanol in water and 2%(V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE–MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500 m/z.  相似文献   

7.
This study focused on a multi-indicator assessment methodology for governmental environmental auditing of water protection programs. The environmental status of Wuli Lake in China was assessed using the global indicators (driver-status-response) developed by the Commission on Sustainable Development, and four additional indicators proposed by the author: water quality, pollution load, aquatic ecosystem status, and lake sediment deposition. Various hydrological, chemical, biological and environmental parameters were used to estimate the values of the indicators for assessment of environmental status of the lake based on time series data sets for twenty years. The indicators proposed can be customized to meeting the needs for particular assessment of water protection programs. This method can be used to evaluate the performance of national environmental protection programs and provide technical support for environmental auditors.  相似文献   

8.
Batch experiments were conducted with a heavy metals and arsenic co-contaminated soil from an abandoned mine to evaluate the feasibility of a remediation technology that combines sieving with soil washing.Leaching of the arsenic and heavy metals from the different particle size fractions was found to decrease in the order: 0.1,2–0.1,and 2 mm.With increased contact time,the concentration of heavy metals in the leachate was significantly decreased for small particles,probably because of adsorption by the clay soil component.For the different particle sizes,the removal efficiencies for Pb and Cd were75%–87%,and 61%–77% for Zn and Cu,although the extent of removal was decreased for As and Cr at 45%.The highest efficiency by washing for Pb,Cd,Zn,and As was from the soil particles 2 mm,although good metal removal efficiencies were also achieved in the small particle size fractions.Through SEM-EDS observations and correlation analysis,the leaching regularity of the heavy metals and arsenic was found to be closely related to Fe,Mn,and Ca contents of the soil fractions.The remediation of heavy metal-contaminated soil by sieving combined with soil washing was proven to be efficient,and practical remediation parameters were also recommended.  相似文献   

9.
Magnetic particles were coupled with a flocculant to enhance the demulsification and separation of waste cutting emulsions. The optimal magnetic particle size and critical magnetic field conditions were investigated to achieve large-scale engineering application of magnetic demulsification separation for waste cutting emulsion treatment. The micro-scale magnetic particles were found to show comparable effects to nano-scale magnetic particles on enhancing the demulsification and separation of cutting emulsions, which are beneficial for broadening the selectivity of low-cost magnetic particles. The critical magnetic separation region was determined to be an area 40 mm from the magnetic field source. Compared to the flocculant demulsification, the magnetic demulsification separation exhibited a significant advantage in accelerating flocs–water separation by decreasing the separation time of flocs from 180–240 min to less than 15 min, compressing the flocs by reducing the floc volume ratio from 60%–90% to lower than 20%, and showing excellent adaptability to the variable properties of waste cutting emulsions. Coupled with the design of the magnetic disk separator, continuous demulsification separation of the waste cutting emulsion was achieved at 1.0 t/hr for at least 10 hr to obtain clear effluent with 81% chemical oxygen demand removal and 89% turbidity reduction. This study demonstrates the feasibility of applying magnetic demulsification separation to large-scale continuous treatment of waste emulsion. Moreover, it addresses the flocs–water separation problems that occur in practical flocculant demulsification engineering applications.  相似文献   

10.
The reduction of nitrate contaminant in groundwater has gained renewed and intensive attention due to the environmental problems and health risks. Catalytic denetrification presents one of the most promising approaches for the removal of nitrate from water. Catalytic nitrate reduction from water by powder catalysts and catalytic membrane in a batch reactor was studied. And the effects of the initial concentration, the amounts of catalyst, and the flux H2 on the nitrate reduction were also discussed. The results demonstrated that nitrate reduction activity and the selectivity to nitrogen gas were mainly controlled by diffusion limitations and the mass transfer of the reactants. The selectivity can improved while retaining a high catalytic activity under controlled diffusion condition or the intensification of the mass transfer, and a good reaction condition. The total nitrogen removal efficiency reached above 80%. Moreover, catalytic membrane can create a high effective gas/liquid/solid interface, and show a good selectivity to nitrogen in comparative with the powder catalyst, the selectivity to nitrogen was improved from 73.4 % to 89.4%.  相似文献   

11.
17β-Estradiol (E2) is an endocrine disrupting chemical of harm to both animals and human beings at a low concentration level (ng/L).It cannot be completely removed by wastewater treatments,and is often detected in both environment and drinking waters.The purpose of this feasibility study,towards environmental engineering in the field of water analysis and treatment,was to remove E2 by extraction using non-imprinted polymer (NIP) submicron particles.Experimental results showed that 0.5 mg/L of E2 could be completely extracted by adding 10 mg of NIP particles directly into 10 mL of water.However,the extraction efficiency decreased to 64% for 100 mL of water.prefilling the NIP particles inside a membrane filter showed a potential for water treatment of a large volume,requiring no effort to distribute the particles uniformly in the water.High extraction efficiency (80±10)% for E2 was achieved for 100 mL of water.A total mass of 0.29 mg E2 was extracted from 1000 mL of water containing 0.8 mg/L E2 (by using only 10 mg of NIP particles).Both efficiency and mass capacity can be increased,by scaling up the amount of NIP particles,towards environmental engineering applications.  相似文献   

12.
建立了自动固相萃取-气相色谱质谱仪测定饮用水源地水体中8种痕量有机氯农药的检测法.采用Supelclean ENVI-18固相萃取柱以10 mL/min流速富集500 mL水样,再依次用7.5 mL乙酸乙酯和10 mL二氯甲烷进行洗脱.8种物质在0.188 mg/L~2.04 mg/L范围内线性良好,相关系数均在0.997以上;检出限为0.011μg/L~0.034μg/L;实际水样加标回收率为82.9%~103%,相对标准偏差为0.7%~8.3%.该方法自动化程度高、检出限低、灵敏度高、结果准确,适用于饮用水源地水体中痕量有机氯农药的测定.  相似文献   

13.
为评估双酚类环境激素对水环境可能造成的环境影响,建立固相萃取-超高效液相色谱-串联质谱(SPE-UPLC-MS/MS)法测定斑马鱼暴露体系中的双酚C(BPC)、双酚F(BPF)、双酚S(BPS)、双酚Z(BPZ). 对前处理条件进行优化,斑马鱼样品依次采用6 mL乙腈溶液提取,30 min超声萃取及振荡混合,8 000 r/min下离心10 min,重复2次,于?80 ℃冷冻除脂48 h,过滤并用超纯水稀释至500 mL. 采用Generik H2P柱萃取上述鱼样及养殖水体样品,依次用10 mL 10%甲醇水溶液(V/V)淋洗,10 mL甲醇溶液洗脱. 优化参数确定最佳质谱条件,以甲醇-水溶液为流动相进行梯度洗脱,采用电喷雾电离、负离子选择反应监控(SRM)模式、同位素内标法进行测定. 结果表明:①固相萃取-超高效液相色谱-串联质谱法的检出限为0.019~0.60 μg/L,定量限为0.06~1.89 μg/L,BPS在0.5~100 μg/L范围内线性关系良好,相关系数为0.999 0,BPZ、BPF和BPC在1~100 μg/L范围内线性关系良好,相关系数在0.998 9~0.999 8范围内. ②在1.5、4.5、15 μg/L双酚类环境激素的添加浓度下,养殖水体中目标物的回收率为91.45%~102.91%,相对标准偏差为1.47%~11.04%,斑马鱼体内目标物的回收率为85.95%~97.45%,相对标准偏差为4.63%~16.36%. ③高浓度暴露组中,鱼体内BPF、BPS、BPC含量约是低浓度暴露组的10倍,而BPZ含量在两组间无明显差异. 研究显示,BPC、BPF、BPS、BPZ短时间内在斑马鱼体内产生了富集,通过分析斑马鱼全鱼样品、养殖水样及实际景观水体样品,证明固相萃取-超高效液相色谱-串联质谱法样品回收率高、检出限低、灵敏度高、重现性好,具有较好的实用性.   相似文献   

14.
铜镍电镀退镀废液资源化处理工艺   总被引:3,自引:0,他引:3  
针对硝酸型铜镍退镀废液,确定了蒸馏法回收硝酸、溶剂萃取法分离提取铜、沉淀分离法回收镍的工艺路线.探讨了采用P507煤油体系萃取分离硝酸介质中的铜和镍及用硫酸反萃铜的条件及影响规律,确定了最佳工艺参数.结果表明,硝酸回收率可达97.8%;当最佳萃取工艺条件为:料液浓度Cu 15~20mg/mL,Ni 5~10 mg/mL,料液pH为1~2,萃取剂体积分数35%,皂化度60%,相比为1∶1,振荡时间2min,温度20℃~25℃,铜的一级萃取率达90%以上,铜镍分离系数为75,经过三级逆流萃取废液中的铜镍已达到完全分离;以NaOH作沉淀剂,溶液的pH为10~11,镍的回收率可达99.9%.经上述处理后,使排放液达到国家工业废水排放标准要求.  相似文献   

15.
文章确立了小麦、香蕉中戊唑醇残留检测方法,小麦样品加水10 mL用丙酮为萃取溶剂,石油醚液液分配,中性氧化铝柱层析净化,用气相色谱(GC-NPD)检测。香蕉样品加水5 mL用丙酮为萃取溶剂,石油醚液液分配,浓缩后用气相色谱(GC-NPD)检测。分别设置不同时间批次,同一批次间的平行样及实验室内人员分析,分别从方法灵敏度、方法准确度、方法精密度及其质量控制图、标准工作液的稳定性来探讨该方法的可靠性,结果表明该方法可以作为香蕉和小麦种戊唑醇残留检测的标准分析方法。  相似文献   

16.
何延青  吴永强  刘俊良  马放 《环境工程》2004,22(4):60-61,65
利用生物工程技术筛选、驯化出能够去除水中微污染有机物的工程菌 ,并以颗粒活性炭为载体采用物理吸附法将其人工固定化 ,然后用于微污染水的处理。通过对高锰酸盐指数的连续测定 ,试验结果表明 :工程菌人工固定化形成的生物活性炭对微污染水中有机物去除率较高 ,并且稳定 ,高锰酸盐指数去除率平均 4 0 % ;出水高锰酸盐指数 <2 5mg L ,浊度 <1 0NTU ,细菌总数 <10 0cfu mL ,总大肠菌群未检出。  相似文献   

17.
分别从样品前处理和分析测定两方面对大气细粒子中阳离子表面有机活性物质的二硫蓝分光光度分析法进行优化,并采用优化方案对北京市大气细粒子进行了分析.结果表明:① 优化的最佳样品前处理条件中超声提取频率为40 Hz、初始水浴温度为30℃、超声提取时间为30 min;② 优化的最佳分析测定条件中二硫蓝使用量为1.29 mg(0.5 mL的2.58 g/L二硫蓝溶液)、最佳静置时间为30 min、醋酸盐缓冲液(pH为5)最佳使用量为3 mL.二硫蓝分光光度法优化方案标准曲线的R2为0.9986,线性较好.采用该优化方案测得的北京市大气细粒子中阳离子表面有机活性物质浓度的平均值为12.87 pmol/m3,其浓度水平数量级是阴离子表面有机活性物质的1/10,其浓度水平高于英国诺威奇与爱丁堡,但低于马来西亚吉隆坡.   相似文献   

18.
本文建立了分散液液微萃取结合气相色谱质谱联用法测定海水中三氯苯(TCBs)的方法。考察了萃取剂和分散剂的种类、体积、超声萃取时间、萃取温度等对模拟海水加标样品的萃取效率的影响,得到最佳萃取实验条件为:以丙酮为分散剂、氯苯为萃取剂,超声萃取时间为10 min,萃取温度为25℃。样品的加标回收率为97.8%~102.5%,相对标准偏差为2.8%~6.6%。1,3,5-,1,2,4-和1,2,3-TCB的方法检出限分别为1.5 g/L,0.5 g/L和2.0 g/L。该方法与顶空、液液萃取和固相萃取法相比具有检出限低、富集因子高、重现性好、操作简便、干扰小等优点。采用本方法对5个实际海水样品中的TCBs进行了定量检测,结果表明其中两种样品含有2~3种待测物,浓度范围为1.9~6.7 g/L。  相似文献   

19.
为评价北京市城市河流地表水体中5种精神活性物质〔METH(甲基苯丙胺)、AMP(苯丙胺)、KET(氯胺酮)、EPH(麻黄碱)和HA(羟亚胺)〕的环境风险,通过对固相萃取柱(Oasis HLB、Oasis MCX、Oasis WAX和Oasis PRiME HLB)类型、水样酸化、洗脱剂类型及体积等条件的确定,建立了同时测定水环境中精神活性物质的固相萃取-液相色谱-质谱(SPE-LC-MS/MS)联用方法,并对北京市城市河流地表水体中5种精神活性物质的质量浓度水平进行了调查,采用RQ(风险熵)法进行了风险评价. 结果表明,在水样未酸化条件下,Oasis MCX柱对精神活性物质的回收率最高,使用含5%(V/V)氨水的甲醇作为洗脱液,5种精神活性物质的回收率可以达到81.8%~91.1%. 地表水水体基质加标结果表明,5种精神活性物质的加标回收率均大于75.5%,相对标准偏差均小于10.0%. 方法检出限为0.30~0.80 ng/L,定量限为1.00~2.68 ng/L. 北京市7条城市河流中5种精神活性物质的质量浓度在1.00~99.51 ng/L之间. EPH在所有采样点均被检出且质量浓度较高,ρ(EPH)平均值为22.79 ng/L;ρ(AMP)相对较低,在1.54~11.23 ng/L之间,但AMP检出率为97.06%;ρ(METH)较高,平均值为14.63 ng/L,最高值(99.51 ng/L)出现在坝河. 研究显示,北京市地表水中5种精神活性物质的RQ均小于0.1,表明其可能的环境风险较低,但由于精神活性物质本身具有生物活性,它们对城市河流水生生态系统产生的潜在危害不容忽视.   相似文献   

20.
采用固相萃取技术富集海水中的666、DDT,并使用气相色谱进行测定。主要包括不同填料(C8、C18、C18-N)、SPE柱规格(500 mg/3 mL、500 mg/6 mL)、洗脱试剂、上样流速、水样pH和洗脱试剂体积6个因素对666、DDT富集效率的影响。最终确定最优条件为:采用500 mg/6 mL C18SPE小柱,调节海水pH=6,上样流速4~5mL/min,10 mL二氯甲烷洗脱。优化后的固相萃取-气相色谱方法测定海水中666、DDT加标10 ng/L回收率为75.7%~110.4%,精密度为1.16%~4.00%,方法检出限为0.19~1.20 ng/L。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号